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Abstract 

Gut microbiota are required for host nutrition, energy balance, and regulating immune 
homeostasis, however, in some cases, this mutually beneficial relationship becomes twisted 
(dysbiosis), and the gut flora can incite pathological disorders including colon cancer. Microbial 
dysbiosis promotes the release of bacterial genotoxins, metabolites, and causes chronic 
inflammation, which promote oxidative DNA damage. Oxidized DNA base lesions are removed by 
base excision repair (BER), however, the role of this altered function of BER, as well as 
microbiota-mediated genomic instability and colon cancer development, is still poorly understood. 
In this review article, we will discuss how dysbiotic microbiota induce DNA damage, its impact on 
base excision repair capacity, the potential link of host BER gene polymorphism, and the risk of 
dysbiotic microbiota mediated genomic instability and colon cancer. 
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Introduction 
The human gut is a complex consortium of 

trillions of microbes, which contain at least 100 times 
as many genes as the human genome [1]. The 
composition of intestinal microbiota is determined by 
various factors including host genetics [2], 
environment [3, 4], and diet [5]. Dietary habits are 
considered one of the main factors contributing to the 
diversity of human gut microbiota [5]. The main 
functions of the gut microflora include metabolic 
activities that result in the salvage of energy and the 
protection of the host against invasion by pathogenic 
microbes [6]. However, perturbation of the epithelial 
lining and mucous layer of the human intestinal tract 
probably causes alteration of the physiological and 
immunological reactions of the host to promote an 
inflammatory response and genomic instability. 

What determines the colon microbiome’s 
contribution to the pathogenesis of colon cancer? One 
of the challenges in identifying a microbe as the cause 
of a disease is the possibility that the inciting microbe 

is no longer present at the time the disease is 
diagnosed. Because of this change in the 
microenvironment, the inciting microbes may have 
been eliminated or the microbe might have conducted 
a “hit and run” mechanism to trigger the disease. 
Previously published work from Sears, et al, proposed 
three different models to show how microbes provoke 
colon cancer. The first model represents a specific 
group of microbes that possess sufficient virulence 
mechanisms that may induce disease. The second 
model requires a host genetic factor that permits the 
virulence of a single microbe to initiate the disease. 
The third model requires a microbial community or 
two, acting sequentially and/or in synergy, that 
causes dysbiosis and influences colon carcinogenesis 
[7]. All three models could provoke chronic 
inflammation. Chronic inflammation may promote 
the release of reactive oxygen and nitrogen species 
(RONs) that are thought to damage DNA. The cellular 
consequences of DNA oxidation by RONs can lead to 
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a number of different types of damage such as 
generation of 7, 8-hydroxy-2’-deoxyguanosine 
(8-Oxod-G), thymine glycol (Tg), abasic sites (AP), 
and oxidized deoxyribose sugars which lead to single 
and double strand DNA breaks (SSBs and DSBs) [8], 
crosslinking of DNA, and mutation [9-13]. These 
kinds of DNA damage can be repaired by a variety of 
DNA repair mechanisms including base excision 
repair (BER) [14-16]. BER repair systems are thought 
to play a significant role in survival and adaptation of 
microbiota, repair of microbiota, or bacterial pathogen 
induced DNA damage [17]. BER is the major repair 
pathway of DNA damage induced by RONs and is 
critical for maintaining genome stability during 
chronic inflammation and/or bacterial infection [18]. 
Aberrant function of BER significantly increases 
chronic inflammation to trigger genomic instability 
and colon cancer [18, 19]. BER is initiated by DNA 
glycosylases that recognize and cleave the microbiota 
mediated base lesions: including the removal of 
8-Oxo-G paired with C which involves the 
bifunctional DNA glycosylase OGG1 [20-22], MUTYH 
that removes adnine mispaired with 8-oxoG lesions, 
and TDG that removes thymine glycol paired with G 
that eventually creates abasic (AP) sites [23] which are 
cytotoxic and mutagenic [24-26] and further 
processed by DNA glycosylase with AP-lyase activity 
or by APE-1 [27]. The single-nucleotide gap is filled by 
DNA polymerase beta (Pol β) and the nick is sealed by 
DNA ligase to complete the repair [27].  

