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Purpose of Review Over the last years, the focus of clinical and animal research in subarachnoid hemorrhage (SAH) shifted
towards the early phase after the bleeding based on the association of the early injury pattern (first 72 h) with secondary
complications and poor outcome. This phase is commonly referenced as early brain injury (EBI). In this clinical review, we
intended to overview commonly used definitions of EBI, underlying mechanisms, and potential treatment implications.

Recent Findings We found a large heterogeneity in the definition used for EBI comprising clinical symptoms, neuroimaging
parameters, and advanced neuromonitoring techniques. Although specific treatments are currently not available, therapeutic
interventions are aimed at ameliorating EBI by improving the energy/supply mismatch in the early phase after SAH.

Summary Future research integrating brain-derived biomarkers is warranted to improve our pathophysiologic understanding of
EBI in order to ameliorate early injury patterns and improve patients’ outcomes.
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Introduction to the Concept of EBI

Aneurysmal subarachnoid hemorrhage (SAH) accounts for 5—
7% of all stroke types [1] and primarily affects young patients
at their most productive years. Despite improved neurocritical
care management with a decrease in case fatality over the last
decades, SAH is still a devastating disease with high long-
term morbidity [2]. Only two-thirds of survivors regain func-
tional independence at 1 year after the bleeding [3].
Mechanisms of secondary brain injury after SAH are multi-
factorial. Although the incidence of vasospasm was success-
fully decreased in clinical trials, the translation into improved
functional outcome failed [4]. In the last years, the focus of
experimental and clinical research shifted towards pathophys-
iologic mechanisms in the first 72 h after the bleeding, com-
monly referred to as “early brain injury” (EBI). EBI was first
described in 2004 by Kusaka et al. [S] and is more and more
recognized as an important denominator related to delayed
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cerebral ischemia (DCI) and long-term morbidity and mortal-
ity after SAH [6ee, 7].

In this review, we aimed (1) to summarize the current un-
derstanding of underlying pathophysiologic mechanisms of
EBI, (2) to comment on various definitions of EBI commonly
used in literature, and (3) to discuss current and potential fu-
ture treatment implications. We decided to focus on available
studies in humans after SAH to make this review suitable for
clinicians in the care of SAH patients.

Mechanisms of EBI

There is increasing evidence that pathophysiologic mecha-
nisms of brain injury start immediately after the bleeding. A
sudden increase in intracranial pressure (ICP) caused by the
extravasation of blood in the subarachnoid space provokes a
decrease in cerebral perfusion (cerebral perfusion pressure,
CPP), impairment of autoregulation [8¢], and in severe cases,
transient or persistent ischemia [9]. Neuronal cell death and
endothelial damage result in cytotoxic edema and blood-brain
barrier (BBB) breakdown [10-12], which aggravates the de-
velopment of vasogenic edema [13, 14]. Cell death is further-
more believed to be a consequence of microcirculatory failure,
microthrombosis, altered ionic homeostasis, excitotoxicity,
oxidative stress, and neuronal swelling [7, 15]. Besides ische-
mia, “nonischemic” mechanisms such as energy dysfunction
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secondary to cortical spreading depolarizations (SDs) [16] or
mitochondrial dysfunction [17] are also considered to be an
important mitigator of EBI [18¢]. Finally, the blood in the
subarachnoid space and intracerebral hemorrhage itself may
aggravate brain injury by microglial activation and initiation
of a proinflammatory response [19] (Fig. 1).

Definitions

So far, no consensus exists on a uniform definition of EBI
which has led to an uncritical use of the term “EBI” in clinical
practice and research. In the following section, we aimed to
describe different approaches used for the definition of EBI
based on clinical parameters, neuroimaging, and advanced
neuromonitoring techniques (Fig. 1).

