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Abstract

Objective

We aim to propose a novel method of evaluating the degree of rhythmic irregularity during

repetitive tasks in Parkinson’s disease (PD) by using autocorrelation to extract serial pertur-

bation in the periodicity of body part movements as recorded by objective devices.

Methods

We used publicly distributed sequential joint movement data recorded during a leg agility task

or pronation-supination task. The sequences of body part trajectory were processed to extract

their short-time autocorrelation (STACF) matrices; the sequences of single task conducted by

participants were then divided into two clusters according to their similarity in terms of their

STACF representation. The Unified Parkinson’s Disease Rating Scale sub-score rated for

each task was compared with cluster membership to obtain the area under the curve (AUC) to

evaluate the discrimination performance of the clustering. We compared the AUC with those

obtained from the clustering of the raw sequence or short-time Fourier transform (STFT).

Results

In classifying the pose estimator-based trajectory data of the knee during the leg agility task,

the AUC was the highest when the STACF sequence was used for clustering instead of

other types of sequences with up to 0.815, being comparable to the results reported in the

original analysis of the data using an approach different from ours. In addition, in classifying

another dataset of accelerometer-based trajectory data of the wrist during a pronation-supi-

nation task, the AUC was again highest up to 0.785 when clustering was performed using

the STACF rather than other types of sequence.

Conclusion

Our autocorrelation-based method achieved a fair performance in detecting sequences with

irregular rhythm, suggesting that it might be used as another evaluation strategy that is
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potentially widely applicable to qualify the disordered rhythm of PD regardless of the kinds

of task or the modality of devices, although further refinement is needed.

Introduction

In the diagnosis and follow-up of patients with Parkinson’s disease (PD), physicians or neurol-

ogists examine patients for several signs and symptoms, e.g., bradykinesia, tremor, small steps,

posture instability, and freezing of gait (FOG) [1]. In particular, the degree and amount of

rhythm irregularity during repetitive tasks (e.g., finger tapping or leg agility) are some of the

most frequently evaluated phenomena. The evaluation of these tasks is practically dependent

on the neurological assessment performed by physicians or neurologists that can be semi-

quantified as scores on the Unified Parkinson’s Disease Rating Scale (UPDRS) [1], which may

lead to the limited inter-rater variability [2] for each evaluation item.

A growing body of literature shows that these examinations for PD can be objectively mea-

sured using specific devices, such as an accelerometer or motion capture system [2–4]. For

example, accelerometers have been used to assess finger tapping [5, 6], pronation-supination

[7], tremor [6], gait [8, 9], postural instability [10], FOG [11], and levodopa-induced dyskine-

sia [12]. In addition, features of gait in PD have been intensively investigated using 3D motion

capture in the field of gait analysis [4]. Furthermore, video-based assessment via deep-learning

based pose estimators such as the Convolutional Pose Machine (CPM) [13] or OpenPose [14]

has been applied to UPDRS tasks as a substitute for conventional 3D motion capture systems,

revealing fair prediction performance [15]. Many of these earlier studies employ an evaluation

scheme to extract static features from movement sequences with which to discriminate or

quantify the degree of abnormal findings.

The general concerns in such evaluation schemes include the complexity of preprocessing

procedures and the limited applicability of evaluation algorithms to other tasks/devices. In

each algorithmic evaluation, extracting static features (e.g., mean, median, standard deviation,

maximum and minimum values) from trajectory sequences or frequency analysis using Fou-

rier transform (FFT) have been predominantly used so far, which requires researchers to stan-

dardize all included samples strictly and extract many static features as variables to impute

into the discrimination model. In addition, these requirements of the preprocessing procedure

make the obtained algorithm device-/task- specific, which results in limited applicability to the

different kinds of tasks or to the data obtained using different modality devices.

As one of the solutions to address these points, in this study we attempt to employ autocor-

relation (ACF), which we had introduced in our previous study to quantify FOG based on vid-

eos of the gait of patients with PD recorded in the hospital hallway [16]. Since the ACF extracts

the periodicity representation of the original sequence, it does not require strict standardiza-

tion of the amplitude of the original sequence. Since semi-quantitative scores evaluating repeti-

tive tasks (e.g., those included in the UPDRS such as finger tapping, leg agility, or toe tapping)

are measured based on the regularity of tapping rhythm/speed/amplitude [1], it would be suit-

able to apply ACF to detect irregularities during the repetitive task, which we aim to propose

as a novel method. We then conducted unsupervised clustering for the ACF sequences derived

from these raw sequences, which is another feature of our approach. This allows us to identify

repetitive sequences with a similar degree of alteration in periodicity during each task, in a

data-driven manner, without the need for a complex preprocessing procedure. In addition,

there is no need to determine task/device-specific cut-off values.

