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Abstract

Swiss OB cattle at nucleotide resolution.

genetic diversity in the Swiss OB cattle population.

Background: Autochthonous cattle breeds are an important source of genetic variation because they might carry
alleles that enable them to adapt to local environment and food conditions. Original Braunvieh (OB) is a local cattle
breed of Switzerland used for beef and milk production in alpine areas. Using whole-genome sequencing (WGS)
data of 49 key ancestors, we characterize genomic diversity, genomic inbreeding, and signatures of selection in

Results: We annotated 15,722,811 SNPs and 1,580,878 Indels including 10,738 and 2763 missense deleterious and
high impact variants, respectively, that were discovered in 49 OB key ancestors. Six Mendelian trait-associated
variants that were previously detected in breeds other than OB, segregated in the sequenced key ancestors
including variants causal for recessive xanthinuria and albinism. The average nucleotide diversity (1.6 x 10™°) was
higher in OB than many mainstream European cattle breeds. Accordingly, the average genomic inbreeding derived
from runs of homozygosity (ROH) was relatively low (Fron =0.14) in the 49 OB key ancestor animals. However,
genomic inbreeding was higher in OB cattle of more recent generations (Fron = 0.16) due to a higher number of
long (> 1 Mb) runs of homozygosity. Using two complementary approaches, composite likelihood ratio test and
integrated haplotype score, we identified 95 and 162 genomic regions encompassing 136 and 157 protein-coding
genes, respectively, that showed evidence (P < 0.005) of past and ongoing selection. These selection signals were
enriched for quantitative trait loci related to beef traits including meat quality, feed efficiency and body weight and
pathways related to blood coagulation, nervous and sensory stimulus.

Conclusions: We provide a comprehensive overview of sequence variation in Swiss OB cattle genomes. With WGS
data, we observe higher genomic diversity and less inbreeding in OB than many European mainstream cattle
breeds. Footprints of selection were detected in genomic regions that are possibly relevant for meat quality and
adaptation to local environmental conditions. Considering that the population size is low and genomic inbreeding
increased in the past generations, the implementation of optimal mating strategies seems warranted to maintain

Introduction

Following the domestication of cattle, both natural and
artificial selection led to the formation of breeds with
distinct phenotypic characteristics including morpho-
logical, physiological and adaptability traits [1]. With an
increasing demand for animal-based food products, few
breeds were intensively selected for high milk (e.g., Hol-
stein, Brown Swiss) and beef (e.g., Angus) production.
The predominant selection of cattle from specialized
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breeds caused a sharp decline in the population size of
local breeds [2, 3]. Although less productive under in-
tensive production conditions, local breeds of cattle
might carry alleles that enable them to adapt to local
conditions. Therefore, local breeds represent an import-
ant genetic resource to facilitate animal breeding in the
future under challenging and changing production con-
ditions [4, 5]. Characterizing the genetic diversity of local
cattle breeds is important to optimally manage these
genetic resources.
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The Swiss Original Braunvieh (OB) cattle breed is a
dual purpose taurine cattle breed that is used for beef
and milk production in alpine areas [6, 7]. In transhu-
mance, the cattle graze at alpine pastures (between 1000
and 2400 m above sea level) during the summer months
and return to the stables for the winter months [7].
Mainly due to their strong and firm legs and claws, OB
cattle are well adapted to the alpine terrain. Under ex-
tensive farming conditions, OB cattle may outperform
specialized dairy breeds in terms of fertility, longevity
and health status [8]. However, in the early 1960s, Swiss
cattle breeders began inseminating OB cows with semen
from US Brown Swiss sires to increase milk yield, reduce
calving difficulties and improve mammary gland
morphology of the Swiss OB cattle population [9].
The extensive cross-breeding of OB cows with Brown
Swiss sires decreased the number of female OB calves
entering the herd book to less than 2000 by mid
1990’s [9] (Additional file 1). Since then, the Swiss
OB population increased steadily, facilitated by gov-
ernmental subsidies.

A number of studies investigated the genomic diversity
and population structure of the Swiss OB cattle breed
using either pedigree or microarray data [9, 10]. In spite
of the small population size, genetic diversity is higher in
OB than many commercial breeds likely due to the use
of many sires in natural mating and lower use of artifi-
cial insemination [9, 10]. Genomic inbreeding and foot-
prints of selection have been compared between OB and
other Swiss cattle breeds using SNP microarray-derived
genotypes [10]. Because the SNP microarrays were de-
signed in a way that they interrogate genetic markers
that are common in the mainstream breeds of cattle,
they might be less informative for breeds of cattle that
are diverged from the mainstream breeds [11]. Ascer-
tainment bias is inherent in the resulting genotype data
because rare, breed-specific, and less-accessible genetic
variants are underrepresented among the microarray-
derived genotypes [12]. This limitation causes observed
allele frequency distributions to deviate from expecta-
tions which can distort population genetics estimates
[13].

