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Abstract: Despite the tremendous success, pitfalls have been observed in every step of a clinical
metabolomics workflow, which impedes the internal validity of the study. Furthermore, the demand
for logistics, instrumentations, and computational resources for metabolic phenotyping studies
has far exceeded our expectations. In this conceptual review, we will cover inclusive barriers of a
metabolomics-based clinical study and suggest potential solutions in the hope of enhancing study
robustness, usability, and transferability. The importance of quality assurance and quality control
procedures is discussed, followed by a practical rule containing five phases, including two additional
“pre-pre-” and “post-post-” analytical steps. Besides, we will elucidate the potential involvement of
machine learning and demonstrate that the need for automated data mining algorithms to improve the
quality of future research is undeniable. Consequently, we propose a comprehensive metabolomics
framework, along with an appropriate checklist refined from current guidelines and our previously
published assessment, in the attempt to accurately translate achievements in metabolomics into
clinical and epidemiological research. Furthermore, the integration of multifaceted multi-omics
approaches with metabolomics as the pillar member is in urgent need. When combining with other
social or nutritional factors, we can gather complete omics profiles for a particular disease. Our
discussion reflects the current obstacles and potential solutions toward the progressing trend of
utilizing metabolomics in clinical research to create the next-generation healthcare system.

Keywords: adaptive metabolomics; lipidomics; multi-omics; precision medicine; systems biology;
machine learning

1. Introduction

Metabolomics offers a pragmatic and robust framework for the comprehensive measurement
and identification of the endogenous and exogenous low-molecular-weight metabolites in biological
systems [1]. Together with other omics platforms, e.g., genomics and proteomics, metabolomics
offers a systematic assessment of the interactions between genetic variations, central metabolism, and
environmental exposures to explain the initiation and progression of a disease [2]. It is understood
that the causation in systems biology should determine how and why a process occurs in a certain way
rather than identify separate molecular components [3]. In this regard, measuring and modeling the
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metabolome can shed light on the pathophysiological mechanisms and provide an essential piece of
information for precision medicine.

In clinical medicine and epidemiology, together with the development of machine learning and
artificial intelligence, omics analyses empower systems biology-based methods for precision health
monitoring and treatment [4]. Typical applications of omics technologies in precision medicine encompass
the assessment of biomarker panel to estimate disease risk, diagnose disease, quantify progression, and
optimize treatment strategies [5]. Even so, the achievements of metabolomics in large-scale research
are somewhat limited [6–10]. Up to the present time, a significant part of the metabolomics-based
epidemiological and clinical studies is cross-sectional or non-prospective case-control, which compares
the metabolic phenotypes of participants by disease or exposure status [11,12]. These study designs
are intricate in establishing the temporal precedence and based on prevalent rather than incident
cases; thus, they are rather the preliminary step of the process of diagnostic biomarker discovery.
The majority of diagnostic biomarker discovery studies are conducted with the lack of external validation,
leading to the high false-positive rates and insufficient data on the predictive value of biomarkers in
pre-diagnostic samples [13]. The commonly applied strategies of metabolomics biomarkers in clinical and
epidemiological studies are not adequate to provide sufficient predictive evidence to be clinically useful,
as observed in the study aiming at identifying biomarkers for early pancreatic cancer diagnosis [14].
Other clinical fields, such as obstetrics, are also in urgent need of large-scale studies using a well-defined
sampling strategy to determine predictive biomarkers for preterm birth given the current heterogeneity
in methodologies and identification methods across different studies [15].

The Consortium of Metabolomics Studies has discussed experience gained from current
epidemiological metabolomics studies worldwide and suggested guidelines concerning important
aspects of a large-scale metabolomics study [16]. A recently published review from the Consortium
of Metabolomics Studies Statistics Working Group delineated a framework involving study and
bio-sampling design for studies that integrate metabolomics with other omics data as well as
considerations on multi-omics data processing techniques at the population level [17]. Extending
the boundaries of these perspectives, our review will cover all-inclusive barriers in a metabolomics
study at the clinical and epidemiological scale, primarily focusing on mass spectrometry (MS)-based
approaches. We will investigate analytical and computational challenges, thus proving the need for the
establishment of a standardized biobank, quality assurance (QA) and quality control (QC) standards,
the establishment of an automated system for sample handling and data acquisition, standards for
metabolite and lipid identification, as well as the usability of machine learning. We will provide
several discussions on fundamental requirements on standards for reporting metabolomics studies
at the clinical and epidemiological scale. Significantly, automated systems of machine learning and
artificial intelligence platforms are predicted to be developed soon and integrated into various steps
of a metabolomics study [18]. Machine learning methods such as random forests and deep neural
networks, which are reliable in prediction, have a “black box” nature, causing a substantial debate,
the so-called “cascade of black box data manipulations, processing, and analyses” in omics research.
The trade-off between model accuracy and interpretability can be regarded as an emerging crisis in the
field. Collectively, we propose a comprehensive and adaptive multi-omics workflow demonstrating the
indispensable position of metabolomics in the omics universe along with a proper reporting guideline.
This practice, if deeply implemented, may potentially extend the translation of omics science into
clinical settings for the next-generation healthcare system. Additionally, we have tried to raise current
concerns that are open for active discussion throughout the paper.