These strengths might allow this method to be applied to a wide range of repetitive PD

tasks evaluating the irregularity of movement, regardless of the modality of devices. To validate
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our ideas, we used two different datasets obtained from devices of different modalities record-

ing different PD tasks that have been publicly distributed by Li et al. [15] and Piro et al. [7]; the

former comprised of a series of estimated 2D coordinates of body joint trajectory during a leg

agility task [15] and the latter is an accelerometry-derived sequence during a pronation-supi-

nation task [7].

Methods

General processing procedure

This is a retrospective study using publicly distributed data. All data handling and statistical

analyses were performed using R software (version 3.5.1). Suppose we have the original trajec-

tory sequence of a body part during the tasks (e.g., leg agility while sitting on the chair here)

recorded at any frequency per second (fps) as in Fig 1A[a]. This ‘raw’ sequence is derived from

the serial change in coordinates along with the actual movement of body part during the task,

such as the serial change in Y-axis coordinate of ipsilateral knee during the leg tapping task as

illustrated in Fig 1A. This raw sequence was further processed as outlined in Fig 1A; first, the

“difference sequence” (Fig 1A[b]) was obtained as the difference series of the raw sequence,

which corresponds to the serial changes in the velocity of the sequence (Fig 1A[a]). Next, we

applied a sliding window with a certain length and with a certain shift length to these se-

quences. For the sequence obtained from each sliding window, we applied the FFT (Fig 1A[c])

and ACF (Fig 1A[d]) functions, thereby obtaining the resultant vectors. The cumulated vectors

along with the sliding form matrices, referred to as short-time FFT (STFT) (Fig 1A[e]) and

short-time autocorrelation (STACF) (Fig 1A[g]) matrices, respectively. For the convenience of

Fig 1. Processing workflow.

https://doi.org/10.1371/journal.pone.0238486.g001
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calculation that follows later, we took the average of each row of the matrix to derive the aver-

aged STFT (Fig 1A[f]) and STACF (Fig 1A[h]). The difference sequence (Fig 1A[b]) was also

used to derive the averaged STFT and STACF.

The STACF [17, 18] is an applied form of the STFT [19, 20] and was a method we had pro-

posed previously to apply to the estimated trajectory data of gait in order to quantify FOG [21]

from the gait movies of patients with PD recorded in the hospital hallway [16]. The STACF is

better than the STFT in terms of frequency resolution within the frequency range of gait:

although the STFT is the major method for pitch detection/analysis in acoustic analysis, since

the frequency resolution in STFT is given by the reciprocal of the window width (s). Because

the window width is several seconds in the tapping movies recorded in actual clinical settings,

the frequency resolution in STFT should be lower than that in STACF at any rate used here.

The STACF also has the advantage that it can measure and visualize the real-time subtle

change in gait rhythms during walking [16].

Fig 1A shows how to derive STFT and STACF sequences from the raw sequence represent-

ing the serial coordinate change, and Fig 1B demonstrates how to use the derived six types of

sequences for classification of rhythm irregularity, via the clustering of the same type of

sequences.

This produced a set of six sequential vectors from each original raw sequence as follows:

original “raw” sequence [a], its “difference” sequence [b], the averaged STFT sequence of the

“raw” sequence [f], the averaged STACF sequence of the “raw” sequence [h], the averaged

STFT sequence of the “difference” sequence, and the averaged STACF sequence of the “differ-

ence” sequence in Fig 1A. We then assessed which of these sequence types may have the stron-

gest association with the degree of rhythmic irregularity in the task, which refers to the semi-

quantified UPDRS score that had been provided by the authors of the original data. We con-

ducted sequence clustering using the R package TSclust [22] for each of the six sequence types

independently (Fig 1B). For example, we have the sequences of a single type from all original

