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A classical model of gene regulation is that enhancers provide specificity whereas core promoters provide a modular site for

the assembly of the basal transcriptional machinery. However, examples of core promoter specificity have led to an alter-

nate hypothesis in which specificity is achieved by core promoters with different sequence motifs that respond differently to

genomic environments containing different enhancers and chromatin landscapes. To distinguish between these models, we

measured the activities of hundreds of diverse core promoters in four different genomic locations and, in a complementary

experiment, six different core promoters at thousands of locations across the genome. Although genomic locations had

large effects on expression, the intrinsic activities of different classes of promoters were preserved across genomic locations,

suggesting that core promoters are modular regulatory elements whose activities are independently scaled up or down by

different genomic locations. This scaling of promoter activities is nonlinear and depends on the genomic location and the

strength of the core promoter. Our results support the classical model of regulation in which diverse core promoter motifs

set the intrinsic strengths of core promoters, which are then amplified or dampened by the activities of their genomic

environments.

[Supplemental material is available for this article.]

In the classical model of gene regulation, the core promoter serves
as a universal platform for the assembly of the basal transcriptional
machinery, whereas the specificity of expression is provided by
distal enhancers and the chromatin landscape. However, some ex-
amples of core promoter specificity seem to challenge this model.
Several studies suggest that different core promoters are specific for
distinct sets of enhancers (Li and Noll 1994; Merli et al. 1996;
Sharpe et al. 1998; Gehrig et al. 2009) and can even trap different
enhancers at the same genomic location (Butler and Kadonaga
2001). Some transcription factors also preferentially activate core
promoters containing specific motifs (Emami et al. 1995; Juven-
Gershon et al. 2006; Parry et al. 2010; Haberle et al. 2019). More re-
cently, a genome-wide massively parallel reporter assay (MPRA)
showed that housekeeping and developmental core promoters re-
spond to distinct classes of enhancers (Zabidi et al. 2015; Arnold
et al. 2017), arguing that enhancer-promoter compatibility con-
tributes to specificity in the genome. These data have led to an al-
ternate model in which core promoters with different sequence
elements respond specifically to the enhancers and chromatin fea-
tures in distinct genomic environments, which we refer to as the
“promoter compatibility” hypothesis. Determining whether the
specificity of gene expression is governed by enhancers and chro-
matin features or by enhancer-promoter compatibility is crucial to
understanding a variety of biological processes including cell type–
specific regulatory programs and models of gene evolution.

The core promoter is the ∼100-bp region around the tran-
scription start site and is responsible for accurately positioning
RNA polymerase II and binding general transcription factors
(Roy and Singer 2015; Haberle and Stark 2018). It is now known
that core promoters are a diverse set of sequences containing spe-

cific DNA sequence motifs, also termed core promoter elements or
motifs. Themostwell-known core promotermotif is the TATAbox,
yet the TATA box is only present in 10%–20% of metazoan core
promoters (Yang et al. 2007), suggesting that other motifs might
have evolved for different functions. The different motifs have
been associated with different functions; for example, the TATA
box is often enriched in developmental promoters and show a
“sharp” pattern of transcription initiation, whereas promoters
with high CpG content tend to contain other less well-character-
izedmotifs and are thought to be associated with a broader pattern
of transcription initiation (Lenhard et al. 2012).

A strong prediction of the promoter compatibility hypothesis
is that the relative strengths of different core promoters will chan-
ge at different genomic locations because the distal enhancers and
chromatin environments at different locations will be compatible
with different types of core promoters (Fig. 1A). Here, we tested the
promoter compatibility hypothesis by assaying hundreds of
diverse core promoters at four different genomic locations and fur-
ther extend our results genome-wide by assaying six core promot-
ers across thousands of genomic locations.

Results

Measurement of diverse core promoter activities at different

genomic locations

We first created a library in which diverse core promoters drive the
expression of an mScarlet reporter gene. The library contains 676
133-bp core promoters spanning a variety of promoter features
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fromHaberle et al. (2019). The core promoters are derived from en-
dogenous promoter sequences and include the most common
mammalian core promoter motifs (TATA, DPE, and TCT), CpG is-
lands, and housekeeping (hk) and developmental (dev) promoters
that do not contain any known core promotermotifs (Supplemen-
tal Table S1; Supplemental Data S1). To provide redundancy in the
measurements, we included 10 copies of each individual core pro-
moter in the library, each with a unique barcode (promoter BC;
pBC) in the 3′ UTR. Because basal expression of the core promoters
was expected to be weak, we included a common proximal en-
hancer directly upstreamof the core promoters to boost expression
(Methods).

Using parallel targeting of chromosome positions by MPRA
(patchMPRA), wemeasured the expression of the core promoter li-
brary in parallel at four genomic locations previously shown to
have diverse expression levels and chromatin marks in K562 cell

lines (Supplemental Table S2; Supplemental Fig. S1; Maricque
et al. 2019). Each cell line contains a single “landing pad” at a dif-
ferent genomic location. Each landing pad has a unique genomic
barcode (gBC) indicating its location in the genome and a pair of
asymmetric Lox sites to facilitate site-specific recombination of
the library. We pooled the four landing pad lines and integrated
the library into the cells by cotransfection with CRE recombinase
(Maricque et al. 2019). When a library member recombines into a
landing pad, it produces a transcript with two unique barcodes in
its 3′ UTR; a pBC specifying the core promoter and a gBC indicating
its genomic location. By tabulating the pBC-gBC pairs in mRNAs
from the pool, we obtained expression measurements for every
core promoter at each genomic location in parallel (Fig. 1B).