EBI Based on Clinical Signs and Symptoms

Clinical evaluation of disease severity soon after the bleeding
is a mainstay in the definition of EBI. Commonly used grad-
ing scales include the Hunt&Hess grade [20] or WENS scale
[21]. Poor-grade patients (commonly defined as H&H or
WEFNS grade 4-5) with prolonged loss of consciousness
[22¢¢] more likely suffer from EBI. It remains questionable
whether patients with early obstructive hydrocephalus who
mimic a severe disease and rapidly improve after the insertion
of an external ventricular drain also qualify for this definition
[23]. Together with a poor clinical grade on admission, ictal
loss of consciousness (LOC) may best reflect EBI as a clinical
equivalent of global cerebral ischemia or progressive intracra-
nial hypertension [22¢, 24]. In this context, it is important to
mention that early-onset seizures with prolonged time to re-
gain consciousness may again mimic EBI leading to a

Fig. 1 The complex
pathophysiologic mechanisms
contributing to early brain injury
(EBI) after subarachnoid
hemorrhage (SAH). Definitions
of EBI used in the clinical setting

misclassification of the clinical grade soon after the bleeding.
This is supported by the finding that SAH patients with early-
onset seizures more often achieve good outcomes as com-
pared with poor-grade patients without early seizures [25].
Still, early-onset seizures may also aggravate EBI, especially
if seizures are accompanied by hemodynamic instability and
increased energy demand.

Another clinical manifestation suggestive of EBI is early
neuroworsening. This may be associated with a high blood
burden in the subarachnoid, intraventricular or
intraparenchymal space [26], and other factors such as
rebleeding [27] early obstructive hydrocephalus, and early-
onset seizures.

EBI Based on Neuroimaging

One important neuroimaging biomarker of EBI is the amount
of the intracranial blood volume early after the bleeding.
Semiquantitative grading scales evaluating the blood burden
in the subarachnoid space and the presence of intraventricular
or intraparenchymal bleeding are commonly integrated in the
prediction of DCI and outcome after SAH [28-30]. The asso-
ciation of a higher intracranial blood volume with poor clinical
grades and poor outcome [26]suggests its significant contri-
bution to the pathophysiologic concept of EBI. A more so-
phisticated approach to quantify the amount of blood in the
subarachnoid space using a semiautomated process was not
better in the prediction of hospital complications and poor
outcome [31].

Another commonly used neuroimaging biomarker to EBI
is the presence of brain edema early after SAH. While admis-
sion global cerebral edema (GCE) correlates with early dis-
ease severity and links EBI with secondary brain ischemia and
poor outcome, this construct lacks sensitivity in the
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identification of unilateral or focal brain edema [32, 33]. More
recently, a simple semiquantitative score grading both focal
and global brain edema (SEBES, Subarachnoid Hemorrhage
Early Brain Edema Score) was introduced [6¢¢]. The SEBES
is a CT-based evaluation of the absence of visible sulci caused
by effacement of sulci or disruption of the gray-white matter
junction at 2 predefined brain tissue levels (basal ganglia and
centrum semiovale) in each hemisphere. The score ranges
from 0 (no edema) to 4 (GCE) and may therefore better de-
scribe the transition from focal edema to global brain swelling.
Admission high-grade SEBES (3—4 points) was furthermore
associated not only with clinical disease severity but also with
DCI and poor functional outcome [6¢¢]. Moreover, GCE was
quantified by selective sulcal volumes (SSV) using a semiau-
tomatic approach. Smaller SSV suggestive of GCE were also
associated with worse outcomes and may be a candidate
marker of EBI [34].

Another way to quantify parenchymal pathologies and
therefore EBI with advanced neuroimaging techniques com-
prises the early use of brain MRI by identifying the ischemic
lesion load as well as vasogenic and cytotoxic edema [14, 35,
36].

In summary, neuroimaging techniques are useful to quan-
tify EBI in a standardized way and may help to discriminate
patients with a higher injury load early after the bleeding.
Modern MRI techniques and the use of serial imaging may
further elucidate the amount of axonal damage and the result
of microvascular ischemic injury after SAH.

EBI Based on Invasive Neuromonitoring

Invasive multimodal neuromonitoring techniques provide a
unique opportunity to monitor pathophysiologic mechanisms
of EBI at the cellular level in unconscious patients with SAH
[37¢]. Tt is important to mention that the selection of poor-
grade patients for invasive monitoring limits the generalizabil-
ity of these results to intermediate- or good-grade patients. The
interpretation of study results using invasive neuromonitoring
techniques is further limited by on the lack of high spatial
resolution because neither unilateral hemispheric damage
nor the global pathology may be identified. Integration of
the probe location is therefore of paramount importance in
the interpretation of brain oxygenation, CBF (cerebral blood
flow), and metabolic changes [38]. Analysis of trend statistics
is also useful to overcome this limitation and to early identify
tissue at risk before a permanent damage occurs [39]. Another
noteworthy limitation of data interpretation in the early phase
of monitoring is the risk of insertion injury during probe place-
ment. Therefore, the initial hours of monitoring should be
interpreted with caution.