Microbiota dynamics and oxidative DNA 
damage  

The healthy human gastrointestinal tract is 
dominated by obligate anaerobic bacteria, the 
Firmicutes, Bacteroidetes (Bacteroides, Bifidobacterium, 
Eubacterium, Clostridium, Peptococcus, Peptostrepto-
coccus, and Ruminococcus) and Actinobacteria. 
However, during microbiota dysbiosis, there is an 
increase in facultative anaerobic bacteria (Escherichia, 
Enterobacter, Enterococcus, Klebsiella, Lactobacillus, and 
Proteus) which are prone to induce inflammatory 
processes [28]. Moreover, some of the bacteria 
including enterotoxigenic B. fragilis [29], Fusobacterium 
nucleatum [30, 31], and colibactin-producing E. coli [32, 
33] promote intestinal carcinogenesis. The possible 
mechanism of DNA damage induced by dysbiotic 
microbiota may be explained in four different ways. 
The first potential mechanism is involved when the 
dysbiotic microbiota release mitogen that possesses 
the capacity to enter into the cell and induce the 
expression of enzymes that enhance RONs, which 
causes DNA damage. The second mechanism will 
likely occur when the dysbiotic microbiota provoke 
chronic inflammation to initiate DNA damage and 

cellular transformation [34-36]. In this case, dysbiotic 
microbiota induce a constant influx of antigens, such 
as bacterial cell components, to stimulate host 
pathogen recognition receptors, provoking chronic 
inflammation [37, 38]. For example, Fusobacterium 
nucleatum increases tumor multiplicity by the 
infiltration of immune cells and NF-κB activation that 
potentiate intestinal tumorigenesis [30]. With the third 
mechanism, the dysbiotic microbiota directly releases 
RONs in the gastrointestinal tracts to induce DNA 
damage and BER intermediates in the gut [18]. The 
wide spectrum of DNA damage including single and 
double strand breaks, abasic sites, nucleotide 
modification, and an increase in mutations which 
activate oncogenes or suppress tumor-suppressor 
genes [39] can accelerate genomic instability and 
result in colon cancer [40-43] (Figure 1). Finally, the 
dysbiotic microbiota release specific toxins that have 
the capacity to directly induce DNA damage and 
modulate tumorigenesis. For example, bacterial toxins 
such as cytolethal distending toxin (CDT), cytotoxic 
necrotizing factor 1, B. fragilis toxin, and colibactin 
induce DNA double strand breaks that are implicated 
in genomic instability and tumorigenesis [32, 44-46]. 
Few studies have suggested that bacterial toxins that 
are released from many gram-negative bacteria, such 
as Escherichia coli, Shigella dysenteriae, Actinobacillus 
actinomycetemcomitans, Campylobacter spp., Helicobacter 
spp., Salmonella typhi, and H. ducreyi, cause DNA 
damage, cell cycle arrest, and/or apoptosis [47-50]. 
However, the mechanism of how microbial toxins 
induce base excision repair intermediate and its effect 
on base excision repair capacity is not yet clearly 
understood. 

Base excision repair dynamics and 
microbiota 

 Base excision repair systems play a significant 
role in maintaining the genomic integrity of the host 
cells. BER removes base damage via a number of 
coordinated sequential reactions that detect and 
process the damaged base [51]. Modulation of the 
levels of individual BER enzymes leads to altered 
phenotypes in mouse model [52]. Evidence from 
several laboratories indicates that BER imbalances are 
detrimental [53, 54]. Dysbiotic microbiota may allow 
the accumulation of unrepaired DNA breaks and BER 
intermediates that can lead to genomic instability and 
carcinogenesis. The aberrant function of BER 
decreases the tumor latency in host carriers of 
dysbiotic microbiota. The dysbiotic microbiota may 
induce different types of DNA base lesions that are 
likely recognized and removed by different types of 
DNA glycosylases. Mammalian cells contain 11 
different glycosylases each with a specialized function 
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[55]. DNA glycosylase initiates the BER process by 
removing the modified base, which generates an 
apurinic/apyrimidinic site. If the microbiota induces 
base damage recognized by bi-functional glycosylases 
that have an associated apurinic/apyrimidinic lyase 
activity, this further catalyzes the cleavage of the 
sugar-phosphate chain and the excision of the abasic 
residue leaving a single nucleotide gap. This gap is 
filled by DNA polymerase beta (Pol β) and the nick is 
sealed by the DNA ligase III/x-ray repair 
cross-complementing group 1 (XRCC1) complex. In 
contrast, if microbiota induces base damage and is 
recognized by monofunctional DNA glycosylases that 
lack lyase activity which leaves the phosphodiester 
bond at the 5′ side of the intact apurinic/apyrimidinic 
site, this will be incised by apurinic/apyrimidinic 
endonuclease (APE1/APEX1). Finally, Pol β, DNA 
ligase III, and XRCC1 will complete the repair 
process.  