2. Representative Achievements of Metabolomics in Public Health and Clinical Research

Following emerging instrumental and logistics technologies, analytical methods, and computational
tools, research on the application of hydrophilic and lipophilic metabolite biomarkers in epidemiological
studies has been increasing over the last decade, particularly on cancer, cardiovascular diseases, and
diabetes, but it is still relatively sparse compared with other omics approaches [8]. MS is the primary
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analytical method on which the emerging omics fields such as proteomics and metabolomics are based.
Owing to its potential as a multi-platform analytical method and its diverse applicability from diagnosis
and prognosis to the discovery of novel biomarkers for targeted therapies, MS has been routinely
applied in omics studies, especially cancer and metabolism-related omics research, for a better insight
into human diseases [19–26]. Table 1 displays the main findings of some major studies among the initial
achievements of the field.

Table 1. Recent representative achievements of metabolomics in public health and clinical research.

Country Year
Metabolomics/

Lipidomics/
Multi-omics

Clinical
Field Platform Main Conclusions References

The United
Kingdom 2011 Steroidomics Cancer GC-MS

This study combined population-based steroidomics research
with machine learning analysis, aiming at identifying urine
steroid biomarkers for differentiating adrenocortical
carcinoma from benign adenoma.

Arlt
et al. [27]

The United
States 2011 Metabolomics Diabetes LC-MS

A large nested group of 2422 normoglycemic subjects in the
Framingham Offspring Study was followed for 12 years to
help identify a panel of three amino acids (isoleucine,
phenylalanine, and tyrosine) which might serve as novel
predictors for future diabetes.

Wang
et al. [28]

The
Netherlands 2015 Steroidomics Cancer GC-MS

Urinary steroid signatures were established for the
discrimination of adrenal cortical carcinoma from other
adrenal conditions.

Kerkhofs
et al. [29]

The United
Kingdom 2015 Metabolomics Physiological

state
GC-MS and

LC-MS

The Husermet project has applied untargeted MS to
investigate the comprehensive hydrophilic and lipophilic
metabolome of serum biospecimen obtained from the
phenotyping of 1200 healthy subjects.

Dunn
et al. [30]

The United
States 2015 Steroidomics Cancer LC-MS

The novel LC-MS/MS assay used in this study enabled the
examination of all estrogen metabolites for epidemiological
and clinical research on hormone-related diseases.

Ziegler
et al. [31]

Multinational 2018 Multi-omics Diabetes N/A
The Environmental Determinants of Diabetes in the Young
(TEDDY) study followed more than 12,000 children to
explore metabolic pathways related to type 1 diabetes.

Rewers
et al. [32]

Multinational 2018 Multi-omics Obesity NMR
and LC-MS

Along with fecal metagenomes, plasma and urine
metabolome revealed molecular pathways uniting the gut
microbiome and the human phenome to hepatic steatosis in
two cohorts of non-diabetic obese women in the
FLORINASH consortium.

Hoyles
et al. [33]

Japan 2018 Metabolomics Physiological
state

CE-MS
(and LC-MS)

The Tsuruoka large-scale cohort study has gathered plasma
metabolomics data from more than 10,000 individuals as an
innovative model for preventive medicine.

Harada
et al. [34]

Multinational 2019 Metabolomics
Long-term
mortality

risk
NMR

From the metabolic profile of 44,168 individuals, 14
biomarkers have been associated with all-cause mortality.
The combination of this set of metabolite predictors and sex
considerably improves mortality risk prediction compared to
traditional risk factors such as age, body mass index, systolic
blood pressure, or total cholesterol.

Deelen
et al. [35]

The United
Kingdom 2019 Metabolomics Parkinson’s

disease TD-GC-MS This study applied an unbiased method, taking the use of
volatile sebum metabolites to diagnose Parkinson’s disease.

Trivedi
et al. [36]

The United
Kingdom 2019 Metabolomics Cardiovascular

disease NMR

This study with over 7000 participants on the metabolic
profile of atherosclerosis revealed that this condition was
associated with perturbations of multiple interconnected
pathways related to lipid, fatty acid, and amino acid
metabolism, and displayed a considerably similar model
between coronary and carotid atherosclerosis.