“raw” sequences and the inter-sequence distances within the same sequence type were mea-

sured and then separated into two clusters according to the dendrogram (Fig 1B[a]) (here we

set the number of clusters as two for the purposes of binary classification). The derived den-

drogram and task irregularity rating (as determined based on UPDRS score) of each sequence

is simultaneously presented in Fig 1B[a] using the R package WGCNA [23]. The summary dis-

tribution of UPDRS item’s score for each sequence belonging to each cluster (cluster [1] and

cluster [2]) is shown in Fig 1B[b], which shows a clear difference in the UPDRS score distribu-

tion between cluster [1] and [2], meaning that based on the sequence clustering results we can

conversely estimate whether the sequence of interest may have higher or lower UPDRS score

regardless of the cut-off value of the UPDRS item of interest. The performance was measured

using the AUC (Fig 1B[c]) using the R package pROC [24].

To calculate the AUC, we used various distance measures (dynamic time warping (DTW),

autocorrelation-based method, Euclidean distances, linear predictive coding ARIMA method,

and model-based ARMA method; for details, see [22]) and various clustering methods (“com-

plete,” “ward.D,” and “ward.D2” methods in R [25]). These methods were selected because

they are available even if the sequence length differs between the pair to measure the distance.

Eventually, for each of the six sequence types, we calculated 15 AUC results according to the 5

(distance measures) × 3 (clustering methods) = 15 combinations of distance and clustering

methods. The derived AUC results under a certain distance/clustering method condition were

compared using DeLong’s test [24] between the pair of different sequences (as in Fig 2, the

lower row), as follows: between the raw difference and STACF sequences, between the STACF

and STFT sequences, between the “difference sequence” and the STACF of the difference

sequence, and between the STACF and STFT of the difference sequence. These pairs of
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comparisons were specifically selected in order to examine whether using the STACF as a

sequence type in clustering may lead to a better discrimination performance, as well as to

restrict the number of pairs to conduct as few statistical tests as possible. The P-value was

adjusted using Benjamini-Hochberg method [26] for multiple comparison within these four

pairs of comparison, and a false discovery rate (FDR)-adjusted p-value less than 0.05 was

regarded as statistically significant.

Dataset (1): Estimated joint trajectory during a leg agility task

We downloaded a publicly available dataset from http://www.cs.toronto.edu/~taati/index.htm

in March 2020, which included data from the study by Li et al. [15]. The data consisted of 2D

body joint trajectories (serial X and Y-axis coordinates) from task videos as estimated using

Convolutional Pose Machines (CPM) [13], a deep learning-based pose estimation tool to esti-

mate the position of human body parts/joints including the face, right/left-sided shoulder,

Fig 2. Performance results from dataset (1).

https://doi.org/10.1371/journal.pone.0238486.g002
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elbow, wrist, hip, knee, and ankle in the picture (or each frame of the movie). The obtained

data are the time series vectors of these joint coordinates recorded at a frequency of 30 frames

per second (fps) during each specific task of communication, drinking, leg agility, and toe tap-

ping. Among them, we used the Y-axis sequential data of the knee during the leg agility task

(UPDRS 3.8 [1]) from the ipsilateral knee, where the participants raise and stomp either the

left or right foot while sitting on a chair (as shown in S1A Fig).

In the original article, this sequence has already been filtered by low-pass filter with a cut-

off of 5 Hz. The UPDRS 3.8 score in each leg agility task evaluated by neurologists (average of

two or more neurologists’ evaluation) is annotated for each sequence. Sequences in which

UPDRS 3.8 evaluation was not available were excluded from the analysis. This “raw” sequence

(the Y-axis sequence of the moving knee during the leg agility task) is further processed as out-

lined in Fig 1A. In obtaining the STFT and STACF, we applied a sliding window that was 45

frames wide (= 1.5 seconds) with a shift length of 5 frames (= 0.167 seconds), which were

determined mainly based on the length of each sequence ranging from 57 to 329 frames. The

performance of binary classification achieved in the original study [15] was AUC = 0.842 and

0.699 for the average of sequences from the left and right legs, respectively.