With the availability of whole genome sequencing
(WGS), it has become possible to discover sequence
variant genotypes at population scale [14]. While se-
quence variant genotypes might be biased toward the
reference allele, this reference bias is less of a concern
when the sequencing coverage is high [15]. According to
Boitard et al. 2016 [16], WGS data facilitate detecting se-
lection signatures at higher resolution than SNP micro-
array data. Moreover, the WGS-based detection of runs
of homozygosity (ROH) is more sensitive for short ROH
that are typically missed using SNP microarray-derived

genotypes.
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In the present study, we analyze more than 17 million
WGS variants of 49 key ancestors of the Swiss OB cattle
breed that were sequenced to an average fold-coverage
of 12.75 per animal [17]. These data enabled us to assess
genomic diversity and detect signatures of past or on-
going selection in the breed at nucleotide resolution.
Moreover, we estimate genomic inbreeding in the popu-
lation using runs of homozygosity.

Results
Overview of genomic diversity in OB cattle
We annotated 15,722,811 biallelic SNPs and 1,580,878
Indels that were discovered in 49 OB cattle [17]. The
average genome wide nucleotide diversity within the OB
breed was 0.001637/bp. Among the detected variants,
546,419 (3.5%) SNPs and 307,847 (19.5%) Indels were
found novel when compared to the 102,090,847 poly-
morphic sites of the NCBI bovine dbSNP database ver-
sion 150.

Functional annotation of the polymorphic sites re-
vealed that the vast majority of SNPs were located in ei-
ther intergenic (73.8%) or intronic regions (25.2%). Only

Table 1 Number of SNPs and Indels in sequence ontology
classes annotated using the VEP software

Sequence ontology class SNP Indel
splice_acceptor_variant 272 84
splice_donor_variant 273 71
stop_gained 580 16
frameshift_variant 0 1324
stop_lost 33 0
start_lost 106 4
inframe_insertion 0 290
inframe_deletion 0 440
missense_variant 47,429 0
protein_altering_variant 0 12
splice_region_variant 9553 1059
stop_retained_variant 45 2
synonymous_variant 58,387 0
coding_sequence_variant 166 125
mature_miRNA_variant 83 23
5_prime_UTR_variant 6744 600
3_prime_UTR_variant 30,716 4074
non_coding_transcript_exon_variant 6296 434
intron_variant 3,960,673 422,764
non_coding_transcript_variant 24 25
upstream_gene_variant 526,000 56,715
downstream_gene_variant 454,753 51,672
intergenic_variant 10,620,678 1,041,144
Total 15,722,811 1,580,878
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1% of SNPs (160,707) were located in the exonic regions
(Table 1). In protein-coding sequences, we detected 58,
387, 47,249 and 1264 synonymous, missense, and high
impact SNPs, respectively. According to the SIFT scor-
ing, 10,738 missense SNPs were classified as likely dele-
terious to protein function (SIFT score < 0.05). Among
the high impact variants, we detected 580, 33, 106, 273
and 272 stop gain, stop lost, start lost, splice donor and
splice acceptor variants, respectively. Deleterious and
high impact variants were more frequent in the low than
high allele frequency classes (Additional file 2).

The majority of 1,580,878 Indels were detected in ei-
ther intergenic (72.7%) or intronic (26.7%) regions. Only
2213 (0.14%) Indels affected coding sequences. Among
these, 1499 were classified as high impact variants in-
cluding 1324, 16, 4, 71 and 84 frameshift, stop gain, start
lost, splice donor and splice acceptor variants, respect-
ively. Similar to previous studies in cattle [14, 18], cod-
ing regions were enriched for Indels with lengths in
multiples of three indicating that they are less likely to
be deleterious to protein function than frameshift vari-
ants (Additional file 3).

OMIA variants segregating in the OB population

We obtained genomic coordinates of 155 variants that
are associated with Mendelian traits in cattle from the
OMIA database to analyze if they segregate among the
49 OB cattle. It turned out that six OMIA variants were
also detected in the 49 OB cattle including two variants
in the MOCOS and SLC45A2 genes that are associated
with severe recessive disorders (Additional file 4). Two
OB key ancestor bulls born in 1967 and 1974 (ENA SRA
sample accession numbers SAMEA4827662 and
SAMEA4827664) were heterozygous carriers of a single
base pair deletion (BTA24:2.21222030delC) in the
MOCOS gene (OMIA 001819-9913) that causes xanthi-
nuria in the homozygous state in Tyrolean grey cattle
[19]. Another two OB key ancestor bulls (sire and son;
ENA SRA sample accession numbers SAMEA4827659
and SAMEA4827645) that were born in 1967 and 1973
were heterozygous carriers of two missense variants in
SLC45A2  (BTA20:g.39829806G >A and BTA20:
2.39864148C > T) that are associated with oculocuta-
neous albinism (OMIA 001821-9913) in Braunvieh cat-
tle [20].