Tzoulaki
et al. [37]

The United
States 2019 Metabolomics Obesity LC-MS

This study revealed the disturbance of the metabolome in
obese versus healthy individuals. Approximately a third of
compounds followed changes in body mass index,
suggesting the role of metabolome profiling in participant
recruitment for clinical trials related to obesity.

Cirulli
et al. [38]

The United
States 2019 Metabolomics Diabetes LC-MS

A total of 69 out of 331 plasma metabolites extracted from
more than 2000 samples from the Diabetes Prevention
Program were linked to type 2 diabetes regardless of
treatment randomization.

Chen
et al. [39]

Sweden 2019 Metabolomics Physiological
state LC-MS

Not just stopping at the cross-sectional quantification of
urinary eicosanoid metabolites, this recently published study
extended the scope by focusing on the long-term
repeatability and stability of the method used in order to
serve the large-scale analysis of multiple cohorts.

Gomez
et al. [40]

The lack of independent validation cohorts remains challenging in most early metabolomics
studies at population-based level, which is gradually being improved in later large-scale projects [41–44].
Prospective longitudinal studies with larger sample size, longer follow-up period, and more efficient
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nested design (e.g., nested case-control, case-cohort, and clinical trials) have been conducted recently
to assist the biomarker establishment [11,45–47]. Despite being cost- and time-consuming, prospective
study designs may serve both biomarker discovery and validation purposes and can be equipped
with a standardized biobank as a platform for biomarker research to overcome the limitations of
cross-sectional studies [13]. Future research can benefit from this model to provide clinically robust
results and eventually help innovate the healthcare system.

3. Analytical and Computational Challenges in Clinical Metabolomics and Lipidomics Studies

The general workflow of untargeted metabolomics research is described in Figure 1. Furthermore,
large-scale multi-site studies require stringent awareness of systematic and random errors, batch
variation, differences between analytical instruments, heterogeneity across centers regarding methods
for storage, handling, and transportation [48]. We have made attempts to inspect and address these
issues throughout this section sequentially. Particular challenges of lipidomics will also be discussed
in detail.
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Figure 1. The standard untargeted metabolomics workflow at clinical and epidemiological scale. Blue
boxes constitute the backbone of the workflow. Black arrows indicate current standards. Orange
dashed arrows imply that the issues have been raised but have not received enough attention or have
lacked communication. Red boxes represent current and/or potential solutions to these issues. BRISQ:
Biospecimen Reporting for Improved Study Quality. FAIR: Findability, Accessibility, Interoperability,
and Reusability. MSI: Metabolomics Standards Initiative. QUADOMICs: Quality Assessment of studies
on the diagnostic accuracy of OMICs-based technologies. STARD: Standards for the Reporting of
Diagnostic Accuracy Studies. TRIPOD: Transparent Reporting of a multivariable prediction model for
Individual Prognosis or Diagnosis.
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3.1. The Need for Standardized Biobank Establishment

The preanalytical steps in sample acquisition and processing are among the most decisive for
producing reliable analytical results [49]. Currently, it is challenging to collect and optimally handle
samples because of the collaboration of multiple research laboratories and long shipping to main hubs
and freezers [50]. It is also of importance to emphasize that the number of biobanks worldwide has
experienced a rapid escalation, giving rise to the issue of interbiobank variability [51]. The majority
of biobanks established for epidemiological purposes benefit either genomics or more traditional
epidemiologic analyses, whereas the collection of DNA requires profoundly different criteria than that
of metabolites. The metabolome is dynamically changing, and metabolism can continue in tissues or
biofluids after collection even when being carried on with great care [49]. Collectively, the establishment
of biobanks dedicated to metabolomics along with other omics is currently needed, and harmonization
in the methods of sample collection, storage, analytical methods protocols should be defined within the
study design to secure the requirement of reproducible research as well as reduce the cost of future
research. Significant attempts have been made by International Agency for Research on Cancer Biobank,
Promoting Harmonization of Epidemiological Biobanks in Europe, and Biobanking and Biomolecular
Resources Research Infrastructure, for instance, on the way to reach a standardized, unified, fully
validated protocol where all steps have been tested for reproducibility and robustness [52–54]. With
that same goal, recommendations on the processing and biobanking of serum, plasma, tissues, urine,
feces, as well as other biofluids have been discussed at great length in the paper of “Precision Medicine
and Pharmacometabolomics Task Group” from the Metabolomics Standards Initiative (MSI) [49].
Furthermore, primary aspects of biobank harmonization have been comprehensively unveiled in this
white paper.