We obtained reliable measurements of every core promoter at
all four genomic locations.We recovered 70%–80%of all promoter
barcodes and 99% of all promoters at all landing pads

A

B C

D

Figure 1. Measurements of a core promoter library at four genomic locations by patchMPRA. (A) Schematic of gene regulation by the core promoter,
adjacent cis-regulatory sequences, and the genomic environment. (B) Schematic of patchMPRAmethod (seeMethods for details). tagBFP: blue fluorescent
protein; HSV-TK: herpes simplex virus thymidine kinase; gBC: genomic barcode; pBC: promoter barcode. (C) Reproducibility of core promoter measure-
ments from independent patchMPRA transfections. (D) The expression of all core promoters in the library at each genomic location.
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(Supplemental Fig. S2A,B). The three biological replicates showed
high reproducibility (average Pearson’s r=0.87) (Fig. 1C;
Supplemental Fig. S2C,D), and the environments of the landing
pads had large effects on library expression that were consistent
with previous studies (cf. Fig. 1D and Supplemental Fig. S3A;
Maricque et al. 2019), indicating that the genomic environment
is not drastically altered by a diverse core promoter library. To en-
sure that the genomic environment effect is not driven by the ex-
pression of nearby promoters, we examined the expression of the
endogenous genes that are closest to the landing pads and found
that the expression of these genes does not correlate with the aver-
age expression in landing pads (Supplemental Fig. S2E). The data
allowed us to compare the effects of the four genomic environ-
ments on the different classes of core promoters.

The effects of genomic locations on core promoters

The promoter compatibility hypothesis predicts that the same ge-
nomic environment will impact different classes of promoters dif-
ferently. In contrast to this prediction, the genomic effect was
similar on all promoter classes:more permissive genomic locations
boosted the expression of all promoter classes regardless of their
motif composition or their hk or dev designation (Fig. 2A).
However, the magnitude of the genomic effect is not the same
for all promoter classes. To quantify the contribution of the geno-
mic location and core promoters to gene expression, we performed
ANOVA on each class of promoters. In general, genomic locations
have a larger effect on dev promoters than hk promoters regardless
of their motif composition (Fig. 2B). Thus, we did not distinguish
between the motif classes and focused on the hk and dev group-
ings for downstream analysis.

We next examined whether hk and dev core promoter activ-
ities are scaled by different genomic environments.We define scal-
ing as the degree to which core promoter activities correlate
between genomic locations. High correlations between genomic
locations indicate that the rank order of core promoter activities
is preserved across genomic locations.Whereas promoter activities
were highly correlated between genomic locations regardless of
the class of promoter (Pearson’s r=0.74–0.9, Spearman’s ρ=
0.72–0.88) (Fig. 2C), dev promoters were consistently less correlat-
ed than hk promoters (Fig. 2D). Dividing the promoters into clas-
ses containing different motifs showed that each class also had
substantial differences in correlations between genomic locations
(Supplemental Fig. S3B). These results do not depend on the prox-
imal enhancer immediately adjacent to the core promoter used to
boost expression because replicate experiments at locations 1–3
without the enhancer yielded similar results (Supplemental Fig.
S4A–C). The expression of libraries with and without the proximal
enhancer is also largely correlated at locations 1–3 (Supplemental
Fig. S4D), which suggests that scaling by different genomic loca-
tions does not depend on the proximal enhancer. Taken together,
these results suggest that genomic environments scale the activi-
ties of all core promoters, but the quantitative extent of scaling
can differ between promoter classes.

Intrinsic promoter strength explains differences between

promoter classes

One difference between hk and dev promoters in our library is that
they have different mean levels of expression—hk promoters are
consistently stronger than dev promoters at all genomic locations
(Fig. 2A; Supplemental Fig. S5A). Thus, any differences between hk
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Figure 2. Effects of genomic locations on core promoter activity. (A) Expression of each class of core promoter motifs at each genomic location. (B)
Amount of variance explained by core promoter and genomic location, respectively, using linear models fit on each class of core promoters separately.
(C) Pairwise correlations (Pearson’s r) of core promoter activity between the different genomic locations. (D) All pairwise correlations (Pearson’s r) between
genomic locations for hk and dev core promoters.
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and dev promoters might be confounded by their difference in
strength. To test if strength explains the differences between hk
and dev promoters, we divided all core promoters into strong or
weak bins based on their strengths and sampled equal numbers
of hk and dev promoters within each bin to avoid confounding
the results by hk/dev class. Plotting the effect of genomic position
on strong and weak promoters showed that the direction of the ef-
fect was the same but that therewere larger differences between ge-
nomic locations for weak promoters (Fig. 3A). We quantified the
contributions of genomic locations and promoters within strong
and weak bins, respectively, and found that the genomic environ-
ment has a larger impact on weak promoters compared to strong
promoters (Fig. 3B). For strong promoters, genomic environments
and core promoters contribute almost equally to gene expression
(∼33% and ∼47%, respectively), but for weak promoters, genomic
environments contribute ∼61%, whereas core promoters contrib-
ute only ∼12%.Weak promoters are also consistently less correlat-
ed than strong promoters (Fig. 3C). Again, assaying the library
without an upstream proximal enhancer at locations 1–3 showed
similar results (Supplemental Fig. S5B,C). Finally, we sampled
sets of hk and dev promoters with similar average strengths
(Supplemental Fig. S5D–F) and compared their correlations across
genomic locations. In the strong and intermediate strength sub-
sets, correlations across genomic locations are comparable be-
tween hk and dev promoters (Supplemental Fig. S5G,H). In the
weaker subset of promoters, the correlations of hk promoters are
weaker than the dev promoters, a result driven by low correlations
in loc4, whichmight suggest that there are specific interactions be-
tween this subset of hk promoters and loc4 (Supplemental Fig.