Dataset (2): Accelerometer-derived data during the pronation-supination

task

Next, for further validation of our proposed method, we applied our method to another dataset

from different UPDRS tasks using different device modality. We downloaded publicly distrib-

uted data from https://zenodo.org/record/54551#.Xq2oYy3AOql in April 2020, which were

originally used in the study reported by Piro et al. [7]. This data is consisted of time series data

of 3-axis acceleration (x, y, and z) measured using an accelerometer attached to the partici-

pants’ wrist during a pronation-supination task, as determined using UPDRS 3.6 [1] where the

participant lifted one arm into a horizontal position and turned the palm up and down 10

times while sitting on a chair (S1B Fig). The UPDRS 3.6 score of each pronation-supination

task evaluated by neurologist(s) is annotated for each sequence.

We first normalized each of the 3-axis (x, y, and z) acceleration sequences within which the

amplitude ranged 0–1, and then obtained the synthetic acceleration sequence from these

3-axis acceleration sequences. This sequence was normalized and further centralized by sub-

tracting the median value of the sliding window (20 frames), making the sequence’s baseline

closer to 0. The obtained is the sequence in Fig 3A[a]. Since this sequence is the first-derivative

Fig 3. Procedure and the performance results from dataset (2).

https://doi.org/10.1371/journal.pone.0238486.g003
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of the velocity sequence and the velocity sequence is also the first-derivative of the trajectory

sequence, the sequence in Fig 3A[a] was integrated twice. We used the calculated sequence

(Fig 3A[c]) as the “raw” sequence as in dataset (1). In applying the STFT and STACF, the win-

dow width was set to 100 frames and the shift length was set to 10. Unlike the dataset (1), we

did not calculate the discrimination performance for each side (i.e., right-sided and left-sided

arms) separately, because the original study of the dataset (2) did not [7]. In this dataset (2),

the AUC had not been reported in the original article [7].

Ethics

This study was approved by the University of Tokyo Graduate School of Medicine institutional

ethics committee [ID: 2339-(3)]. Informed consent was not required for this study. The work

was conducted in accordance with the ethical standards laid out in the Declaration of Helsinki,

1964.

Results

Performance results: Dataset (1)

In total, we included 150 sequence samples from dataset (1), which consisted of left- and

right-sided sequences obtained from 75 unique trials conducted by nine participants. The

AUC performance results are summarized in Fig 2 (boxplot in the upper row and superim-

posed plot in the lower row), where the AUC distribution across 15 distance/clustering

method conditions for each of the six sequence types (for columns from left to right, original

“raw” sequence and its STFT and STACF, and the “difference” sequence and its STFT and

STACF). Sequences of different laterality were separately analyzed as in the original study

[15], i.e., results using sequences from left legs (Fig 2A), right legs (Fig 2B), and sequences

from either left or right legs (Fig 2C). Briefly, results based on the STACF sequence appeared

to show a better performance distribution than those of the other types of sequences (Fig 2,

upper row).

When we arbitrarily focused on a specific condition to examine the detailed performance of

the STACF sequence (as highlighted with solid [not gray] lines on the lower row of Fig 2;

DTW as distance method and ‘ward. D’ as clustering method), the AUC = 0.815 of the STACF

sequence was the highest among the sequences from the left leg (Fig 2A, lower row) and was

significantly better than the AUC = 0.568 of the “raw sequence” (FDR = 0.021 in Delong’s test,

marked with � in Fig 2A). In the same condition, the AUC = 0.715 for STACF was the highest

among the sequences from the right leg (Fig 2B, lower row) but was not significantly better

than the AUC of the raw or STFT sequences. Furthermore, the AUC = 0.724 of STACF was

also the highest among the sequences from either the left or right legs (Fig 2C, lower row) and

was significantly better than the AUC = 0.541 of the “raw” sequence (FDR = 0.031, marked

with � in Fig 2C).

These results suggest that clustering of the STACF sequence in a specific condition might

lead to statistically better discrimination performance than clustering of the raw sequence (or

its difference sequence).

In the upper row, derived AUC distribution across 15 distance/clustering method condi-

tions for each of six sequence types (for columns from left to right). Sequences of different

laterality were separately analyzed (i.e., left leg, right leg, and both legs) according to the origi-

nal article of this data.