Runs of homozygosity and genomic inbreeding

Runs of homozygosity were analyzed in 33 OB animals
that had an average sequencing depth greater than 10-
fold. We found 2044 + 79 autosomal ROH per individual
with a length of 179 kb + 17.6 kb. The length of the ROH
ranged from 50kb (minimum size considered, see
methods) to 5,025,959 bp. On average, 14.58% of the
genome (excluding sex chromosome) was in ROH
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(Additional file 5). Average genomic inbreeding for the
29 chromosomes ranged from 11.5% (BTA29) to 18.6%
(BTA26) (Fig. 1a).

In order to study the demography of the OB popula-
tion, we calculated the contributions of short, medium
and long ROH to the total genomic inbreeding (Add-
itional file 5). The medium-sized ROH were the most
frequent class (50.46%), and contributed most (75.01%)
to the total genomic inbreeding. While short ROH oc-
curred almost as frequent (49.17%) as medium-sized
ROH, they contributed only 19.52% to total genomic in-
breeding (Fig. 1b & c; Additional file 5). Long ROH were
rarely (0.36%) observed among the OB key ancestors
and contributed little (5.47%) to total genomic inbreed-
ing. The number of long ROH was correlated (r =0.77)
with genomic inbreeding.

Genomic inbreeding (Fron) was significantly (P =
0.0002) higher in 20 animals born between 1990 and
2012 than in 13 animals born between 1965 and 1989
(0.16 vs. 0.14) (Additional file 6). The higher Froy in an-
imals born in more recent generations was mainly due
to more long (>2Mb; P =0.00004) and medium-sized
ROH (0.1-1 Mb; P =0.001) (Fig. 2).

Signatures of selection

We identified candidate signatures of selection using
two complementary methods: the composite likelihood
ratio (CLR) test and the integrated haplotype score (iHS)
(Fig. 3a & b). The CLR test detects ‘hard sweeps’ at gen-
omic regions where beneficial adaptive alleles recently
reached fixation [21]. The iHS detects ‘soft sweeps’ at
genomic regions where selection for beneficial alleles is
still ongoing [22, 23]. We detected 95 and 162 candidate
regions of signatures of selection (P < 0.005) using CLR
and iHS, respectively, encompassing 12.56 Mb and 12.48
Mb (Additional file 7; Additional file 8). These candidate
signatures of selection were not evenly distributed over
the genome (Fig. 3c). Functional annotation revealed
that 136 and 157 protein-coding genes overlapped with
50 and 86 candidate regions from CLR and iHS analyses,
respectively. All other candidate signatures of selection
were located in intergenic regions. Closer inspection of
the top selection regions of both analyses revealed that
16 CLR candidate regions overlapped with 25 iHS candi-
date regions on chromosomes 5, 7, 11, 14, 15, 17 and 26
(Fig.  3c) encompassing 35  coding  genes
(Additional file 9).

Top candidate signatures of selection

On chromosome 11, we identified 12 and 36 candidate
regions of selection using CLR and iHS analyses, re-
spectively. The top CLR candidate region (Pczz =3.1 x
107°) was located on chromosome 11 between 66 Mb
and 68.5Mb (Fig. 4a) and it encompassed 24 protein-
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coding genes (Additional file 7). The same region was
also in ROH in 77% of 33 animals that were sequenced
at high coverage. The peak of this top CLR region was
located between 67.5 and 68.2 Mb and it contained sev-
eral adjacent windows with CLR values higher than 5000
(Pcrr <0.003). The top region encompassed 5 genes
(Fig. 4a & e). The variant density in the top region was
low and SNP allele frequency was skewed which is typ-
ical for the presence of a hard sweep (Fig. 4c). The top
iHS candidate region was located on chromosome 11
between 684 and 69.2Mb (P;ys =3.2x 10" °) encom-
passing 7 genes (Fig. 4b & f). The allele frequencies of
the SNPs within the top iHS region are approaching fix-
ation indicating ongoing selection possibly due to hitch-
hiking with the neighboring hard sweep (Fig. 4d).
Another striking CLR signal (Pc;z =0.0012) was de-
tected on chromosome 6 between 38.5 and 39.4 Mb.
This genomic region encompasses the DCAFI6,
FAM184B, LAP3, LCORL, MED28 and NCAPG genes,
and the window with the highest CLR value overlapped
the NCAPG gene (Fig. 5a & c). This signature of selec-
tion coincides with a QTL that is associated with stature,
feed efficiency and fetal growth [24—26]. Most SNPs de-
tected within this region were fixed for the alternate al-
lele in the OB key ancestor animals of our study