Under adverse sample handling conditions and delayed freezing, only 62% of metabolites had a
stable level and good to excellent concordance [55]. At a long-term epidemiological scale, however, the
impact of different storage conditions on metabolite stability needs to be more profoundly examined
since the plasma concentrations of specific metabolites can be altered under five-year storage at
−80 ◦C [56]. Potential solutions to ensure sample stability in the long run would be the exclusion or
better adjustment coefficient of profoundly altered compounds prior to the establishment of biomarker
panel, development of more accurate analytical techniques for unstable but biologically essential
metabolites, development of better long-term storage strategies such as liquid nitrogen storage, and
avoidance of repeated freeze-thaw cycles. Efforts have been recorded; for instance, the European
Federation of Clinical Chemistry and Laboratory Medicine Working Group on Preanalytical Phase
is currently working on some recommendations for a study focusing on sample stability to enable
standardization and reproducibility [57]. Another problem appears in case each protocol of the biobank
has a different influence on the metabolite changes. Thus, research for better recommendations on how
samples should be interpreted may be a potential topic.

3.2. The High Demand for Quality Assurance and Quality Control Standards

Quality assurance (QA) and quality control (QC) are two fundamental quality management
procedures ensuring the success of any omics studies. At clinical and epidemiological scale, QA
activities in metabolomics study are established to guarantee that data are managed by good clinical and
epidemiological practice, and that the study fulfills predetermined requirements for quality. QC activities
are undertaken within the QA system to verify the fulfillment of all quality requirements [58]. Existing
guidelines, e.g., “Guidance for Industry: Bioanalytical Method Validation” from the Food and Drug
Administration, provide QA/QC processes, which may be well adapted to targeted and semi-targeted
metabolomics assays. However, they were not designed with metabolomics in mind, not routinely
applied, and not readily translated into untargeted metabolomics [58]. QA/QC protocols should be
ready as early as at the hypothesis formation and experimental study design step. The implementation
of different QA/QC processes has been reported for MS-based metabolomics and lipidomics yet varies
in both fields [58–61]. The lack of well-established QA/QC procedures for untargeted metabolomics may
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impede the harmonization across laboratories and multi-center studies [62]. Reducing heterogeneity
across all sampling sites involves sample selection and preparation, constant cleaning of instruments,
calibration, or maintenance, quality checking, data inspection at predetermined time points, and
regular personnel training [48,63]. Furthermore, patient-specific variability should be raised and
controlled instantly in the study design step, including, but not limited to, age, gender, ethnicity, body
mass index, diet, circadian rhythms, smoking habits, physical activity, health status, and concomitant
medications [64]. Taken as an example, excess exposure to glucocorticoids, which are drugs that are
strictly associated with metabolic control, may affect plasma lipidome [65]. Experts in metabolomics
and QA/QC procedures gathered in a meeting entitled “Think Tank on Quality Assurance and Quality
Control for Untargeted Metabolomic Studies” to identify appropriate reporting standards of QA/QC
activities for publications and databases, leading to the foundation of the metabolomics Quality
Assurance and Quality Control Consortium [62,66]. Pioneering scientists among those who participated
in the Think Tank meeting collaborated to publish guidelines that focused on the use of system
suitability and QC samples in MS-based untargeted metabolomics to collect high-quality data [58].
Developing from the traditional three phases (pre-analytical, analytical, and post-analytical), we will
initiate a model adopting two more steps “pre-pre-” analytical, associated with the initial sample
collection, handling, and storage; and “post-post-” analytical, associated with the final interpretation
to the end-users such as patients, readers of the publications, or the whole public, which have been
proven to be more fallible than pre- and post-analytical actions [67]. In metabolomics, QA/QC can
cover all activities from pre-pre-, pre-analytical, analytical to post- and post-post-analytical steps to
ensure the acquisition of high quality and analytically reproducible data in any high-throughput study
center. At clinical scale, metabolomics deals with thousands of samples, which urgently requires an
appropriate experimental design and a universal QA/QC protocol. Concerning major factors that have
been suggested, we will abridge current challenges based on the suggestion of Plebani et al. as well as
provide firm recommendations in Figure 2 [58,67]. However, more efforts should be made to improve
the current practice of metabolic phenotyping research. For instance, it is of importance to establish a
platform to enhance the interpretation and comprehension of users (post-post phase) such as clinical
doctors and public health specialists. Not limited to metabolomics, conventional protocols and current
practice are being diversified among lipidomics laboratories, according to a recent comprehensive
survey [68]. While diversity is a driving force for development, standardization and harmonization are
extremely important to provide a robust outcome. The impact of this heterogeneity on metabolite and
lipid quantitative measurement is currently unclear and needs to be explored further. Subsequently,
all laboratories, regardless of experience, should collaborate to define community-level best practice
guidelines for executing metabolomics and lipidomics experiments. This can be achieved by conducting
interlaboratory studies, organizing symposiums, workshops, training sessions, or creating laboratory
networks/focus groups aimed at resolving methodological issues. Another concern is the pressing need
to extend the depth of metabolome coverage to prevent missing data and loss of valuable metabolites,
and save cost [69]. Hence, the reference range for various kinds of biofluids and samples should be
established. Once the reference interval of commonly detected metabolites is established and validated
at an interlaboratory scale, it will benefit the QA/QC process and help orientate and validate other
methods in the future. Additional recommendations that may be beneficial for metabolomics study are
given in Table 2.
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Figure 2. Quality assurance (QA)/quality control (QC) procedures following the novel five-step
classification: pre-pre-analytical, pre-analytical, analytical, post-analytical, and post-post-analytical
phases. QA activities are considered before while QC activities are undertaken during and after sample
collection. The first column of QC is based on the content of five-step laboratory errors suggested by
Plebani et al. [67]. The second column displays current QC techniques and activities recommended to
be carried out in clinical metabolomics.
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Table 2. Additional recommendations to ensure QA/QC procedures in metabolomics and lipidomics
study at clinical and epidemiological scale.