In the lower row, AUC results of one specific distance/clustering condition are plotted, and

the results of statistical tests in AUC comparison are shown on the presented pairs.
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Performance results: Dataset (2)

Next, for further validation of our proposed method, we applied our method to another dataset

(2). In total, we included 101 sequence samples, which consisted of left- and right-sided

sequences obtained from 26 unique participants (including 13 PD patients and 13 control sub-

jects). The AUC performance results are summarized in Fig 3 (boxplot in Fig 3B, and superim-

posed plot in Fig 3C). Sequences with different laterality were not separately analyzed in the

original study [7]. The results showed a similar performance distribution as in dataset (1),

where the STACF-based results appeared to show a better performance distribution than that

of the other types of sequences (Fig 3B).

Next, we focused on the same conditions as in dataset (1), DTW as a distance method and

“ward. D” as a clustering method; the STACF sequence (AUC = 0.715) had significantly higher

AUC than the “STFT” sequence (FDR < 0.001, marked with � in Fig 3C). The STACF of the

difference sequence (AUC = 0.785) had a significantly higher AUC than the “raw” or “STFT”

sequences (both FDR < 0.001, marked with � in Fig 3C).

These results suggest that the better discrimination performance when clustering STACF

rather than the raw or STFT sequences is preserved for the different types of sequences with

different tasks and different modalities.

Fig 3A shows the preprocessing procedure for accelerometer-derived serial data as in Fig

1A so that we can apply the same clustering procedure as of dataset (1). Fig 3B & 3C are the

result for this dataset (2), showing similar tendency as of dataset (1).

Discussion

Neurological findings from patients suspected of having PD are seldomly measured using

objective devices such as an accelerometer or motion capture system [2–4], probably due to

the barriers to their use in daily practice; these devices are time-, labor-, space-, and cost-con-

suming. As a result, the evaluation of each examination task is currently solely dependent on

the neurological assessment of physicians or neurologists, that may be semi-quantified as

scores on the UPDRS [1]. This may lead to the limited inter-rater variability [2] in each evalua-

tion item. As one of the options for achieving objective evaluation, video-based assessment via

deep learning-based pose estimators such as the CPM [13] or OpenPose [14] is available; these

pose estimators automatically estimate the joint coordinates of the person in the pictures or

videos obtained using a monocular camera without requiring external scales or markers, and

therefore can be used as a substitute for a conventional 3D motion capture systems. Indeed,

when assessing the motor symptoms of PD, the degree of disability in some UPDRS tasks and

degree of levodopa-induced dyskinesia recorded in movies has been shown to be measurable

using a combination of pose estimation and machine learning [15]. Furthermore, we previ-

ously reported a study that applied a pose estimator to videos of the gait of patients with PD

recorded in the hospital hallway [16] and proposed a novel method using STACF to quantify

FOG [21].

In line with these earlier studies that applied pose estimators for vision-based assessment of

PD symptoms, in this study, we aimed to propose a novel method to evaluate the degree of dis-

ordered rhythm in repetitive tasks in PD patients. As expected, the results using the STACF

sequence for clustering generally showed a better discriminant performance than using other

sequences such as the raw sequence or STFT sequence. By choosing the appropriate condition

for the sequence clustering, we could obtain the AUC performance results that are compatible

to those reported in the original study [15], where the average AUC was 0.842 and 0.699

for sequences from the left and right legs, respectively. In addition, even when the current

method was applied to another dataset from a different task and different modality, the best

PLOS ONE Autocorrelation to detect rhythm irregularity of multiple tasks in Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0238486 October 8, 2020 8 / 12

https://doi.org/10.1371/journal.pone.0238486


discrimination performance was also observed when clustering the STACF sequence. These

results suggest that our proposed method of clustering the STACF sequence may be widely

applicable as an alternative evaluation scheme to conventional approaches for the objective

assessment of disordered rhythms in PD patients.

The potential of the wide applicability of our method is further explained by the following

points. The STACF extracts temporal changes in frequency within a short time window. Our

method does not require the scale of all included sequences to be strictly standardized. This

means the relative position between the camera and participants during the same task does not

always need to be fixed for all recordings, and in some case zooming in/out during recordings

is permitted; such robustness against recording conditions would increase the capacity to

incorporate sequential data estimated using a pose estimator [15, 16], derived from the videos

recorded in different recording environments or clinical situations. Moreover, our proposed

method can also be applied to the tapping task of other body parts, such as finger tapping or

toe tapping. Currently, since the CPM library is not equipped with the function to estimate fin-

ger or toe trajectories, we need additional pose estimator libraries to extract the trajectory of

these tasks.