S5I). Thus, theremay be additional interactions betweenweak pro-
moters and other genomic locations that fall below our threshold
of detection. Our data cannot rule out the possibility of extensive
interactions between weak promoters and specific genomic loca-
tions. However, our modeling also shows that these specific inter-
actions are small relative to the independent effects of genomic
locations and core promoters (see Supplemental Fig. S6). The dif-
ferences in how genomic locations scale the activities of each
core promoter subclass are also largely explained by the average
strength of each promoter class (Supplemental Fig. S5J). These
data show that the observed differences between different promot-
er classes is a consequence of promoter strength rather than a fea-
ture of the hk/dev distinction, indicating that the strength of a
promoter is a key determinant of its interactions with the genomic
environment.

To further probe howmuch promoter strength contributes to
interactions with the genomic environment, we divided all the
promoters into the four bins of expression levels based on loc2.
We then fit models with and without interactions between geno-
mic environment and expression bin. As expected, a simple linear
model without accounting for interactions explains ∼80% of the
variance, and the addition of the interaction explains an addition-
al 5% (Supplemental Fig. S6A). To test whether there are any
specific interactions between landing pads and individual promot-
ers, we added an additional interaction term between the landing
pads and promoters. However, this interaction only explains 3%of
the residual variance (Supplemental Fig. S6A), suggesting there are
no specific interactions between landing pads and promoters with
large effects.
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Figure 3. Intrinsic promoter strength explains differences between promoter classes. (A) The effect of genomic location on the expression of weak and
strong core promoters. (B) Amount of variance explained by core promoters and genomic locations, respectively, using linear models fit on weak and
strong promoters separately. (C) All pairwise correlations (Pearson’s r) between genomic locations for weak and strong core promoters. (D) Correlation
(Pearson’s r) between promoter activity measured on plasmids and promoter activity at loc2.
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We also tested whether specific genomic environments re-
stricted the expression of specific promoters, causing them to
“dropout”of our analyses at certain landingpad locations. Such in-
teractions would be rare because we recovered measurements for
99% of our promoters at each landing pad (Supplemental Fig.
S2B). For promoters that did drop out of our analyses, we found
that most were only lost from a single landing pad, with only 15
promoters being lost from two or more landing pads
(Supplemental Fig. S6B). The loss of these promoters can be ex-
plained by their low abundance in the cloned plasmid library,
where promoters lost frommore landing pads are present at lower
levels in the library (Supplemental Fig. S6C). Thus, there does not
appear to be any systematic or specific restriction of expression
by different genomic environments.

Given the importance of the interaction between promoter
strength and genomic location, we next asked if core promoter
strengths, as measured in the genome, reflect the promoters’
intrinsic activities. If this is true, then the measurements in the
genome should correlate with measurements on plasmids,
assuming that plasmids represent a neutral environment that re-
flects the intrinsic activities of core promoters. Thus, we per-
formed an episomal MPRA on the core promoter library in
K562 cells. The plasmid measurements are well-correlated with
expression at each genomic location (Pearson’s r2 = 0.59–0.76)
(Fig. 3D; Supplemental Fig. S7A), indicating that the relative in-
trinsic activities of core promoters are preserved when integrated
into the genome. We were also able to predict activity in the
genome using activity on plasmids (adjusted r2 = 0.72)
(Supplemental Fig. S7B). These results demonstrate that genomic
locations scale the intrinsic activities of strong and weak promot-
ers to different extents, suggesting that the main role of diverse
core promoter motifs is to set the intrinsic strength of the pro-
moter rather than direct specific interactions with the genomic
environment.

Core promoter scaling is a genome-wide phenomenon

To extend the results we observed at four genomic locations to
diverse locations across the genome,we selected six core promoters
(three hk and three dev) spanning a range of expression levels and
motifs within each class (Fig. 4A; Supplemental Table S3). We note
that, while hk1 drives constitutive expression of the ribosomal
gene RPS27 across multiple cell types, this promoter contains a
TATA box, amotif that is generally enriched in developmental pro-
moters (Duan et al. 2002; Zabidi et al. 2015). We then measured
their activities genome-wide using the Thousands of Reporters In-
tegrated in Parallel (TRIP) assay (Akhtar et al. 2013) in K562 cells
(Supplemental Fig. S8A). Each core promoter was cloned upstream
of a reporter gene with a unique promoter barcode (pBC) in its 3′

UTR into a PiggyBac transposon vector for random delivery into
the genome. No upstream proximal enhancer was included in
these constructs. TRIP libraries were generated by incorporating
>105 random barcodes (tBCs) onto each core promoter reporter
plasmid. After transposition, every genomic integration contains
a unique pBC and tBC pair specifying the identity of the core pro-
moter and its location in the genome, respectively. This doublebar-
coding strategy allowed us to pool promoter libraries into a single
TRIP experiment. The replicates were highly correlated (Pearson’s
r2 = 0.96) (Supplemental Fig. S8B). In total, we mapped 41,083
unique integrations in the genome, ranging between 6078 and
7418 integrations per promoter (Supplemental Table S3; Supple-
mental Data S2).

Genomic positions have large effects on core promoter activ-
ities, with expression ranging more than 1000-fold for the same
promoter across genomic locations (Fig. 4B). However, even with
these large effects of genomic location, the rank order of promoter
strengths is preserved across locations and correlates with mean
expression in the landing pads (Fig. 4C; Supplemental Fig. S8C),
which suggests that the effect of different genomic locations is
to scale intrinsic promoter activities. Because PiggyBac is known
to have a preference for H3K27-acetylated regions (Yoshida et al.
2017;Moudgil et al. 2020), we grouped the integrations by their lo-
cations into three groups: H3K27ac regions (n=14,275), within 50
kb of a H3K27ac region (n=21,623), or far away from H3K27ac re-
gions (n=5185) (Supplemental Fig. S8D). Integrations that are far
fromH3K27ac regions are generally weak, consistent with the idea
that these locations are less permissive for expression. However,
the rank order of promoters in these regions is the same as integra-
tions in the other locations. Furthermore, integrations in or near
H3K27ac regions span the entire >1000-fold dynamic range of
our library, suggesting that there is still substantial diversity within
H3K27ac regions. Taken together, these data indicate that core
promoters are scaled by diverse genomic environments.