So far, only single-center observational trials investigated the
early phase after SAH, mostly when the aneurysm has already

been secured [18e, 37+, 40, 41]. These data suggest that brain
oxygenation is diminished in the early phase after the bleeding.

Reasons for this can be multifactorial, including a compro-
mised oxygen delivery secondary to an increase in ICP, stunned
myocardium with decrease in cardiac output, and an increased
brain oxygen consumption. The metabolic correlate can be
quantified by an increase in the lactate-to-pyruvate ratio
(CMD-LPR), a decrease in brain tissue glucose, and a profound
excitatory response [37¢¢]. Cell damage may be assessed by
increased CMD-glycerol levels [41]. In a study including 18
poor-grade SAH patients, brain metabolic changes in the first
72 h revealed elevated levels of CMD-LPR, CMD-glutamate,
and CMD-glycerol in the presence of a normal or even hyper-
emic state, evaluated by brain computed tomography (CT) per-
fusion scans [18¢]. This finding is important and implicates that
impaired cerebral metabolism explaining EBI is not only a con-
sequence of brain tissue hypoxia but also reflects nonischemic
metabolic distress including mitochondrial dysfunction [42].

Cerebral microdialysis furthermore allows the analysis of
brain extracellular biomarkers, e.g., of axonal injury or neuro-
inflammation. Recently, higher levels of brain extracellular
CMD-total-TAU protein indicating severe axonal damage
were linked to poor neurologic outcome at 1 year [43].
These results highlight the potential of this method in further
understanding mechanisms of EBI.

EBI Based on Neurohemoinflammation and Systemic
Inflammation

There is increasing evidence that neurohemoinflammation oc-
curs early after SAH and is one potential mechanism of EBI
[37¢¢]. In a multimodal neuromonitoring study including 26
poor-grade SAH patients, the proinflammatory cytokine
CMD-IL6 was highest in the initial phase after SAH and
higher in patients with aneurysm rebleeding, GCE, and epi-
sodes of CPP <70 mmHg [37¢¢]. The proposed pathophysio-
logic mechanism includes early brain edema secondary to the
disruption of the BBB and neuronal apoptosis by proinflam-
matory cytokines [10, 44]. Concordantly, CMD-MMP-9
levels were upregulated in the first 12 h after monitoring start,
especially in patients with LOC, poor clinical grade, and initial
brain tissue hypoxia [37¢¢]. MMP-9 is known to be involved
in endothelial basal membrane damage, neuroinflammation,
and apoptosis and may therefore play an important role in the
pathogenesis of EBI [45]. Neither CMD-IL6 nor CMD-MMP-
9 was associated with systemic inflammatory markers
underlining the idea of compartmentalization of the central
nervous system. Still, there is evidence that also increased
peripheral levels of cytokines are associated with EBI [46e¢].
In specific, IL-6, IL-10, and MIP18 have recently been iden-
tified as an indicator of EBI using correlation network analysis
in humans [46¢¢]. Moreover, early platelet activation, systemic
inflammation, and SIRS (systemic inflammatory response
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syndrome) are common in the early phase after SAH and
associated with disease severity and poor functional outcome
[47, 48¢].

EBI Based on Cortical Spreading Depolarizations

Recent evidence suggests that electrical brain failure may con-
tribute to brain tissue injury after SAH [49se, 50+¢]. Cortical
spreading depolarizations (SDs) are self-propagating waves of
neuronal and glial electrical depolarization [51], which can be
recorded using subdural strip electrodes in humans [52].
Although SDs may be associated with vasodilation in healthy
subjects, their occurrence after SAH is commonly associated
with inverse neurovascular coupling leading to hypoperfu-
sion, brain tissue hypoxia, and metabolic derangement. SDs
have been identified as a determinant of EBI in patients after
SAH although the proof of causality needs further confirma-
tion. In a recent study including 23 poor-grade SAH patients,
the presence of ischemic and/or hemorrhagic lesions in the
frontal cortex was associated with a higher incidence of SDs
[49¢¢]. The association between SDs and early focal brain
injury is further supported by a larger study conducted by
Eriksen et al. [50+¢]. While 33/37 (89%) patients with early
focal brain injury exhibited SDs in the first 4 days, only 7/17
(41%) patients without early focal brain injury had SDs.
Moreover, SDs correlated with the volume of early focal brain
injury during the acute phase after SAH in this study.