Does base excision repair polymorphism 
increase the risk of microbiota induced 
colon cancer? 

 Host genetics play an important role in the 
establishment and shaping of the gut microbiota [3]. 
Genetic association studies on cancer risk have 
focused on identifying the functional effects of single 
nucleotide polymorphisms (SNP) in candidate genes. 
Sequence variants in DNA repair genes are thought to 
modulate DNA repair capacity and consequently are 
suggested to be associated with an altered cancer risk 
[56]. Several genetic epidemiological studies have 
linked SNP variant in BER genes to human cancer 
[57]. However, the link between dysbiotic microbiota 
and SNP variant of BER genes that cause the loss of 
biological function has not yet been clearly 
documented. Several studies show that the impaired 
function of BER gives rise to genomic instability and 

cellular transformation [58]. 
Polymorphisms in BER genes 
could affect the accumulation of 
DNA lesions in colorectal 
mucosa, thus influencing colon 
cancer risk [59]. BER genes are 
the most common and 
well-studied [60], though some 
of the associations of BER gene 
polymorphisms and colon 
cancer risk have been 
inconsistent [61-63]. However, 
the characterization of dysbiotic 
microbiota as a risk factor to 
induce DNA damage for those 
who carry BER polymorphism 
has yet to be studied. The altered 
function of microbiota likely 
leads to a different type of DNA 
base damage that causes a 
substrate for different types of 
DNA glycosylase. The biological 
significance of genetic 
polymorphism of DNA 
glycosylases, APE1 and DNA 
polymerase beta, that are 
involved in colon cancer (Table 
1) and its impact on dysbiotic 
microbiota are discussed below. 
However, the biological 
significance of BER SNPs variant 
and its impact on 
gastrointestinal tract microbiota 
dynamics in promoting the risk 
of colon cancer have not yet 
been understood.  

 
 Figure 1. Possible mechanism of gut microbial impact on genomic instability and Cancer : Many factors 
including antibiotic use, psychological and physical stress, radiation, and dietary changes can change beneficial members 
of the gastrointestinal flora (symbiont) and cause disequilibrium of the normal function of (microbiota dysbiosis). The 
altered bacterial community (pathobiont) in gastrointestinal tract likely release bacterial toxin and /mitogen /bacterial 
metabolite directly to induce reactive oxygen and nitrogen species (RONs) or indirectly induce chronic inflammation 
that could result in base damage (represented as red circle). The base damage could be removed by 
OGG1/MUTYH/TDG/AAG/NEIL1, 2,3, resulting in the formation of AP sites (represented by blue cross mark). AP sites 
are clustered in close proximity on the opposite strands of the DNA, and processed with AP lyase activity that cleaves 
the 3’ side of AP sites [22] or with APE1 that cleaves the phosphate backbone and generate DSBs that eventually leads 
to genomic instability and cancer. Furthermore, if DSBs repaired by non-homologous end joining likely trigger genomic 
instability, cellular transformation and cancer. 
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Table 1. Single nucleotide polymorphisms likely a target risk for microbiota dysbiosis to initiate colon cancer. Germline 
variants of base excision repair enzymes, which are found in specific populations that are susceptible to colon cancer. 