To compare different promoters in the same genomic envi-
ronment, we identified 1278 genomic regions in which at least
four of the six promoters had integrated <5 kb from each other
(in separate cells) (Supplemental Data S3). These genomic regions
are located across the entire genome and spandiverse ChromHMM
annotations (Supplemental Fig. S9A,B; Ernst and Kellis 2010; Ernst
et al. 2011). Across these locations, expression consistently in-
creases from the weakest (dev2) to strongest (hk1) promoter (Fig.
4D,E), showing that the relative strengths of core promoters are
preserved across >1000 genomic locations with 1000-fold differ-
ences in expression. The expression of the promoters in each re-
gion also correlates well with expression in the landing pads,
with >60% of locations having r>0.7 (Supplemental Fig. S9C),
and a linear model assuming independent effects of genomic re-
gion and promoter explains ∼54% of the variance in the data
(Supplemental Fig. S9D). Thus, measurements of integrated pro-
moters across diverse genomic positions demonstrate that core
promoter scaling is a genome-wide phenomenon.

Nonlinear scaling of core promoters by genomic environments

Wenext explored the relationship between core promoter strength
and genomic environments in the TRIP data. We ranked the TRIP
genomic regions based on mean promoter expression and plotted
the expression of the promoters (Fig. 5A). As expected, all six core
promoters increase expression as genomic environments become
more permissive. However, the rates at which their expression
changes are different for strong and weak promoters. In less per-
missive regions, strong promoters increase rapidly but then level
off in more permissive regions. In contrast, weak promoters in-
crease slowly in less permissive regions and then sharply in more
permissive regions. To ensure that hk1 expression in activating re-
gions is not saturated due to the dynamic range limits of TRIP, we
tested hk1 with an upstream enhancer, and it was expressed at still
higher levels (Supplemental Fig. S9E). Thus, promoters with differ-
ent strengths do not respond to differences in genomic environ-
ments in the same way.

In agreement with our results from the patchMPRA experi-
ment above, the curves in Figure 5A separate by the intrinsic
strength of the core promoters and not by their hk or dev identity.
To illustrate this point, we calculated the correlations between the
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curves of each promoter and show that the promoters cluster based
on their intrinsic strengths, with the stronger promoters (dev1 and
hk1) in one cluster and the others in another (Supplemental Fig.
S10A). Integrations within 5 kb of endogenous hk or dev promot-
ers in K562 also showed no preference for hk or dev promoters, re-
spectively (Supplemental Fig. S10B). This result again highlights
that a promoter’s strength, not class, determines its interaction
with genomic environments.

The differences in the way core promoters respond to geno-
mic environments in Figure 5A also demonstrate that genomic en-
vironments do not scale promoter activities linearly. Although the
rank order of core promoters is preserved across the genome, the
fold change between strong and weak core promoters is different
in different parts of the genome. Toquantify the effects of different
genomic environments, we identified three clusters of TRIP geno-

mic regions that appear to have different levels of activity (Fig. 5B).
While the clusters are defined by their average differences in core
promoter expression, the extent of scaling is also different in
each cluster (Fig. 5C). This difference in scaling is due to differenc-
es in the contributions of genomic location and promoter effects
in the three clusters. In regions of the genome with low activity,
genomic location contributes ∼23% to gene expression whereas
core promoters contribute only ∼12%. In the cluster with high ac-
tivity, genomic location also contributes about ∼24%, but core
promoters contribute ∼31%, suggesting that differences in expres-
sion at these locations dependmore on core promoter strength. In
the cluster with medium activity, the core promoter contribution
is much larger, explaining ∼64% of the variance compared to
∼16% by genomic location (Fig. 5D). Thus, the strength of the ge-
nomic environment determines how much it will contribute to

Name Gene Motifs/Features
hk1 RPS27 TATA, CpG, TCT
hk2 SGCE CpG
hk3 SLC66A1 DPE, Motif5
dev1 NLRP1 DPE
dev2 CFAP298 No known motif
dev3 RNF223 TATA
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Figure 4. Core promoter scaling is a genome-wide phenomenon. (A) Features of core promoters selected for TRIP experiments. (B) Expression of each
core promoter across all mapped genomic locations sorted by increasingmeansmeasured by TRIP. Blue-green denotes hk promoters and pink denotes dev
promoters. (C) Correlation (Pearson’s r) between mean expression of each core promoter genome-wide (measured by TRIP) and loc1. The shaded region
around the fitted line represents the 95% confidence interval. (D) Mean expression of each core promoter from four genomic locations as measured by
patchMPRA. Error bars represent the SEM. (E) Heat map of expression of each core promoter (column) at each genomic region (row) that has ≥4 different
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Hong and Cohen

90 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276025.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276025.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276025.121/-/DC1


gene expression, resulting in nonlinear scaling of promoter activ-
ities across the genome. This is in contrast with the linear scaling
we previously observed using a library of proximal enhancers
(Maricque et al. 2019), suggesting that core promoters and proxi-
mal enhancersmay interact with the genomic environment in dif-
ferent ways.