(Fig. 5b). All 49 sequenced OB cattle were homozygous
for the Chr6:38777311 G-allele which results in a likely
deleterious (SIFT score 0.01) amino acid substitution
(p.I442M) in the NCAPG gene that is associated with in-
creased pre- and postnatal growth and calving difficul-
ties [24].

GO enrichment analysis

Genes within candidate signatures of selection from
CLR and iHS analyses were enriched (after correcting
for multiple testing) in the panther pathway (P00011) re-
lated to “Blood coagulation”. Genes within candidate sig-
natures of selection from CLR tests were also enriched
in the pathway “P53 pathway feedback loops 1”7 (Add-
itional file 10). Although we did not find any enrichment
of GO-slim biological processes after correcting for mul-
tiple testing, 21 GO-slim biological processes including
cellular catabolic processes, oxygen transport and differ-
ent splicing pathways were nominally enriched for genes
within CLR candidate signatures of selection and 14
GO-slim biological processes including nervous system,
sensory perception (olfactory receptors) and multicellu-
lar processes were nominally enriched for genes within
iHS candidate signatures of selection (Additional file 10).
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QTL enrichment analysis

We investigated if candidate selection regions over-
lapped with trait-associated genomic regions using QTL
information curated at the Animal QTL Database (Ani-
mal QTLdb). We found that 74.7 and 83.9% of CLR and
iHS candidate signatures of selection, respectively, were
overlapping at least one QTL (Additional file 11). We
tested for enrichment of these signatures of selection in
QTL for six trait classes: exterior, health, milk, meat,
production, and reproduction using permutation. It
turned out that QTL associated with meat quality
(Pczr =0.0004, P;;s =0.0003) and production traits
(Pcrr =0.0027, P;ys = 0.0039) were significantly enriched
in both CLR and iHS candidate signatures of selection.
We did not detect any enrichment of QTL associated
with milk, reproduction, health, and exterior traits nei-
ther in CLR nor in iHS candidate signatures of selection.

Discussion

We discovered 107,291 variants in coding sequences of
49 sequenced OB cattle. In agreement with previous
studies in cattle [14, 27], missense deleterious and high
impact variants occurred predominantly at low allele fre-
quency likely indicating that variants which disrupt
physiological protein functions are removed from the
population through purifying selection [28]. However,
deleterious variants may reach high frequency in live-
stock populations due to the frequent use of individual
carrier animals in artificial insemination [29], hitchhiking
with favorable alleles under artificial selection [30, 31],
or demography effects such as population bottlenecks
[32]. Because we predicted functional consequences of
missense variants using computational inference, they
have to be treated with caution in the absence of experi-
mental validation [33]. High impact variants that
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segregated among the 49 sequenced OB key ancestors
were also listed as Mendelian trait-associated variants in
the OMIA database. For instance, we detected frameshift
and missense variants in MOCOS and SLC45A2 that are
associated with recessive xanthinuria [19] and oculocuta-
neous albinism [20], respectively. To the best of our
knowledge, calves neither with xanthinuria nor oculocu-
taneous albinism have been reported in the Swiss OB
cattle population. The absence of affected calves is likely
due to the low frequencies of the deleterious alleles and
avoidance of matings between closely related heterozy-
gous carriers. Among 49 sequenced cattle, we detected
only two bulls that carried the disease-associated
MOCOS and SLC45A2 alleles in the heterozygous state.
However, the frequent use of individual carrier bulls in
artificial insemination might result in an accumulation
of diseased animals within short time even when the fre-
quency of the deleterious allele is low in the population

[34]. Because the deleterious alleles were detected in se-
quenced key ancestor animals that were born decades
ago, we cannot preclude that they were lost due to gen-
etic drift or during the recent population bottleneck in
OB (Additional file 1). A frameshift variant in SLC2A2
(NM_001103222:¢c.771_778del TTGAAAAGinsCATC,

rs379675307, OMIA 000366—-9913) causes a recessive
disorder in cattle that resembles human Fanconi-Bickel
syndrome [35-37]. Recently, the disease-causing allele
was detected in the homozygous state in an OB calf with
retarded growth due to liver and kidney disease [38]. We
did not detect the disease-associated allele in our study.
This may be because it is located on a rare haplotype
that does not segregate in the 49 sequenced cattle. Most
of the sequenced animals of the present study were se-
lected for sequencing using the key ancestor approach,
as their genes contributed significantly to the current
population [17, 39]. More sophisticated methods to
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select animals for sequencing might prioritize rare hap-
lotypes, thus increasing the likelihood to detect rarer al-
leles when the sequencing budget is constrained [40-—
42].