Gene SNPID Polymorphism Amino Acid Change Population susceptible to CRC References 
TDG rs3829300 A:G Intron Asian [123] 
TDG rs3751209 G:A Intron European [123] 
TDG rs2888805 G:A V367M Caucasian [123] 
MBD4 rs140693 C:T E346K East Asian, Korean  [78] 
MGMT rs2308321 A:G  I143V N. America, European http://browser.1000genomes.org 

 MGMT rs2308327 G:A K178R N. America 
MGMT rs12917 C:T  L84F N. America 
MGMT rs2308318 G:A G160R Japanese  
NEIL1      
 

 rs5745909  C:T intron European http://www.1000genomes.org.  
[124] 

NEIL2 rs8191683 delCA  Intron  European, African http://www.ncbi.nlm.nih.gov/snp  
http://browser.1000genomes.org NEIL2 rs8191664 A:G R257L East Asian, European 

AAG rs2259275 C:G Intron European, East Asian http://www.ncbi.nlm.nih.gov/snp.  
[93] 
 

AAG rs2308312 G:A R141Q European  
AAG rs2308313 C:T R120C East Asian 
OGG1 rs1052133 C:G S326C Asian, Caucasian [61]  
MUTYH rs3219489 C:G Q324H African American, European [150] 
MUTYH rs36053993 C:T G382D American, European [107, 108] 
MUTYH rs34612342 G:A Y165C Peruvian [107, 108] 
MUTYH rs34612342 G:A  Y179C Peruvian http://www.LOVD.nl/MUTYH.  
MUTYH rs36053993 G:A  G396D European, Australia, N. America  [105] 
APEX1 rs1760944 T:G D148E Turkish, Polish [151] 
POLB rs12678588 A:G R137Q Asians& North Americans [144] 
POLB rs313679 C:G P242R Europeans, Asians  [144] 

 
TDG: Thymine DNA glycosylase (TDG) is a 

monofunctional DNA glycosylase and preferentially 
catalyzes the removal of thymine and uracil paired 
with guanine, and is also active on 5-fluorouracil 
(5-FU) paired with adenine or guanine [64, 65]. TDG 
also interacts with activation-induced deaminase and 
works with 5-methylcytosine hydroxylases TETs 
(ten-eleven translocation) to regulate active DNA 
demethylation [66, 67]. In addition, TDG interacts 
with transcription factors [68] and plays essential 
roles in epigenetic regulation [69]. In the human 
genome a heterozygous mutation in the TDG gene 
was identified in a rectal cancer patient [70, 71] 
suggesting that TDG may function as a tumor 
suppressor. The rs4135113 SNP variant of TDG, where 
G is mutated to A at position 818, has a minor allele 
frequency of approximately 10%; it is most commonly 
found in African and East Asian populations and is 
usually heterozygous [72]. Even though there is not 
any scientific evidence, it is possible to predict that the 
bacterial metabolites and toxins that are produced 
from gut microbiota in African and East Asian 
populations may induce base damage that causes 
more G/T mismatched pairs that increase 
mutagenesis in this rs4135113 SNP variant carrier 
population which contributes to the initiation of 
carcinogenesis.  

MBD4: A methyl-CpG-binding DNA 
glycosylase (MBD4) is involved in the repair of 
mismatches arising from deamination of methyl-C in 
mammalian cells. In vitro experiments have shown 
that MBD4 excises mismatched thymine (T) bases 