Genomic clusters have different chromatin states and sequence

features

Finally, we asked what features of each cluster distinguish them
from each other by overlapping our genomic regions with existing

epigenomic data sets and sequence features. Previous studies have
shown that reporter genes integrated into the genome tend to take
on the chromatin state of the integration site (Chen et al. 2013;
Corrales et al. 2017). In general, cluster activity is correlated with
chromatin marks associated with active transcription (H3K27ac,
H3K4me3) and transcriptional activity (PolII binding, CAGE-seq)
(Fig. 6A–C; Supplemental Fig. S11A), while accessible chromatin
(ATAC) and CpG methylation do not separate the clusters
(Supplemental Fig. S11B,C). This suggests that the three clusters
are mainly distinguished by their level of transcriptional activity.
We also used sequence features to classify the clusters using
gapped k-mer SVMs comparing two clusters at a time (Ghandi
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et al. 2014, 2016). The SVMs performed well, with fivefold cross-
validated AUCs ranging from 0.8 to 0.9 (Fig. 6D–F; Supplemental
Fig. S11D–F). Scrambling the cluster annotations led to essentially
random predictions by the SVM (Supplemental Fig. S11G,H). To
further validate the model, we used the trained SVM to predict
the cluster type of other TRIP integrations that were not in the 5-
kb region analysis. As expected, clusters that were predicted to be
more active also showed higher expression (Supplemental Fig.
S11I). To identify the motifs that separate the clusters, we per-
formed de novo motif enrichment and identified CG-rich se-
quences in the more active clusters (Supplemental Fig. S11J,K).
Similarly, the CG content of each sequence increases from low
to high activity clusters on average (Fig. 6G). Motif enrichment us-
ing known TF position weight matrices did not identify any obvi-
ous enriched TFmotifs, suggesting that the clusters are not defined
by any single TF. However, when we scanned each sequence for
known TF motifs, we found that sequences in more active clusters
have more TF motifs than less active clusters on average (Fig. 6H).
This result suggests that the differences between clusters are par-
tially explained by the number of TFs binding in each cluster.

Discussion

Gene expression results from the integration of multiple inputs
including the core promoter, chromatin environment, distal
enhancers, and the surrounding transcription factor concentra-
tions. Here, we present a framework for dissecting the contribu-
tions of core promoters and the surrounding genomic
environments to gene expression. Using this framework, we found
that the intrinsic activities of core promoters are preserved across
diverse genomic locations and are consistent with their activities
on plasmids. Contrary to the promoter compatibility hypothesis,
hk and dev promoters scale similarly across genomic locations
when normalized for differences in strength. These results suggest
a general lack of specificity between core promoters and the chro-
matin landscape/enhancers in their genomic environments,
which is consistent with the classical idea of core promoters as pas-
sive sequences for the assembly of basal transcriptional machin-
ery. Although promoter compatibility has been observed for
specific promoter-genomic environment pairs (Li and Noll 1994;
Merli et al. 1996; Ohtsuki et al. 1998; Butler and Kadonaga 2001;
Zabidi et al. 2015), our results suggest that such interactions are rel-
atively rare or have smaller effects than the effects of genomic scal-
ing. Our results are also consistent with recent work showing that
enhancers and promoters are broadly compatible and combine
multiplicatively to control gene expression (Bergman et al.
2021). In this model, sequence-specific or protein-specific interac-
tions between core promoters and genomic environments contrib-
ute less to gene expression than the independent effects of core
promoters and genomic environments. This model suggests a
modular genome compatible with the evolution of gene expres-
sion by genome rearrangements (Carroll 2005; Prud’homme
et al. 2007). In a modular genome, core promoters will function
in newgenomic locationswithout having to evolve themachinery
for a new set of specific interactions at each location.

Unlike our previous results with cis-regulatory sequences up-
stream of the core promoter, scaling is not a simple linear combi-
nation of genomic position effects and promoter effects
(Maricque et al. 2019). In a linear relationship, the genomic envi-
ronment scales the activity of local promoters such that the rank
order and quantitative differences between promoters are always
preserved. This occurs when the contribution of genomic and pro-

moter effects remains constant across genomic locations and pro-
moters. Instead, we find that the quantitative differences between
strong and weak promoters change in different genomic environ-
ments (Fig. 5E), suggesting that genomic environments scale core
promoter activities in a nonlinear manner. Such nonlinear scaling
is characteristic of the thermodynamics of dose/response curves,
which follow a sigmoidal relationship with three phases. At low
and high input levels, increasing input has little to no effect on
output because the output levels are below detection or saturated,
respectively. However, in the linear range, increases in input have
large effects on output. We speculate that different core promoter
sequence features set the strength of the promoter, causing them
to start at different points of the dose/response curve. This in
turn determines how the promoter interacts with the genomic
environment.

Our data are also consistent with recent simulations showing
howpromoters starting fromdifferent states representing different
promoter strengths can have different responses to increasing en-
hancer contact frequency, giving the appearance of enhancer-pro-
moter specificity (Xiao et al. 2021). This resultmay also explain the
apparent differences between our data and previous results show-
ing enhancer-promoter specificity (Butler and Kadonaga 2001;
Zabidi et al. 2015; Arnold et al. 2017). We hypothesize that en-
hancer-promoter specificity is not governed by biochemical differ-
ences in transcription factor usage between hk and dev promoters;
instead, the observed differences may be due to differences in in-
trinsic strengths in the hk and dev promoters used. Alternatively,
the differences might be due to technical differences between
the episomal MPRAs used previously and the genome-integrated
assays used here, or to biological differences between Drosophila
and human cells. Controlling the intrinsic strengths of different
classes of promoters will be important for testing enhancer-pro-
moter specificity. In the future, the nonlinear relationship be-
tween promoter strength and genomic position effects will help
us to predict gene expression bymeasuring core promoter strength
and genomic environment activity independently.