EBI Based on EEG Findings

Immediate or early-onset seizures commonly described as
convulsive seizures occur at ictus and within the first 12 to
24 h after SAH [53]. Convulsive seizures in the very early
phase were reported in 4.8% of SAH patients in a systematic
review including 14 studies [53]. Although not entirely under-
stood, they may be triggered by transient biochemical changes
following the bleeding. Associated factors with ictal and early
seizures include raised ICP, direct toxicity of the blood, neu-
roinflammation, vasospasm, and SDs. From a clinical point of
view it can be difficult to differentiate between true seizures
and nonepileptic movements related to raised ICP or hernia-
tion in the initial phase after SAH. As already mentioned,
clinical reevaluation after prehospital seizures is important
since seizures may lead to misclassification of clinical grades.
The value of continuous EEG (cEEG) monitoring in the early
phase after SAH needs further confirmation based on prospec-
tive multicenter studies. The primary goal of cEEG monitor-
ing in SAH patients lies in the detection of subclinical seizures
and nonconvulsive status epilepticus (NCSE) [54]. Around 3
to 19% of SAH patients develop NC seizures and 11% have
NCSE [55-57].

@ Springer

Current Implications for Clinical Practice

It is important to separate primary brain damage from mech-
anisms leading to secondary brain injury, which are potential-
ly amenable to specific treatment strategies. Currently, there is
no therapy available specifically targeting EBI. Management
strategies to ameliorate EBI in the early phase after SAH pri-
marily aim to provide sufficient energy supply to the brain and
normalizing pathological parameters which are known to in-
terfere with aggravation of EBI.

ICP Control

Early intracranial hypertension is strongly interrelated with the
pathogenesis of EBI and can result from multiple factors in-
cluding GCE, acute hydrocephalus, intraparenchymal hema-
toma, and intraventricular hemorrhage. A stepwise approach
to decrease ICP depending on the need of neurosurgical inter-
ventions and other common treatment strategies should be
followed to decrease the risk of brain injury. Recent studies
suggest that the amount of raised ICP above a certain thresh-
old (ICP-burden) is more important than absolute ICP levels
[58].

Approximately 50% of patients are admitted with obstruc-
tive hydrocephalus [59] and urgently need sufficient cerebro-
spinal fluid (CSF) drainage [60, 61]. Although the early de-
velopment of hydrocephalus may not primarily be regarded as
a marker of EBI, inadequate or delayed treatment can easily
aggravate EBI and result in secondary brain damage. Other
interventions to decrease ICP include optimal positioning of
the patient, ventilation strategies targeting normocapnia or
short-term hyperventilation, adequate sedation, and analgesia
and surgical hematoma evacuation in case of a mass lesion [7,
62]. Osmotherapy is commonly used to decrease ICP although
the effect on outcome is less clear. Only case series addressing
the impact of hypertonic saline on ICP treatment could be
identified with solely one study showing outcome improve-
ment in poor-grade SAH patients [63]. In a multimodal
neuromonitoring study, a potential benefit of normothermia
due to lowering of ICP and ameliorating metabolic distress
was suggested [64]. As a last tier treatment option of refrac-
tory ICP, hypothermia [65], barbiturate coma, or decom-
pressive craniectomy [66, 67] may be considered.

CPP Optimization

The optimal range of CPP levels in different phases after SAH
is less clear. While a systolic blood pressure below 140 mmHg
should be targeted before aneurysm obliteration, permissive
hypertension is recommended when DCI is diagnosed
[60, 61]. It is important to mention that a CPP targeted man-
agement with pressure calibration at the level of foramen of
Monro is recommended when ICP is measured continuously.
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Recent data derived from observational studies using invasive
multimodal monitoring techniques suggest that a higher CPP
(> 70 mmHg) may ameliorate brain tissue hypoxia and meta-
bolic distress in poor-grade SAH patients [37+e, 68]. Still, a
large interindividual variability may exist depending on the
status of cerebral autoregulation (CA). CA is commonly im-
paired in the early phase after SAH, although recent data argue
against the use of a predefined cutoff level for diagnosis [8°].
Systemic application of erythropoietin within 72 h of bleeding
shortened the time with impaired autoregulation and reduced
the risk of developing DCI after SAH in a prospective ran-
domized trial (EPO trial) [69]. Because evidence of individu-
alized CPP targets based on the CA status in acutely brain-
injured patients is lacking, a phase II trial is currently investi-
gating the safety and feasibility of such an approach in trau-
matic brain injury (TBI) patients (COGITATE trial:
NCT02982122).