Genomic diversity and genomic inbreeding

Original Braunvieh is a local cattle breed with approxi-
mately 10,000 cows registered in the breeding popula-
tion and 4500 calves entering the herd book every year
(Additional file 1). In spite of the small population size,
the nucleotide diversity (1t = 1.6 x 10~ ?) is higher in OB
than many taurine cattle breeds with considerably more
breeding animals including Holstein, Jersey and Fleck-
vieh (~1.2-1.4 x 10~ %) [43, 44]. However, nucleotide di-
versity is lower in OB than African indigenous cattle
breeds (2.0-4.0 x 10~3), New Danish Red (1.7 x 10 %)
and Yakutian cattle breeds (1.7 x10™%) [44-46]. The
average Frop estimated from WGS data was 0.14 in OB.
This is lower than WGS-based Froy in Holstein (0.18),
Jersey (0.24), Old Danish Red (0.23) and Belgian Blue
(0.3) cattle [47, 48]. However, the genomic inbreeding is
slightly higher in OB than New Red Danish cattle (0.11),
an admixed breed that contains genes from old Danish
and other red breeds [47]. The relatively high genomic
diversity of OB cattle is assumed to be the result of
many different sires contributing to the gene pool due to
frequent use of natural mating [10]. Our WGS based es-
timate of Froy (0.14) is substantially higher than previ-
ous estimates obtained using 50 K SNP microarray data
(Fron =0.029, [10]) for the same population. Genotype
data obtained using SNP microarrays with medium
density (e.g., BovineSNP50) facilitate to detect long ROH
(> 1 Mb). However, due to low SNP density (~1 SNP
per 50kb) detecting short ROH is not possible using
microarray-derived genotype data. In our data, short and
medium-sized ROH accounted for 80.48% of total in-
breeding. Most short and medium-sized ROH are not
reliably detectable with the SNP microarrays that were
used to quantify Froy in Signer-Hasler et al. [10], result-
ing in an underestimation of genomic inbreeding. Our
estimate of the genomic inbreeding using WGS variants
also includes short and medium-sized ROH that were
previously missed using SNP array data, thus represent-
ing a realistic estimate of total genomic inbreeding in
OB cattle.

Apart from genomic inbreeding, ROH also provide in-
formation about population and individual demography
[49-51]. Our findings show that medium-sized ROH
that reflect historical inbreeding contribute most to the
genomic inbreeding of the current OB population. The
minor contribution of long ROH to the genomic in-
breeding indicates that recent inbreeding is relatively
low in OB possibly due to use of many sires in natural
matings as suggested by Hagger [9] and Signer-Hasler
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et al. [10]. Our results based on ROH inferred from
WGS variants corroborate that genomic inbreeding is
lower in OB than most mainstream breeds [10]. How-
ever, comparing the number and size distribution of
ROH across studies is subject to bias because misplaced
genomic segments might break ROH into multiple
small- and medium-sized ROHs and different ROH-
detection approaches yield results that are not readily
comparable [49, 52—55]. Genomic inbreeding is increas-
ing in the OB population in recent years mainly due to
an increase in occurrence of long ROH. The recent
population bottleneck in the OB population (Add-
itional file 1) might promote matings between closely re-
lated animals that caused inbreeding to increase in
recent generations. In this regard, genome-based mating
strategies seem to be warranted to achieve sufficient
genetic gain while maintaining genetic diversity and
avoiding matings between carriers of disease-associated
alleles [56, 57].

Signatures of selection

With WGS data, we were able to identify more signa-
tures of selection compared to SNP array data [10, 58],
even though we used only 9 million SNP for which we
could readily assign ancestral and derived alleles [59].
Using two complementary approaches, we found several
new and known candidate regions that seem to be tar-
gets of recent or ongoing selection in OB. Many signa-
tures of selection were located in non-coding regions
corroborating that selection frequently acts on regula-
tory sites [16]. However, it is possible that an improved
annotation of the bovine genome might place these re-
gions in yet to be annotated coding regions. We applied
methods to detect signatures of selection that depend on
frequency changes of alleles (CLR) and haplotypes (iHS).
The detected signatures of selection may be confounded
by other evolutionary forces including genetic drift and
background selection [60—62].