Methods

Library design

We obtained a set of 6916 core promoter sequences from Haberle
et al. (2019) and selected 672 sequences for our library. Each pro-
moter is 133 bp long and centered on the major transcription start
site (TSS). We selected the sequences to contain diverse core pro-
moter types and expression patterns (Supplemental Table S1;
Supplemental Data S1) using the designations obtained from
Haberle et al. (2019). We also included the super core promoter
(SCP1), as well as versions of SCP1 with TATA and DPE single
and doublemutants (Juven-Gershon et al. 2006). A library of oligo-
nucleotides (oligos) encoding the selected core promoters was syn-
thesized by Agilent Technologies through a limited licensing
agreement. Each oligo in the library is 200 bp and contains a
core promoter, a unique barcode that specifies the identity of the
promoter, and flanking sequences for subcloning. An example
oligo is shown here:

CCTTACACGGAGTGGATA-SpeI-core promoter-HindIII-NheI-
XbaI-12bp barcode-SalI-CATAACTTCGTATAATGT

Each promoter is present 10 times in the library, each time
with a different unique barcode, to provide redundancy in the
measurements. In total, the oligo pool contains 6760 unique se-
quences. The barcodes were randomly selected from barcode lists
generated by the FREE barcodes software (Hawkins et al. 2018).
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patchMPRA library cloning

We selected a single plasmid from a previous patchMPRA library
(Maricque et al. 2019) to serve as the backbone of our promoter li-
brary. This plasmid contains a single enhancer and drove robust
expression in a previous experiment. The enhancer contains mo-
tifs for FOS/JUNandMAF transcription factors, and its full sequence
is TGCCCCCCTTCTTCCTATGTCTGATGGAGTTTCCTCTCTAAG
TAGCCATTTTATTCTGCTGACTCACCCTCTAACTCCCGGTCTTA
TTCCATCCTGCCTCAGGGTCTGTGGTGTAGTCATAGCAC.

To create our library (representative vector in Supplemental
Data S4; pCPL1), we first removed the hsp68-dsRed construct
from the selected plasmid with HindIII and XhoI. We then ampli-
fied the oligo pool using primers CPL1 and CPL2 (Supplemental Ta-
ble S4) and inserted it into the digested backbone using HiFi DNA
Assembly (New England Biolabs). Next, we digested the library
with HindIII and XbaI and inserted an mScarlet fluorophore be-
tween the promoter and barcodes. To test the library without an up-
stream enhancer, we also cloned the library into a vector backbone
that does not contain an enhancer (representative vector in Supple-
mental Data S5; pCPL2). The backbone was digested with SpeI and
XhoI, and the oligo pool was amplified with primers CPL2 and
CPL3 (Supplemental Table S4). The fragmentswere assembled using
HiFi DNA Assembly (New England Biolabs), and the mScarlet fluo-
rophore was inserted in the same way as described above.

patchMPRA

We replaced the HygTK-GFP cassette in the original landing pad
cell lines from Maricque et al. (2019) with a reporter expressing

bothHSV-TK (herpes simplex virus thymidine kinase) and themo-
nomeric blue fluorescent protein tagBFP. The new cassette con-
tains a functional HSV-TK gene, allowing for negative selection
of cells that do not have a library member integrated (pCPL3)
(Supplemental Data S6).

K562 cells were maintained in Iscove’s Modified Dulbecco′s
Medium (IMDM)+10% FBS+1% nonessential amino acids + 1%
penicillin/streptomycin. To integrate the library into the genome,
we cotransfected the library and CRE recombinase (pBS185 CMV-
Cre, Addgene 11916) into four K562 “landing pad” cell lines ex-
pressing the HSV-TK gene (landing pad details in Supplemental
Table S2). For each replicate, we transfected 32 μg library with 32
μg CRE recombinase into 9.6 million total cells using the Neon
Transfection System (Thermo Fisher Scientific). We performed
three separate transfections representing three biological repli-
cates. After three days, we treated the cells with 2 mM ganciclovir
to kill the cells that did not successfully integrate a library element.
Cells were treated every day for 4 d. We then selected for live cells
using theMACSDeadCell Removal kit (Miltenyi Biotech), and the
cells were allowed to grow until there were sufficient cells for DNA/
RNA extractions (about 10 million cells).

DNA and RNAwere harvested from the cells using the TRIzol
reagent (Invitrogen). The RNA was treated with two rounds of
DNase using the Rigorous DNase treatment procedure in the
Turbo DNase protocol (Ambion), and cDNA was synthesized
with Oligo(dT) primers using the SuperScript IV First Strand
Synthesis System (Invitrogen). The barcodes were then amplified
from cDNA and genomic DNA (gDNA) using Q5 High Fidelity
2X Master Mix (New England Biolabs) with primers specific to

D FE

A B C G

H

Figure 6. Genomic clusters have different chromatin states and sequence features. (A–C) Metaplots of H3K27ac, H3K4me3, and PolII levels, respectively,
in each genomic cluster. The start and end marks the boundaries of each genomic region, which are determined by the first and last integration in the
region. The x-axis extends ±5 kb around each genomic region. (D–F) Performance of gkmSVM used to classify sequences from different genomic clusters.
Receiver-operating characteristics (ROCs) curves were generated using fivefold cross-validation. (G) The GC fraction of each genomic regionwas calculated
and plotted for each cluster. (H) Number of TF binding sites in each genomic regionwas calculated and plotted for each cluster. P values were calculated by
Student’s t-tests.
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our reporter gene (CPL4-5) (Supplemental Table S4). We per-
formed 32 PCR reactions per cDNA biological replicate and 48
PCR reactions per gDNA biological replicate, then pooled the
PCRs of each replicate for PCR purification. Four nanograms
from each replicate were then further amplified with two rounds
of PCR to add Illumina sequencing adapters (CPL6-9)
(Supplemental Table S4). Barcodes were sequenced on the
Illumina NextSeq platform.