from oligo templates [73, 74]. In addition, the 
mutation frequency at methyl-CpG sites is 
significantly increased in MDB4 knockout mouse [75] 
and shows reduced apoptosis in response to DNA 
damage [76]. Absence of MBD4 in mice also increases 
tumorigenicity in the tumor-susceptible 
APCMin/+ background [75]. The tumorigenic effect 
may be due to an increase in mutation frequency, 
decreased apoptosis, or a combination of both. 
Previous studies have suggested that gut microbiota 
derived antigens promote inflammation that may 
cause intestinal epithelial disruption and activate 
signaling pathways to enhance intestinal tumor load 
in the APCMin/+ mouse model of colon cancer [77]. 
However, the mechanism of how dysbiotic microbiota 
induce genomic instability and carcinogenesis in 
MBD4/APCMin/+ compound mutant as well was how 
dysbiotic microbiota impact those who carry the 
MBD4 SNP variant is still unclear and would be an 
interesting scientific question to explore in the future. 
For example, a single nucleotide polymorphism in the 
MBD4 gene (rs140693) has been associated with 
increased risk of colorectal cancer in Korean 
populations [78]. This polymorphism results in an 
amino acid change from Glutamine to Lysine at 
position 346 driving microsatellite instability [78]. 
However, whether the altered function of gut 
microbiota contributes for early onset genomic 
instability and cancer in this population that carries 
MBD4 SNP variants remains unknown. Thus, we 
have hypothesized that microbiota dysbiosis and 
MBD4 genetic polymorphism may decrease tumor 
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latency and promote an early onset of colon cancers. 
MGMT: The DNA repair gene O6- 

methylguanine-DNA methyltransferase (MGMT) is 
responsible of the elimination of alkyl groups from 
the O6-position of guanine and the O4-position of 
thymine. Altered function of MGMT may be involved 
in early steps of colorectal tumorigenesis through an 
increase of the mutational rate particularly with 
G-to-A point mutations of KRAS gene [79, 80]. 
Moreover, epigenetic silencing of MGMT during 
colon tumorigenesis is associated with 
hypermethylation of the CpG island in its promoter 
[81]. This transcriptional gene silencing is responsible 
for diminished DNA-repair of O6-alkylguanine 
adducts with the consequence of enhancing 
chemosensitivity to alkylating agents in particular 
temozolomide [82]. For colon cancer, 
the MGMT Ile143Val polymorphism may confer an 
increased or decreased risk depending on dietary 
exposure [83]. Individuals who carry this variant 
genotype have a higher risk for colon cancer with a 
higher intake of red or processed meat. However, 
whether this dietary exposure alters the function of 
microbiota to increase the risk of inflammation or 
metabolite product in a host that carries MGMT 
genetic polymorphism remains unknown. For 
example, L84F variant is found in up to 20% of the 
worldwide population and rescue MGMT-deficient 
cells in survival assays with alkylating drugs [84, 85]. 
However, L84F is not inactivated by O6BG treatment 
[86, 87] suggesting that the active site cysteine is not 
affected by O6-BG. In contrast, G160R is a rare variant 
found in Japanese populations and cannot fully 
rescue MGMT-deficient cells treated with an 
alkylating agent and resistant to O6BG [88].  

AAG: The Alkyladenine DNA glycosylase 
(AAG) has a wide substrate specificity excising 
numerous structurally diverse lesions, some of which 
exert a mild effect (7-methylguanine), while others 
can be replication blocking and cytotoxic 
(3-methyladenine) [89]. The absence of AAG results in 
unrepaired alkylated DNA bases that block DNA 
replication, thus increasing cytotoxicity, and etheno 
adducts levels in the colon’s DNA [18]. In addition, 
inflamed colon tissue from ulcerative colitis patients 
have increased levels of AAG compared with 
un-inflamed tissue and is presumably induced to 
repair the DNA base damage that is inflicted by RONs 
during the inflammatory response [18]. It would be 
interesting to compare the microbiota dynamics 
altered in the gastrointestinal tract of AAG deficient 
mice to see if this promotes genomic instability 
and/or chronic inflammation. Western diet has been 
implicated to induce inflammatory immune response 
through multiple mechanisms and subsequently lead 

to colon cancer. Western diet has been proven to 
perturb the gut microbial population and increase 
colonic permeability to microbial products such as 
lipopolysaccharides (LPS), which promotes chronic 
inflammation in the colon [90, 91]. Repeated cycles of 
Dextran Sulfate Sodium feeding to animal models is 
an accepted mode of inciting chronic inflammation 
mimicking consumption of western diet. Previous 
studies have shown that AAG deficient mouse are 
more prone to DSS induced colitis upon co-treatment 
with azoxymethane (AOM) than wild type 
counterpart [18]. In addition, the AAG deficient mice 
displayed enhanced tumor multiplicity and 
development. In contrast, overexpression of AAG 
promotes microsatellite instability and colon cancer 
risk [92]. In addition, SNPs variant R141Q and R120C 
enhance non-specific binding of DNA that may 
promote genomic instability and cancer [93]. 
Therefore, the delicate balance of AAG and healthy 
diets are critical to maintain genomic integrity and 
prevent colon cancer.  