Phases 1 Recommendations 2

Pre-pre-analytical

- Need of universal and reproducible study protocols for different tissue and biofluid
types to reduce the effects of extrinsic exposures (e.g., enzymatic activities, oxygen,
UV light, or temperature) and intrinsic factors (e.g., age, gender, health status, body
mass index, circadian rhythm), or to standardize exposure of samples to these effects
when inevitable.

- Need for well-managed metabolomics biobanks with the proper collection,
processing, storage, and tracking processes.

- Need for an automated system for sample handling and preparation.
- Consultation with an experienced statistician in the omics field.

Pre-analytical

- Application of a single validated standard operating procedure (SOP) for the
pre-analytical phase across all sampling sites.

- Need of a standardized protocol to preserve samples, avoid prolonged storage at
room temperature and multiple numbers of freeze and thaw cycles.

- Assessment of the suitability of the analytical platform using system suitability
samples and blank samples.

- Personalized training and education, different for novice and
experienced researchers.

Analytical

- Adoption and calibration of every apparatus used under a quality assurance system,
verification for unexpected variations, and routine maintenance.

- Need for a pooled QC sample or when impossible, an alternative QC sample from
the first batch of samples randomly collected.

- Need for reporting standards/SOPs (at every step of the analytical process).
- Establishment of minimum acceptance criteria for analyzed samples.

Post-analytical

- Establishment of a database of authentic standards using the same analytical
condition to prevent misidentification (e.g., Fiehn’s library that has more than 1000
authentic standards).

- Use of data visualization tools to evaluate the analytical run quality and check for
systematic and random errors.

- Establishment of a strategy for statistical modeling.
- Consideration of blindness if needed.

Post-post-analytical

- Report of QC metadata (e.g., sample order, QC sample, reference materials used).
- Education of the community about QC procedures.
- Standardized data sharing on a public repository.
- Personalized training and education.

Note: 1 Based on the content of five-step laboratory errors suggested by Plebani et al. [67]. 2 In reference to [49,58,62,70–73].

3.3. The Role of Establishing an Automated System for Sample Handling, Data Acquisition, and
Automated Modeling

The shortage of standardized methods for sample preparation prior to analysis has been observed
in metabolomics. Sample collection and processing is a major logistical problem and the largest source
of errors in laboratory medicine, affecting downstream analyses [74]. Evidence-based practices to
minimize pre-analytical mistakes are urgently needed and have been developed based on conventional
biochemical assessments, but more research is required to determine the best method for omics
techniques, including metabolomics [75]. Moreover, some metabolites are stable, whereas others are
very susceptible to perturbations and improper sample handling [56]. In the clinical and epidemiological
research settings, the establishment of an automated or semi-automated system for sample handling,
acquisition, and automated modeling is needed to ensure robust assay performance regardless of
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the experience of the operator. To overcome previous methods that still necessitate some manual
intervention, a fully robotic sample preparation program for LC-MS bioanalysis has recently been
proven to have significantly higher efficiency, with more sample throughput, superior data quality, and
promising bioanalytical time- and cost-savings [71]. Laboratory automation, by lessening hands-on
activities, also minimizes possible human errors [57]. In turn, automated sample preparation still
poses a considerable challenge through the additional cost and time spent on instrument calibration
and software validation for robotic liquid handlers before implementation. It will get harder to figure
out errors or recognize them right after they occur when the system becomes more automated [57].
Moreover, the reliability and stability of metabolites in human biofluids against all the various factors
of sampling, storage, and use should be measured and known before any further applications.