We detected candidate selection regions in OB cattle
that harbor genes associated with stature or milk pro-
duction (NCAPG, LCORL, LAP3), feed efficiency or lipid
metabolism (R3HDM1, AOXI), and unknown functions
(SLC25A33, TMEM201) that were previously reported to
be targets of selection in taurine and indicine cattle
breeds [16, 63—-65]. The presence of signatures of selec-
tion that are common in several breeds indicates that se-
lection at these regions has happened either before the
breeds diverged or independently after the formation of
breeds [16, 65]. A number of genes that are targets of se-
lection in various cattle breeds are associated with either
coat colour (MCIR, KIT), milk production (DGATI,
ABCG2, GHR) or stature (PLAGI) [44, 65—67]. These
genes were not detected within the top 0.5% CLR and
iHS windows in OB cattle possibly either due to absence
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of trait-associated genomic variation in our data or be-
cause they are not under selection in OB cattle. While
some cattle breeds including Holstein and Fleckvieh are
selected for particular coat colour patterns [66, 68], ani-
mals with variation in coat colour are rarely observed in
the OB cattle breed [69]. Moreover, due to the use of
OB cattle for both milk and beef production under ex-
tensive conditions, the milk production-associated vari-
ants that are under strong artificial selection in many
dairy breeds seem to be less important in OB cattle [64].

Some of the genes (PLAGI1, DGATI, ABCG2, GHR)
that have been reported to be targets of selection in spe-
cialized breeds contain well-known variants that contrib-
ute to the genetic variation of economically important
traits. We investigated if these variants segregate in our
data although they were not detected in our selection
signature analysis. A number of variants in high linkage
disequilibrium stimulate the expression of PLAGI, thus
increasing pre- and postnatal growth in cattle [25, 26,
70]. Among 14 candidate causal variants for the PLAGI
QTL, six were fixed for the stature-decreasing alleles in
our study (Additional file 12). The other candidate
causal variants were either fixed for the stature-
increasing allele or segregated at low allele frequency.
This pattern indicates that a recombinant haplotype
might segregate in Swiss OB cattle that could facilitate
fine-mapping of this region. Among known mutations
affecting milk production traits, a mutation in ABCG2
(p.Y581S, rs43702337 at 38,027,010 bp) [71] did not seg-
regate in our population of Swiss OB cattle which cor-
roborates previous findings in Brown Swiss cattle [72]. A
variant (BTA14, g.1802265_1802266GC > AA, p.A232K)
of the DGATI gene is associated with milk production
traits in cattle [73, 74]. The milk fat-enhancing and milk
yield-lowering lysine-allele segregates in OB cattle at low
frequency (0.03). A missense variant (BTA20,
2.31909478A > T, p.Y279F) in the GHR gene is associ-
ated with milk protein percentage [75]. The protein fat
percentage-lowering T-allele segregates at low frequency
(0.06) in OB cattle.

We observed a striking signature of selection on
chromosome 11 that has previously been detected in the
Swiss Fleckvieh, Simmental, Eringer and Evoléner breeds
using microarray-called genotypes [10, 58]. Our results
in OB cattle indicate that this region harbors a rapid
sweep which seems to act on alleles with selection ad-
vantage [22]. While large sweeps are easy to detect using
dense sequencing data, pinpointing causal alleles under-
pinning such regions remains challenging. Most of the
variants in such regions are either fixed or segregate at
very low frequency [16] which we also observed for the
signature of selection on chromosome 11. In our study,
the signature of selection on chromosome 11 encom-
passed millions of nucleotides (between 66 and 72 Mb)
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and many genes, rendering the identification of under-
pinning genes and variants a difficult task. The windows
with the highest CLR and |iHS| values did not encom-
pass PROKR1, which was previously suggested to be the
target of selection at this region due to its association
with fertility [10, 58]. However, closer inspection of the
sequence variants detected in our study revealed that a
stop-gained variant in PROKRI (g.66998234C > A,
rs476744845, p.Y293*) segregates at high frequency in
the 49 sequenced OB key ancestors. Yet, it remains to
be elucidated, if the presence of a high-impact variant in
immediate proximity to a massive selective sweep is
causal or just due to hitchhiking. The window with the
largest |iHS| value on chromosome 11 was right next to
the CAPN13 gene which is associated with meat tender-
ness and was also suggested as a potential target of se-
lection by Signer-Hasler et al. [10].