OGG1: Human Oxoguanine Glycosylase 1 
(OGG1) is a member of BER repair protein that is 
involved in the removal of a specific oxidative DNA 
damaged base 8-oxo-G. Previous studies reported that 
the inflammatory response in Ogg1–/– mice is lower 
than that of wild type mice and suggested that OGG1 
is an inflammatory/immune system modulator 
[94]. Therefore, deficiency of OGG1 promotes a 
protective role against inflammatory lesions [95] and 
reduces the level of BER intermediates (AP sites) that 
are generated during bacterial infection [17]. Some of 
the mechanisms concerning how the lack of OGG1 
protects the cells from inflammation or reduces BER 
intermediate mediated responses may be correlated 
with an inhibition of the T helper 1 type (Th1) 
response. This is known to promote inflammation, 
bacterial load, and epithelial cell damage [95]. 
Microbiota dysbiosis may induce inflammation that 
potentially causes 8-oxo-G lesions. Intriguing recent 
studies have shown that OGG1 binds the 8-oxoG base 
with a high affinity resulting in immune response [96, 
97]. If the host is devoid of functional OGG1, then 
cells probably accumulate 8-oxoG or other BER 
intermediates to induce genomic instability and 
cancer. In contrast, OGG1 deficient mice that are 
protected from this inflammatory response [94] may 
suggest that the loss of OGG1 function does not cause 
immunological disequilibrium incited by microbiota 
dysbiosis. However, OGG deficient mice treated with 
DSS significantly increased adenocarcinoma 
development in the colon with a high incidence of 
tumor [19]. Furthermore, several reports have been 
published regarding the association of OGG1 SNP 
variant rs1052133 polymorphism and cancer [98, 99]. 



 Journal of Cancer 2016, Vol. 7 

 
http://www.jcancer.org 

1426 

Some epidemiological studies have indicated that this 
particular polymorphism poses a greater risk for 
colon cancer in the Caucasian and Asian population 
[99]. The amino acid change accompanying this single 
nucleotide polymorphism occurs at position 326 from 
Serine to Cytosine and has impaired glycosylase 
activity [100, 101]. The oxidative stress caused by 
inflammatory cytokines such as TNF-α induces 
8-oxoG and inactivate S326C variant of OGG1 
increases the risk of cancer among homozygous 
individuals [102].  

MUTYH: The MUTYH protein is a BER 
glycosylase involved in repair by excising adenine 
opposite 8-oxoguanine and 2-hydroxyadenine 
opposite guanine, thereby preventing G: C to T: A 
transversion caused by oxidative stress. The MUTYH 
protein directly interacts with various proteins 
involved in other DNA repair pathways [103, 104]. 
Several different mutations, mainly missense 
mutations, have been found. The two most common 
mutations in Western populations are Y179C and 
G396D, with probable different effects on MUTYH 
glycosylase function [105]. Interestingly, MUTYH was 
expressed at higher levels in the normal colon, and are 
directly involved in oxidative DNA damage repair. 
An increased susceptibility to spontaneous 
carcinogenesis in the intestine was observed in 
MUTYH-null mice [106]. Loss of MUTYH function 
may result in an increase of mutations in oncogenes or 
tumor suppressor genes due to the accumulation of 
8-oxoG and this could promote tumorigenesis. 
Moreover, germline variant of MUTYH increases the 
susceptibility of European populations to multiple 
adenomas or polyposis [107]. For example, Y165C and 
G382D are the most common variants of the MUTYH 
variant [107, 108]. Both of these MUTYH residues 
have important roles in the recognition of 8-oxoG in 
A:8-oxoG mispairs [109-111]. In addition, other 
variants such as Y179C and G396D lost the ability of 
substrate recognition [112] and suggested that those 
germline variants may result in an increase of 
mutation on oncogene or tumor suppressor genes to 
initiate genomic instability and carcinogenesis. Thus, 
microbiota dysbiosis may increase the number of 
oxidative DNA damage (8-oxoG) that likely increase 
mutation to induce genomic instability colon cancer.  