In addition, by applying ACF to each sliding window but not to the whole sequence, we

could unify the length of the obtained averaged STACF sequences across all sample sequences,

even if the length of original raw sequences differed greatly. Although we used sequence clus-

tering to perform a binary classification in this study, we also can impute the STACF as the

temporal representation of the raw sequences for each sample into a machine learning scheme,

where we can expect further improvement in the predictive performance with further

investigation.

As the method of measuring the distance between sequences, we focused on the DTW

because it achieved a good discrimination performance. The DTW is a time-series clustering

algorithm that calculates the distance between two waveforms’ sequential patterns (= 0

between the same sequences) and has an advantage that it can compare two waveform data of

which the length or phases differ significantly. Since the tapping sequences diagnosed as “nor-

mal” but with different tapping speeds result in STACF sequences with similar waveforms but

mildly different phases (varying lag peaks), the use of the DTW is appropriate to measure dis-

tances in sequence clustering.

Our novel method has a future potential to be utilized in the daily clinical practice, espe-

cially as digital health devices: for example, it can be usable by general physicians for automatic

and convenient assessment of disease severity of PD patients in outpatient clinic located in

areas where medical access to neurological specialists is limited. In addition, it may also be

used for detecting patients with recently-developing parkinsonism. Furthermore, when

mounted on mobile devices including smartphones, it may be used by PD patients as a part of

their own daily health care.

Our study has some limitations. First, our proposed methods require further external vali-

dation by incorporating additional sequence data from different tasks obtained using different

modalities in different environments or facilities. Second, it is uncertain why the basic perfor-

mance in dataset (1) differs between the sequences from the left and right legs, although this

may be due to the characteristics of the original data. Third, the strength of STACF focusing

on the periodicity of sequence may in turn impair sensitivity to severely impaired tapping that

leads to persistently lowered amplitude of tapping/pronation-supination due to the genuine

presentation of severe parkinsonism. Fourth, there are some technical concerns such as

whether the number of clusters can be extended (from two in this study), that we should fur-

ther explore the appropriate width and shift length of the sliding window, that not all possible

types of distance methods and clustering methods are examined, or that averaging the STACF
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and STFT matrices may overlook temporal characteristics in the change in periodicity, espe-

cially in longer sequences. In addition, the hierarchical clustering we used in this study may

not work well for sequential data that is too long, e.g., more than thousands of time-steps, so

our method may not be applicable to the long time series data such as that obtained from mon-

itoring patients’ disease status based on their daily activity.

To conclude, we conducted clustering for the STACF-derived from trajectory sequences,

which allowed us to identify task samples with a similar degree of alteration in periodicity dur-

ing each task. Because our approach is a data-driven classification method that does not

require complex preprocessing procedure nor strict standardization across samples, our pro-

posed method may be used as another evaluation scheme that is widely applicable to any PD

tasks (including finger tapping and toe tapping) to evaluate irregularity of movement, regard-

less of the modality of the measurement devices.

Supporting information

S1 Fig. Schematic images of each task and the position. Images showing the tasks and their

positions (performed by one of our authors (K.S) only for demonstration). In dataset (1) of leg

agility task, the participant raises and stomps either the left or right foot while sitting on a

chair as in S1A Fig (for details, see original article of the data [15]). The data is obtained as the

series of 2D coordinates of knee of the tapping leg within each frame (axes outline as x and y).

In dataset (2) of pronation-supination task, the participant lifts one arm into a horizontal posi-

tion and turns the palm up and down 10 times while sitting on a chair (S1B Fig) (for details,

see original article of the data [7]). The data is obtained as the serial 3-axis acceleration of the

accelerometer attached to the wrist of the ipsilateral arm of the task.