3.4. The Assessment of Systematic Errors in Clinical Metabolomics Studies

Systematic errors of data acquisition are current challenges in MS-based metabolomics; especially,
these are more problematic in the big data era because secondary data analysts may not have access
to knowledge about potential data artifacts. For example, metabolomics datasets are susceptible to
measurement errors caused by the timing of sample collection and decrease in instrument sensitivity [76].
However, if meta-data are not included in the dataset, the analyst cannot accurately assess the impact of
these errors. Possible causes of batch effects, another type of systematic error, involve differences in
instrument performance, sample handling, differences in the preparation of batches, and other unwanted
environmental and technical errors [77]. Unadjusted batch variation, even subtle, may predispose to
the unexpected correlation of significant features with only the batches and tend to positively bias
cross-validation results [78,79]. Correction of batch variation becomes particularly essential when
analyzing or meta-analyzing datasets to both increase robustness and improve reproducibility across
different metabolomics studies. Data normalization for within-batch and properly between batches can
be divided into three categories: data-driven normalization, internal standards-based normalization,
and QC-based normalization, but standard protocols are still lacking. Several different algorithms are
available to perform the batch correction, among them the common principal component analysis (CPCA)
combining with median fold change was reported to perform better than solely CPCA, component
correction, median fold change, or ComBat [80]. However, how to normalize data from various sources
for integration purposes is still challenging, requiring additional work on data processing. Scientists
need to regularly test the instrument performance and employ QC samples to adjust systematic errors
and estimate variations between analytical methods [58]. QC-based normalization is becoming more
popular since it regresses unwanted variation, but retains essential biological variation of interest [77].
There are multiple types of QC samples corresponding to numerous purposes, as shown in Figure 2
(the analytical step). The use of QC samples for batch correction can lead to good results when enough
quality controls, e.g., one QC sample for every five biological samples, are available [81]. However,
a small but quite common practice is that only one or two pooled QC samples are prepared in each
batch of analysis, which may introduce another source of error since the evaporation of the employed
organic solvents over time may be significant in the analysis involving many samples. Regarding
computational solutions, the new version of the statTarget package with a user-friendly graphical
interface integrating a QC-based random forests signal correction algorithm has been released to remove
inter- and intra-batch variations in omics study [82]. NormalyzerDE, an R package, provides 12 different
normalization methods for omics data to enable researchers the correct technical variation, and decide
the most suitable strategy for particular datasets [83]. NOREVA is another powerful online tool that
implements various normalization methods of which five well-established criteria were supported for
the comparison of different normalization approaches [84]. Future research should focus on whether
these adjustment methods introduce unwanted effects, such as the difference between the feature matrix
and identified matrix, variations in the protocol used for QC samples analysis and the number of QC
samples. Of note, batch-effect removal seems not beneficial when the batch variation is incompletely or
improperly corrected, or batch-group design is unbalanced [85].
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3.5. The Advancement and Limitations of Metabolite Annotation/Identification Standards

Protein misidentification is still a problem affecting reproducibility in proteomics, a field that is
known to be more mature than metabolomics; then, it goes without question that misidentification will
continue to be a bottle-neck in the more problematic area such as metabolomics [86]. Misidentification
can induce false positive and/or false negative results during translation. Generally, the chemical
analysis working group defined four different levels of confidence in metabolite identification observed
in published metabolomics literature. Level 1 (identified compounds) requires comparison with more
than one orthogonal property of a chemical reference standard acquired within the same laboratory
and same technical setting. Level 2 (putatively annotated compounds) relies on the physicochemical
property or spectral similarity to a known metabolite while level 3 (putatively annotated compound
classes) relies on the physicochemical property or spectral similarity to those of a known chemical
class of metabolites. Level 4 is about unknown compounds, but can still be extracted and quantified
based on spectral data [87,88]. Lipidomics encounters a similar problem yet has distinct characteristics
as discussed later in this text. In case known and unknown identification features are used together
for the statistical analysis, proper information on these features, e.g., exact mass, MS/MS spectrum,
retention time associated with the mobile phase, and its correlation with other elements, should be
given to facilitate the later identification process. It is recommended that all authors report the level of
confidence, common name, and structural code in their publication and submission to repositories.
However, the employment of these standards still has not received adequate attention in peer-reviewed
publications [89].