Genes within the top 0.5% CLR and iHS windows were
enriched in pathways related to reactive oxygen species,
metabolic process, blood coagulation and nervous sys-
tem, indicating that the identified regions under selec-
tion might harbor genomic variants that confer adaptive
advantage to harsh environments. Moreover, QTL asso-
ciated with meat quality and production traits including
feed efficiency and body weight were enriched in selec-
tion signatures possibly indicating that OB cattle harbor
variants that enabled them to adapt to particular feed
conditions. Combining results from selection signature
and association analyses might reveal phenotypic charac-
teristics associated with genomic regions that showed
evidence of past or ongoing selection [66], thus provid-
ing additional hints why particular genomic regions are
under selection in OB cattle.

Conclusions

We provide a comprehensive overview of genomic vari-
ation segregating in the Swiss OB cattle population using
sequencing data of 49 key ancestor bulls. In spite of the
small population size, genetic diversity is higher and
genomic inbreeding is lower in OB than many other
mainstream cattle breeds. However, genomic inbreeding
is increasing in recent generations mainly due to large
ROH which should be considered in future management
of this breed. Finally, this study highlights regions that
show evidence of past and ongoing selection in OB
which are enriched for QTL related to meat quality and
production traits and pathways related to blood coagula-
tion, cellular metabolic process, and nervous system.

Methods

Sequence variant genotyping

We considered genotypes at 17,303,689 biallelic variants
(15,722,811 SNPs and 1,580,878 Indels) that were dis-
covered and genotyped previously [17] in the autosomes
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of 49 key ancestors of the OB population using a gen-
ome graph-based sequence variant genotyping approach
[76]. In brief, 49 OB cattle were sequenced at between 6
and 38-fold genome coverage using either Illumina
HiSeq 2500 (30 animals) or Illumina HiSeq 4000 (19 ani-
mals) instruments. The sequencing reads were filtered
and subsequently aligned to the UMD3.1 assembly of
the bovine genome [77] using the mem-algorithm of the
Burrows Wheeler Aligner (BWA) software package [78].
Single nucleotide and short insertion and deletion poly-
morphisms were discovered and genotyped using the
Graphtyper software [76]. Following recommended fil-
tration criteria (see Crysnanto et al. [17] for more de-
tails), 15,722,811 SNPs and 1,580,878 Indels were
retained for subsequent analyses. Beagle [53] phasing
and imputation was applied to improve the primary
genotype calls from Graphtyper and infer missing geno-
types. Unless stated otherwise, imputed genotypes were
considered for subsequent analyses, because Beagle im-
putation considerably improved the primary genotype
calls particularly in samples that had been sequenced at
low coverage [17].

Variant annotation and evaluation

Functional consequences of 15,722,811 SNPs and 1,580,
878 Indels were predicted according to the Ensembl (re-
lease 91) annotation of the bovine genome assembly
UMD3.1 using the Variant Effect Predictor tool (VEP
v.91.3) [79] with default parameter settings. The impacts
of amino acid substitutions on protein function were pre-
dicted using the sorting intolerant from tolerant (SIFT)
(version 5.2.2) [80] algorithm that has been implemented
in the VEP tool. Variants with SIFT scores less than 0.05
were considered to be likely deleterious to protein func-
tion. In order to assess if known Mendelian trait-
associated variants segregate among 49 sequenced OB cat-
tle, we downloaded genomic coordinates of 155 trait-
associated variants that are curated in the Online Mendel-
ian Inheritance in Animals (OMIA) database [81, 82].

Population genetic analysis

Nucleotide diversity (i) quantifies the average number
of nucleotide differences per site between two DNA se-
quences that originated from the studied population
[83]. We estimated 1 of the OB population over the en-
tire autosomal genome using VCFtools v0.1.15 (in win-
dows of 10 kb) [55].

Detection of runs of homozygosity

Runs of homozygosity were identified using a Hidden
Markov Model (HMM)-based approach implemented in
the BCFtools/RoH software [84, 85]. The recombination
rate was assumed to be constant along the genome at
10"® per base pair (1cM/Mb). For the HMM-based
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detection of ROH, we considered phred-scaled likeli-
hoods (PL) and allele frequencies of 15,722,811 filtered
SNPs before Beagle imputation. Because samples that
are sequenced at low coverage are enriched for ROH
[86], we considered only 33 samples with average se-
quencing coverage greater than 10-fold for the detection
of ROH (Additional file 13). We only considered ROH
longer than 50 kb because they were less likely to con-
tain false-positives (Phred-score >67 in our data, Add-
itional file 13). Genomic inbreeding (Froy) was
calculated for each animal as Froy = XLron/LeenoMEs
where YLroy is the length of all ROH longer than 50 kb
and Lgepnome is the length of the genome covered by
SNPs [87], which is 2,512,054,768 bp in our data.