(TIF)
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11. Bächlin M, Plotnik M, Roggen D, Maidan I, Hausdorff JM, Giladi N, et al. Wearable assistant for Parkin-

son’s disease patients with the freezing of gait symptom. IEEE Trans Inf Technol Biomed. 2010 Mar; 14

(2):436–46. https://doi.org/10.1109/TITB.2009.2036165 PMID: 19906597

12. Tsipouras MG, Tzallas AT, Rigas G, Tsouli S, Fotiadis DI, Konitsiotis S. An automated methodology for

levodopa-induced dyskinesia: assessment based on gyroscope and accelerometer signals. Artif Intell

Med. 2012 Jun; 55(2):127–35. https://doi.org/10.1016/j.artmed.2012.03.003 PMID: 22484102

13. Shih-En Wei, Varun Ramakrishna, Takeo Kanade, Yaser Sheikh. Convolutional Pose Machines.

arXiv:1602.00134

14. Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Realtime Multi-Person 2D Pose Estimation using

Part Affinity Fields. arXiv:1611.08050

15. Li MH, Mestre TA, Fox SH, Taati B. Vision-based assessment of parkinsonism and levodopa-induced

dyskinesia with pose estimation. J Neuroeng Rehabil. 2018 Nov 6; 15(1):97. https://doi.org/10.1186/

s12984-018-0446-z PMID: 30400914

16. Sato K, Nagashima Y, Mano T, Iwata A, Toda T.Quantifying normal and parkinsonian gait features from

home movies: Practical application of a deep learning-based 2D pose estimator. PLoS One. 2019 Nov

14; 14(11):e0223549. https://doi.org/10.1371/journal.pone.0223549 PMID: 31725754

17. Keenan DB, Wilhelm FH. Classification of locomotor activity by acceleration measurement: validation in

Parkinson disease. Biomed Sci Instrum. 2005; 41:329–34. PMID: 15850127

18. Yang CC, Hsu YL, Shih KS, Lu JM. Real-time gait cycle parameter recognition using a wearable accel-

erometry system. Sensors (Basel). 2011; 11(8):7314–26.

19. Harris Fredric J. (Jan 1978). On the use of Windows for Harmonic Analysis with the Discrete Fourier

Transform. Proceedings of the IEEE. 66 (1): 51–83. https://doi.org/10.1109/PROC.1978.10837

20. Terrell R. Bennett, Jian Wu, Nasser Kehtarnavaz, Roozbeh Jafari. Inertial Measurement Unit-Based

Wearable Computers for Assisted Living Applications: A signal processing perspective. IEEE Signal

Processing Magazine. 2016, vol. 33, no.2, pp. 28–35. https://doi.org/10.1109/MSP.2015.2499314

PLOS ONE Autocorrelation to detect rhythm irregularity of multiple tasks in Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0238486 October 8, 2020 11 / 12

https://doi.org/10.1002/mds.22340
http://www.ncbi.nlm.nih.gov/pubmed/19025984
https://doi.org/10.21037/atm.2016.03.09
http://www.ncbi.nlm.nih.gov/pubmed/27047949
https://doi.org/10.1016/j.parkreldis.2008.11.003
http://www.ncbi.nlm.nih.gov/pubmed/19103505
https://doi.org/10.1016/j.jneumeth.2011.09.019
https://doi.org/10.1016/j.jneumeth.2011.09.019
http://www.ncbi.nlm.nih.gov/pubmed/21978487
https://doi.org/10.1016/j.gaitpost.2007.04.001
https://doi.org/10.1016/j.gaitpost.2007.04.001
http://www.ncbi.nlm.nih.gov/pubmed/17604630
https://doi.org/10.1016/j.parkreldis.2011.05.010
http://www.ncbi.nlm.nih.gov/pubmed/21641263
https://doi.org/10.1109/TITB.2009.2036165
http://www.ncbi.nlm.nih.gov/pubmed/19906597
https://doi.org/10.1016/j.artmed.2012.03.003
http://www.ncbi.nlm.nih.gov/pubmed/22484102
https://doi.org/10.1186/s12984-018-0446-z
https://doi.org/10.1186/s12984-018-0446-z
http://www.ncbi.nlm.nih.gov/pubmed/30400914
https://doi.org/10.1371/journal.pone.0223549
http://www.ncbi.nlm.nih.gov/pubmed/31725754
http://www.ncbi.nlm.nih.gov/pubmed/15850127
https://doi.org/10.1109/PROC.1978.10837
https://doi.org/10.1109/MSP.2015.2499314
https://doi.org/10.1371/journal.pone.0238486


21. Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a

mysterious clinical phenomenon. Lancet Neurol. 2011 Aug; 10(8):734–44. https://doi.org/10.1016/

S1474-4422(11)70143-0 PMID: 21777828
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