Episomal MPRA

We first digested the patchMPRA library with HindIII and XbaI to
replace the mScarlet fluorophore with a tdTomato between the
promoter and pBC. We then subcloned the promoter library
with the tdTomato fluorophore into the landing pad lentiviral vec-
tor fromMaricque et al. (2019) to ensure that the 3′ UTR from the
episomal library matches that of the patchMPRA experiment.
Briefly, the lentiviral vector and patchMPRA library were digested
with XhoI/SpeI and NheI/SalI, respectively, and the library was li-
gated into the lentiviral backbone with T4 DNA ligase (New
England Biolabs).

For theMPRA, we transfected the library into K562 cells using
the Neon Transfection System (Thermo Fisher Scientific). We per-
formed two biological replicates, transfecting 2.4million cells with
10 μg of library per replicate. After 24 h,weharvested RNA from the
cells using the PureLink RNA Mini kit (Invitrogen). The RNA was
treated with DNase and converted to cDNA in the same way as
the patchMPRA library above. We then amplified barcodes from
cDNA using primers CPL5 and CPL10 (Supplemental Table S4)
with Q5 High Fidelity 2X Master Mix (New England Biolabs). We
performed four PCR reactions per replicate from cDNA. For DNA
normalization, we performed the same PCR (two PCR reactions
per replicate; two replicates) on the plasmid library. The PCRs
from the same replicates were then pooled and purified. Four
nanograms from each replicate were then further amplified with
two rounds of PCR to add Illumina sequencing adapters (CPL6-
9) (Supplemental Table S4). Barcodes were sequenced on the
Illumina NextSeq platform.

TRIP library cloning

We performed TRIP according to the published protocol (Akhtar
et al. 2013) with some modifications. We first digested the
PiggyBac vector (PBSsplitGFP, gift from Robi Mitra lab) (Qi et al.
2017) with BamHI andNotI. Each selected promoter was amplified
from the promoter library (CPL11-22) (Supplemental Table S4)
and assembled into the vector with a tdTomato fluorophore and
the neuropilin 1 poly(A) sequence (Akhtar et al. 2013) using HiFi
DNA Assembly (New England Biolabs). We then added a unique
barcode that identifies the promoter (pBC) to each promoter con-
struct using the Q5 Site-Directed Mutagenesis kit (New England
Biolabs). A second random barcode was added to each promoter
construct by digesting with XbaI followed by HiFi DNA
Assembly (New England Biolabs) with a single-stranded oligo con-
taining 16 randomNs (TRIP barcodes; tBC) and homology arms to
the plasmid (CPL23) (Supplemental Table S4). The components of
the final library are shown in Supplemental Figure S8A, and a rep-
resentative vector is in Supplemental Data S9 (pCPL4). The
PiggyBac ITRs, promoter, and tdTomato reporter cassette are locat-
ed between two parts of a split-GFP reporter gene which is driven
by a separate EF1a promoter. When the barcoded reporter cassette
is integrated into the genome, the split-GFP remaining on the
plasmid combines to produce functional GFP, allowing us to sort
for cells that have successfully integrated the promoters
(Supplemental Fig. S8A). Because each promoter is uniquely bar-

coded, we combined all the promoters into a single library for sub-
sequent TRIP experiments.

TRIP

The TRIP library and piggyBac transposase (gift from Robi Mitra
lab)were cotransfected intowild-typeK562 cells at a 1:1 ratio using
the Neon Transfection System (Thermo Fisher Scientific). In total,
we transfected 4.8million cells with 16 μg each of library and trans-
posase. The cells were sorted after 24 h for GFP-positive cells to en-
rich for cells that have integrated the reporters. After a week, the
cells were sorted into four pools of 7000 cells each to ensure that
each pBC-tBC pair is only integrated once in each pool. The pools
were then allowed to growuntil therewere sufficient cells forDNA/
RNA extractions.

We harvested DNA and RNA from the cells using the TRIzol
reagent (Invitrogen). The RNA was treated with DNase and con-
verted to cDNA in the same way as the patchMPRA library above.
We then amplified barcodes from cDNA and gDNA using primers
CPL10 and CPL24 (Supplemental Table S4). We performed four
PCRs per pool from cDNA and gDNA, respectively, using Q5
High Fidelity 2X Master Mix (New England Biolabs), then pooled
the PCRs and purified them. Four nanograms from each replicate
were then further amplified with two rounds of PCR to add Illu-
mina sequencing adapters (CPL25-26, CPL8-9) (Supplemental Ta-
ble S4). Barcodes were sequenced on the Illumina NextSeq
platform.

Tomap the locations of TRIP integrations, we digested gDNA
with a combination of AvrII, NheI, SpeI, and XbaI for 16 h. The di-
gestionswere purified and self-ligated at 4°C for another 16 h. After
purifying the ligations, we performed inverse PCR to amplify the
barcodes with the associated genomic DNA region (primers
CPL24-25) (Supplemental Table S4). We did eight PCRs per pool,
purified them, and used 4 ng of each pool for a further two rounds
of PCR to add Illumina sequencing adapters (CPL29-31, CPL9)
(Supplemental Table S4). The library was then sequenced on the
Illumina NextSeq platform.

patchMPRA and episomal MPRA data processing

For patchMPRA, we obtained approximately 11–13 million reads
per DNA or RNA replicate from sequencing. For episomal MPRA,
we obtained approximately 500,000 reads per DNA or RNA repli-
cate. Reads that contained the barcodes in the proper sequence
context were included in subsequent analysis. The pBCs were
then decoded using the FREE barcodes software (Hawkins et al.
2018), and the expression of each barcode pair was calculated as
log2(RNA/DNA). We averaged the expression of barcodes corre-
sponding to the same promoter within each replicate to get pro-
moter expression per replicate, then averaged across replicates
for subsequent downstream analysis. Expression values can be
found in Supplemental Data S7 (patchMPRA) and Supplemental
Data S8 (episomal MPRA).