NEIL 1,2,3: The DNA endonuclease eight-like 
(NEIL) glycosylases have broader substrate specificity 
and are associated with the repair of different types of 
base lesions. NEIL1 repair pyrimidine lesions such as 
Tg and 5-hydroxyuracil (5-OHU) in duplex DNA 
[113] and single stranded and bubble DNA structures 
[114]. Both NEIL2 and NEIL3 prefer oxidized 
pyrimidine and some purine damages in single 
stranded DNA [114, 115]. NEIL1 is involved in 

removing lesions that block replication forks before 
they are encountered by the replicative DNA 
polymerases [116] while NEIL2 appears to function 
during transcription-coupled repair [114, 117]. NEIL3, 
which is expressed at higher levels in the normal 
colon, is directly involved in oxidative stress repair 
and removes lesions from quadruplex DNA [118] and 
further oxidation products, specifically 
guanidinohydantoin (Gh) and spiroiminodihydantoin 
(Sp) substrates [115, 119, 120]. Furthermore, Neil3 is 
highly expressed in embryonic stem cells as well as 
pluripotent cells in the brain [121] and human cancer 
cells [122]. Genome wide association study has shown 
that NEIL1, 2, 3 are often found to carry mutations 
and are prevalent in different types of cancers. A 
specific germline variant of NEIL1, rs5745908, has 
been noted to contribute to the development of colon 
cancer in European populations [123] (Table 1). In 
addition, biochemical characterization of the G83D 
germline variant of NEIL1 revealed less glycosylase 
activity [124] that may contribute to the accumulation 
of an oxidative damaged base. Similarly, SNP variants 
of Neil 2 (rs8191683 and rs8191664) result in 
nucleotide changes: A: G and G: T respectively [123] 
and also contribute to familial colon cancers (Table 1). 
However, the functional impact of the SNP variant of 
NEIL3 has not yet been studied. In addition, 
microbiota dysbiosis mediated DNA damage and 
DNA repair capacities of NEIL1, 2, 3 SNP variants 
remain unknown. 

APE1: Apurinic endonuclease I (APE1) is the key 
enzyme responsible for the removal of the 
apurinic/apyrmidinic sites created at the regions of 
single base DNA damage and subsequent generation 
of the 3’-OH termini [125]. In addition to its role in 
DNA repair, APE1 also functions as a 
reduction/oxidation (redox) factor in mammalian 
cells maintaining transcription factors (TFs) in an 
active reduced state, thus stimulating the DNA 
binding capacity of several TFs such as AP-1 
(activator protein-1-fos/Jun), NFκB (nuclear 
factor-κB), HIF-1α (hypoxia-inducible factor 1-α), 
TP53, and others [126, 127]. Furthermore, high 
expression levels of APE1 enhance cellular resistance 
to chemotherapeutic agents in several tumor cells 
[128-130] as well as regulating inflammatory response 
[131]. It is possible that the dysbiotic microbiota 
enhance the level of APE1 to provoke redox role or 
DNA repair activity similar to pathogenic bacteria 
induced APE1 activity [132]. Even though genetic 
polymorphism of APE1 is not detected at the active 
site of endonuclease or the site required for 
acetylation that impairs redox function or DNA repair 
activity respectively, some reports have suggested 
that APE1 Asp148Glu polymorphism is associated 
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with an increased risk of colorectal cancer in Turkish 
and Polish populations [133, 134]. The mutation of an 
aspartate residue to a glutamate residue potentially 
affects the stability of the protein structure and thus 
could affect the functionality of the enzyme in BER 
[135] (Table 1).  