Matching the identified feature with an authentic chemical standard run on the same equipment
and analytical method as the experimental samples or with MS/MS spectral databases is currently
considered as the gold standard, which is impractical to interpret manually in case of enormous
datasets. The major hindrance in metabolomics has now switched from identifying known MS/MS
spectra molecules to the unknowns that cannot be found in the databases or that are available but do
not contain experimental MS/MS data [90]. In-house spectral databases storing reference spectra have
been intensively reviewed, such as The Human Metabolome Database (HMDB) and MassBank [91].
Another concern is that none of the existing metabolomics analysis software enables semi-automated
search against public data in metabolomics repositories. Imitating the model of WebBLAST server
for public sequencing data, a web-based MS/MS spectra data search engine called MASST has been
introduced. MASST will allow users to search against all shared data on three central repositories
(Metabolomics Workbench, MetaboLights, and GNPS) by converting data to a uniform open format
and providing all library hits including the origin of the matched MS/MS spectral data, all dataset
matches, and sample information or other metadata associated with that dataset [92]. This unique
approach, called meta-annotation, will significantly improve the precision of metabolite annotation.
Of note, a recently developed tool Peak Annotation and Verification Engine (PAVE) based on isotopic
labeling and computational analysis indicated that only around 4% of all LC/MS peaks are annotated
as putative metabolites [93].

3.6. Ongoing Efforts for a Universal Workflow Covering all Computational Steps of Metabolomics Research

The metabolomics community is initiating a great effort to arrive at a universal metabolomics tool
that can simultaneously handle data preprocessing, processing, and visualization, as well as classification,
network enrichment, and integrative analysis. Having such a platform would improve the depth of
upcoming studies effortlessly and improve the reproducibility of the results. MZmine 2, MS-DIAL, and
the “all-in-one” cloud-based platform of XCMS/METLIN and its variants including XCMS-MRM are
among the most typical examples of the openness and complement of computational pre-processing
procedures in metabolomics [90,94–102]. Notwithstanding, despite being the most popular statistical
analysis tool used by the omics community, it still lacks functionality and is not particularly suitable for
large-scale clinical metabolomics studies. Recently, developers released MetaboAnalystR 2.0, which
additionally implemented raw spectral processing and functional interpretation in the endeavor to
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handle large datasets, support end-to-end, and to report reproducible analysis of the data [103]. Among
these integration efforts, potential universal solutions have evolved but are currently under development,
such as Workflow4Metabolomics, PhenoMeNal, and MetaboFlow [104,105]. Workflow4Metabolomics
is based on the Galaxy environment and provides multiple metabolomics processing workflows from
raw data to metabolite annotation while PhenoMeNal and MetaboFlow offer an extensive suite of
open-source, standardized, interoperable, and sharable metabolomics data pipelines as a complete
data analysis solution. Galaxy is an endeavor toward harmonizing and standardizing metabolomics
workflows, and is much more familiar with scientists than any other platform [106]. However, these
initial achievements have not reached expectations, and their influence on the metabolomics community
has been unaspiring.

For further data processing and model development, missing data may introduce unintentional
bias. Imputation approaches have been reported in metabolomics studies, yet many of them borrow
ideas from the field of microarray gene expression [107–109]. Dedicated to metabolomics, an integrative
model employing two unique characteristics of metabolomics data, the known metabolic network
information and the relationship between features within a metabolite such as mass-to-charge ratio (m/z)
and retention time, was generated for missing data imputation [110]. A novel multiple factor analysis
framework has been developed for multi-omics studies, which estimates and imputes plausible values
to the missing data by integrating information from multiple layers [111].

4. Specific Notes on Clinical Lipidomics Studies

In lipidomics, there have been publications, from an epidemiological perspective, investigating
lipid panels of human diseases. As in other omics fields, machine learning has also gradually proved
its robust role in lipidomics studies, illustrated by its application in identifying the plasma lipidome
for obesity prediction in a large population-based cohort [112]. However, these current measures do
not depict the entire spectrum of the human plasma lipidome [10]. Despite remarkable progress in
mass spectrometric technologies, there is still a lack of consensus in lipidomics measurements between
different laboratories, and the quality of lipidomics output has not satisfied the criteria of common
laboratory diagnostics [113]. In this context, an initial workflow with agreed recommendations has been
recently suggested to facilitate the translation of quantitative MS-based lipidomics data into clinical
settings [114]. Furthermore, 31 independent laboratories jointly participated in an interlaboratory study
with the purpose to discover current gaps and harmonize lipid measurements across the lipidomics
community [115]. Following this interlaboratory test, the consensus location estimates for several lipid
categories were robustly established, which can serve as references for quality control and quality
assessment. The Lipidomics Standards Initiative Consortium has also fostered lipidomics researchers
to work closely to develop common minimum acceptable guidelines and standards toward harmonized
lipidomics data [116]. Lipidomics is facing the same issues as metabolomics, though some of these
aspects are technically and computationally different. Excellent discussions on the technical aspects of
lipidomics have occurred [113,117,118]. We hereby discuss two significant lipidomics challenges that
appear to be technically divergent from typical metabolomics.