Further studies are needed to support the idea of indi-
vidualized CPP goals as part of personalized medicine in-
tegrating the information of multimodal neuromonitoring
techniques in the management of poor-grade SAH patients
at high risk of EBIL.

Management of GCE

There is limited literature how to best treat patients with ad-
mission GCE or high-grade SEBES. Admission GCE was
associated with hypermetabolism and metabolic distress argu-
ing for interventions targeting at sufficient energy supply and
amelioration of metabolic demand [33, 70]. In this line, CPP
levels above 90 mmHg were associated with improved brain
metabolism in an observational trial in patients with GCE
[33]. Further studies are needed to support such an invasive
treatment approach. Another potential intervention to target
GCE is hypothermia [71], which is endorsed by animal data
and needs confirmation in clinical trials. For now, targeted
temperature management (TTM) in the sense of normother-
mia is commonly applied in many centers taking care of SAH
patients (see next paragraph) [72].

Targeted Temperature Management

Up to 60% of critically ill brain-injured patients experience
fever during the first 24 h after admission [73]. Based on the
known deleterious effect of fever on outcome [73, 74], nor-
mothermia is currently recommended [75, 76]. So far, there is
no high-grade evidence that normothermia improves outcome
in SAH patients. A prospective, randomized, multicentre
study currently investigates the impact of normothermia on
functional outcome (INTREPID: NCT02996266) after acute
brain injury including SAH. As mentioned previously, hypo-
thermia was only tested in the setting of refractory ICP and

GCE in small single-center trials in combination with barbi-
turate coma [65, 71].

Management of Intracerebral Blood Burden

Since the intracranial blood burden is associated with poor
outcome, trials aimed at aggressive neurosurgical clearance
of'blood with conflicting results which is therefore not recom-
mended by guidelines [60, 61]. There is some evidence that a
reduction of the postoperative clot volume may be associated
with a reduction in secondary complications, including DCI;
however, this approach has to be tested prospectively [77].

Management of Cortical Spreading Depolarizations

Addressing the cessation of SDs remains challenging and
raises questions about the optimal pharmacological agent.
Case reports and a retrospective review [78] suggest that ke-
tamine has a dose-dependent suppressive effect on SDs. A
first prospective small pilot study in ten TBI and SAH patients
confirmed an effective inhibition of SDs by ketamine over
wide ranges of dosage [79]. The effect on outcome improve-
ment needs further investigations. Other potential treatment
candidates include hypothermia and nimodipine. For now,
targeting normothermia and normotension and providing suf-
ficient energy supply to the brain are recommended by experts
since fever, hypotension, and hypoglycemia may trigger SDs
in acutely brain-injured patients [80].

Management of Seizures

Antiepileptic therapy should be initiated in patients with sei-
zures; however, a prophylactic use is not recommended [60,
61].

Treatment of Aneurysms

Optimal patient management with early aneurysm securing
aims at the prevention of rebleeding [60, 61]. Most of
rebleeding events occur in the very early phase after SAH
and result in poor functional outcome or death [27].
Although early obliteration of aneurysms might be beneficial,
conflicting data exist for best timing of aneurysm treatment
[81].

Management of Neuroinflammation

Several agents including ASS, NSAIDs, thromboxane syn-
thase inhibitors, steroids, nitric oxide donors, and immuno-
suppressant therapies have been tested to treat neuroinflam-
mation after SAH; however, none of these drugs can be rec-
ommended as routine treatment so far [82¢¢]. In a multimodal
neuromonitoring study including 24 poor-grade SAH patients,
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brain interstitial CMD-IL 6 levels decreased following the
administration of diclofenac [83]. These findings suggest a
positive effect of parenteral diclofenac on the extracellular
proinflammatory response in these patients.

Conclusion

In summary, pathophysiologic mechanisms in the first 72 h
after SAH gained clinical and research interest in the past
decade. Based on the association of a more severe injury pat-
tern early after the bleeding with secondary complications and
poor outcome, future research should focus on EBI by inte-
grating brain-derived biomarkers in order to improve the crit-
ical care management after SAH. An agreement on the use of
a common definition is strongly needed.
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