DNA polymerase beta: Pol β is a key enzyme 
during BER of oxidative DNA lesions. A number of 
studies suggest that approximately 30% of human 
tumors characterized to date express Pol β variant 
proteins [136]. Excision of damaged bases by DNA 
glycosylases generates a single nucleotide gap and a 
5’-dRP group. The 8 kDa dRP lyase domain of Pol β 
functions in removing the 5’-dRP group and Pol β 
then fills in the gap. The regulation of cellular Pol β 
protein levels is vital as haploinsufficiency resulting 
in reduced BER capacity has increased susceptibility 
to cancer [137]. Furthermore, increased expression of 
Pol β also leads to increased spontaneous mutagenesis 
in mammalian cells [138], and points to evidence that 
tumor cell lines manifest increased Pol β expression 
[139, 140]. DNA polymerase variant that is found in 
colon cancer likely has slow polymerase activity or 
high infidelity in selection of the correct nucleotide 
[141, 142]. Two germline SNPs of the POLB gene 
(rs12678588 and rs3136797) have been previously 
identified and the variant alleles have been shown to 
be present in specific populations [143, 144]. The 
rs12678588 SNP results in a nonsynonymous amino 
acid substitution of glutamine for arginine at residue 
137 (R137Q). Arg137 is methylated by the protein 
arginine N-methyltransferase 1 (PRMT1), leading to a 
reduction in proliferating cell nuclear antigen (PCNA) 
binding [145]. R137Q is a slow polymerase with 
decreased BER activity in cell extracts, and cells 
expressing this variant have increased formation of 
AP sites following methyl methanesulfonate (MMS) 
exposure [146]. However, the P242R variant of Pol β 
induces genomic instability and cellular 
transformation [144]. 

Does chemoprevention strategy of colon 
cancer reduce DNA base damage? 

The pros and cons of the colonic microbiota may 
be a promising target for the development of a colon 
cancer therapeutic [147]. Using probiotics to modulate 
the altered function of microbiota or scavenge 
bacterial metabolites may prevent inflammation 
induced genomic instability and cancer. In addition, 
designing the strategy to increase beneficial 
gastrointestinal microbiota, stimulates innate and 
adaptive immunity likely critical for future 
chemoprevention approaches in colon cancer [148]. 
These strategies may be successful if probiotics 
include the host genetic and environmental factors. 

Alternatively, few studies have demonstrated that 
suppression of the inflammatory response by BER 
inhibitors likely promotes genomic integrity and/or 
delays the onset of cancer initiation [149]. Therefore, 
using BER inhibitor (such as PARP1 inhibitor) may 
possibly be an attractive target to suppress DNA 
damage response and excessive inflammation, acting 
potentially as a preventative agent for genomic 
instability and carcinogenesis. Therefore, the future 
focus will likely target inflammatory response and 
BER intermediates generated from the crosstalk 
between host base excision repair and the microbiota 
dynamics which will help to enable development and 
a more rigorous testing of probiotics as more natural 
and less disruptive treatments to prevent colon 
cancer. 

Concluding remarks 
The significance of many recent observations still 

needs to be established. For instance, many factors can 
contribute to microbiota dysbiosis, including host 
genetics, lifestyle, and exposure to microorganisms. 
Microbiota dysibiosis has the potential to cause 
immunological disequilibrium response that exert 
chronic inflammation or release RONs directly to 
initiate the accumulation of BER intermediates [17]. 
The normal function of BER is critical for the 
maintenance of genomic integrity and likely 
influences the response of the host to microbiota 
dysbiosis. In contrast, loss of BER function leads to 
accumulation of BER intermediates and inflammation 
in the intestine [18]. During the last few years, 
remarkable progress has been made in our 
understanding of the molecular mechanism of BER 
role in colon cancer. Nevertheless, many questions 
about the missing link of microbiota dysbiosis and 
genetic polymorphism of BER gene remain 
unanswered. Does microbiota dysbiosis first induce 
immunological disequilibrium or genomic instability 
in host gastrointestinal track to drive cancer? Does 
microbiota dysbiosis decrease tumor latency for those 
who are the carriers of the genotype of BER germline 
variant? The future will uncover how microbiota 
dysbiosis manipulates the hosts’ genetics, and the 
quest for answers to these questions will occupy the 
field for years to come.  
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