TRIP data processing

We obtained ∼14–25 million reads per DNA or RNA pool from se-
quencing. Reads that contained both the tBC and pBC in the prop-
er sequence context were included in subsequent analysis. We
further filtered tBCs such that they are at least three hamming dis-
tances apart from every other barcode to account for mutations
that occurred during PCR and sequencing. The expression of
each BC pair was calculated as log2(RNA/DNA). We added a pseu-
docount to the RNA counts to include barcode pairs that had DNA
but no RNA reads. Data from the four independent pools were
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combined in all analyses. Expression values can be found in
Supplemental Data S2.

For the locations of TRIP integrations, reads containing each
barcode pair were matched with the sequence of its integration
site. The integration site sequences were then aligned to hg38 us-
ing BWAwith default parameters. Only barcodes that mapped to a
unique location were kept for downstream analyses. The mapped
integration locations can be found in Supplemental Data S3.

TRIP data analysis

Wedownloaded a list of expressed genes inK562 cells usingwhole-
cell long poly(A) RNA-seq data generated by ENCODE (Djebali
et al. 2012) from the EMBL-EBI Expression Atlas (https://www
.ebi.ac.uk/gxa/home). We then designated the genes as hk or dev
based on the list of hk genes obtained from Eisenberg and
Levanon (2013). Using the locations of these promoters
(GENCODE Release 36, GRCh38.p13), we identified TRIP integra-
tions located within 5 kb of either hk or dev promoters and plotted
the expression of these integrations separately.

To increase the resolution of the analysis, we identified geno-
mic regions where at least four different promoters integrated
within 5 kb of each other (full list of regions in Supplemental
Data S3). For regions in which the same promoter integrated
more than once, we used the median expression of that promoter.
This yielded 1268 genomic regions. All heat maps were generated
using the ComplexHeatmap package in R (R Core Team 2010; Gu
et al. 2016). To determine the diversity of the identified 5-kb re-
gions, we downloaded the 15-state segmentation for K562
(hg19) from the ENCODE portal and converted the genomic coor-
dinates to hg38 using theUCSC liftOver tool (Hinrichs et al. 2006).
We then overlapped the 5-kb regions with ChromHMM regions
using a minimum overlap of 200 bp using the Genomic Ranges
R packages (Lawrence et al. 2013).

To rank and cluster the regions, we first imputed missing val-
ues using the mean of the promoter across all locations. We then
used the means of each region to rank the clusters and plotted
the smoothed expression of each promoter. To cluster the 5-kb ge-
nomic regions, we ran k-means clustering on the imputed data us-
ing the ConsensusClusterPlus package in R (R Core Team 2010;
Wilkerson and Hayes 2010). The imputed data was only used for
ranking and clustering and not downstream analysis.

Epigenome data analysis

For the clustermetaplots, we considered the boundaries of each ge-
nomic region as the locations of the first and last integrations in
each region. We then downloaded various K562 epigenome data
sets (full list of sources in Supplemental Table S5). For CpG meth-
ylation, we downloaded both replicates and used the averaged sig-
nal from both replicates. For H3K27ac, H3K4me3, PolII, and CpG
methylation and ATAC-seq, we used the EnrichedHeatmap pack-
age in R (Gu et al. 2018) to draw the metaplots for each cluster ex-
tending 5 kb upstream of and downstream from each genomic
region. For CAGE-seq, we downloaded the hg19 data set from
the FANTOM5 consortium (Lizio et al. 2015, 2019) and converted
it to hg38 using the UCSC liftOver tool (Hinrichs et al. 2006).
Because the signal was relatively sparse across genomic locations,
we plotted the total CAGE signal across each genomic region.

Sequence feature analysis

We obtained the sequences of each region using the BSgenome
package in R (https://rdrr.io/bioc/BSgenome/). For the gapped k-
mer predictions, we used the gkmSVM R package (Ghandi et al.
2016) with word length=10 and number of informative col-

umns=6. We used AME for motif enrichment analysis (McLeay
and Bailey 2010), DREME for de novo motif discovery (Bailey
2011), and FIMO to determine the number of motifs per sequence
(Grant et al. 2011), fromMEME suite 5.0.4. For all motif analyses,
we limited analysis to expressed transcription factors (FPKM≥1) in
K562 from whole-cell long poly(A) RNA-seq data generated by
ENCODE (Djebali et al. 2012) downloaded from the EMBL-EBI
Expression Atlas.

To predict the type of genomic region of other integrations
not in the defined 5-kb regions, we obtained genomic sequences
of the 1-kb flanking region around the integration (500 bp up-
stream and 500 bp downstream). We then used the trained
gkmSVM kernels to calculate the weights of each flanking region
and assigned the integrations into low, medium, or high activity
clusters based on their weights. Only integrations that could be
confidently assigned were included.

Modeling

We fit log2 expression values with linear models of core
promoter and genomic location activities using the lm function
in R (https://www.rdocumentation.org/packages/stats/versions/
3.6.2/topics/lm). Variance explained by each term was calculated
with one-way ANOVAs of the respective models.

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE173678. The code used to process the data can be found in
the Supplemental Code and at GitHub (https://github.com/
claricehong/core_promoters_2021).
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