Further, ROH were classified into short (50—100 kb),
medium (0.1-2 Mb) and long ROH (>2 Mb) reflecting
ancient, historical, and recent inbreeding, respectively
[88]. The contribution of each ROH category to Fron
was calculated for each animal. Average genomic in-
breeding was compared between animals born before
and after 1989 using the two samples t-test.

Detection of signatures of selection

To avoid potential bias arising from extended relation-
ships among the sequenced animals, we did not consider
nine sons from sire-son pairs for the detection of signa-
tures of selection. For the remaining 40 cattle, we con-
sidered genotypes at 9,051,833 SNPs for which the
ancestral allele provided by Rocha et al. [59] was de-
tected in at least two species other than cattle and where
it agreed with either the reference or alternate allele in
our data. Haplotypes were phased using the Eagle2 soft-
ware [89] with default parameter settings and assuming
a constant recombination rate along the chromosome.

Integrated haplotype score (iHS)

To identify signatures of ongoing selection, integrated
haplotype scores (iHS) were calculated for 8,465,912 var-
iants with minor allele frequency (MAF) greater than
0.01 using the R package rehh v.2 [90]. We obtained iHS
that ranged from - 6.6 to 6.4. Subsequently, |iHS| were
averaged for non-overlapping windows of 40 kb over the
whole genome. Windows with either less than 10 SNPs
were removed. To test if variants with similar |iHS|
properties were pooled in 40 kb windows, we followed
the approach of Granka et al. [91]. Specifically, we ran-
domly selected the same number of SNPs that were
pooled in 40 kb windows and calculated the mean vari-
ance of [iHS| in the true and permuted 40 kb windows
for each chromosome. This procedure was repeated for
10,000 randomly selected 40 kb windows. The variance
of |[iHS| in the non-overlapping 40 kb windows (0.24)
was significantly (P <0.01) less than in windows of ran-
domly selected SNPs (0.37) indicating that SNPs that
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were grouped in 40kb windows had [iHS| values that
were more alike than random SNPs.

Composite likelihood ratio (CLR)

Composite likelihood ratio (CLR) tests were carried out
to identify alleles that are either close to fixation or
already reached fixation due to past selection. Following
the recommendation of Huber et al. [92], we removed
118,124 SNPs from the data which were fixed for the an-
cestral alleles because such sites are not informative for
CLR tests. Using a pre-computed empirical allele fre-
quency spectrum of 8,933,709 SNPs for which ancestral
and derived alleles were assigned (see above), we calcu-
lated CLR statistics in non-overlapping 40 kb windows
using SweepFinder2 [93, 94]. A window size of 40kb
was chosen to allow comparison and alignment between
|iHS| and CLR values.

Empirical P values were calculated for CLR and |iHS|
windows [66] and the top 0.5% of windows of each stat-
istic were considered as candidate signatures of selec-
tion. Adjacent top 0.5% windows were merged separately
for each statistic using BEDTools v2.27.1 [95]. For each
merged candidate signature of selection, the lowest P
value among the merged windows was retained.

Characterization of signatures of selection

Genes within candidate signatures of selection were de-
termined based on the Ensembl (release 91) annotation
of the UMD3.1 assembly of the bovine genome. Gene-
set enrichment analysis of genes within candidate signa-
tures of selection was performed using PANTHER v.14.1
[96]. Specifically, we investigated if these genes were
enriched in the functional categories of GO-slim Bio-
logical Process and PANTHER pathways using P < 0.05
as significance level.

To determine the overlap between QTL and candidate
signatures of selection, we downloaded genomic coordi-
nates for 122,893 QTL from the Animal QTL Database
[97, 98]. We classified 85,722 unique QTL that were lo-
cated on the 29 autosomes into six trait categories: ex-
terior, health, milk, meat and carcass, production and
reproduction (Additional file 14). QTL with identical
genomic coordinates in associated trait categories were
considered as one QTL. We used the intersect module
of BEDTools v2.27.1 [95] to identify QTL that over-
lapped with CLR and |iHS| candidate regions for each of
the six trait categories separately. To test if QTL were
enriched in candidate signatures of selection, we used a
permutation test with 10,000 permutations. In each per-
mutation, we randomly sampled the same number of re-
gions of the same size as the candidate signatures of
selection from CLR and |iHS| for each chromosome sep-
arately, and overlapped them with QTL of the respective
trait categories using BEDTools (see above). The number
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of QTL that overlapped permuted regions was used as
the empirical null distribution to calculate P values. P
values less than 0.05 were considered as indicators for a
significant enrichment of QTL in candidate signatures of
selection.
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