4.1. QA/QC and Batch Effect Removal for Large-Scale Lipidomics Studies

As mentioned before, batch effects can alter the true biological signal. Several pioneering works
have attempted to capture the unique characteristics of batch effects adjustment in lipidomics research.
The population-based study within the Alzheimer Disease Neuroimaging Initiative cohort is a typical
example of the role of QA/QC and technical variance removal in large-scale lipidomics studies.
The authors employed QC samples to verify the high reproducibility of lipidomics data and the
relative standard deviation (RSD) in QC samples as an inclusion criterion to establish the final lipid
dataset for further statistical analysis [119]. In the subsequent data processing, they used the QC-based
LOESS normalization method for batch effects adjustment to minimize the analytical variations [119].
In addition, a novel QC-based correction method using random forests (called SERRF) has been
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developed. This method outperformed other commonly used normalization methods and was reported
to have lowered unwanted systematic errors to 5% RSD in a large-scale lipidomics study [120].

4.2. The Need for High-Confidence Lipid Identification and Quantification

The top five challenges raised by the lipidomics community were (1) the shortage of standardization
of methods and protocols, (2) the lack of reference standards, (3) the lack of data handling and
quantification software, (4) over-reporting, and (5) the issue of false positives [68].

In lipid identification, level 1 of confidence is mostly not possible for a large number of lipid species.
Fortunately, similar to peptides, the MS/MS patterns of significant lipid classes are predictable, which
makes the in silico annotation and prediction of major lipids possible when consulting the MS/MS with
biologically plausible fatty acid chains. Noticeably, the identification of lipid subclass compositions
such as phosphatidylcholines (PCs), lysoPCs, and sphingomyelins at the fatty acid chain resolution
using the AbsoluteIDQTM p150 kit and LipidyzerTM platform provides evidence of the odd-chain fatty
acids in PCs, which is quite essential and acknowledged. This method or other similar ones may be
used in large-scale lipidomics research [121]. In-source fragmentation generates precursor ions whose
masses are similar to those of endogenous lipids, which may induce misannotation. Therefore, a test
for in-source fragments is recommended as an essential step in lipidomics method development [122].
Moreover, the advancement in separation techniques (e.g., ion mobility) and resolution of the mass
spectrometer for lipid identification is needed to differentiate between isobaric species belonging to
different lipid categories, resolve isotope effect, as well as allow researchers to directly quantify them
in total lipid extracts [123].

Under the Lipidomics Standard Initiative, good practices and recommendations toward the
standardization of crucial steps in lipid species identification have been discussed [124–126]. Concerning
in silico lipidomics libraries, the major ones include LIPID MAPS and LipidBlast, followed by
prospective executable packages such as MS-DIAL, LipidMatch, and LipiDex. In silico libraries allow
users to identify lipids through a broad set of high-resolution tandem mass spectrometry experiments,
hence improving biological interpretation [127–129]. Following the fast progress in lipidomics over the
last two decades, new tools are needed to get more insights into this field. An R-based, open-source
tool called Lipid Mining and Ontology (Lipid Mini-On) was later developed, which can split individual
lipids into multiple ontology classes with Lipid Ontology terms (similar to Gene Ontology) based
on LIPID MAPS classification as well as other molecular characteristics for the enrichment analysis
of lipids currently absent from databases [130]. LION, a new and freely accessible lipid ontology,
is able to assign more than 50,000 lipid species to various biophysical, chemical, and cell biological
processes [131]. This web-based resource with a complementary enrichment analysis tool empowers
researchers to investigate the complex lipidomes in biological systems.

5. Toward Reproducible Data Analysis and Interpretation in Clinical Metabolomics
and Lipidomics

One of the possible future directions of computational metabolomics platforms is to diversify
and standardize analytical processes for a variety of study designs, including cross-sectional and
longitudinal studies, and clinical trials. In that context, the role of machine learning cannot be ignored.
Machine learning has the power to process a large amount of data that exceeds human capacity, gather
lessons and experiences from nearly all clinicians, and guide patients instantly [132]. A recent study
compared the performance for phenotype differentiation in untargeted metabolomics among different
machine learning techniques. Concerning all aspects including skewed error distributions, unbalanced
phenotype allocation, biological and technical outliers, missing data, and dimensionality reduction, the
two non-linear methods, support vector machine and random forests, act as the leading algorithms over
naïve Bayes, neural networks, sPLS-DA, PLS-DA, and k-nearest neighbors classifiers [133]. Additionally,
the opaque methods usually yield accurate predictions but are more complicated to interpret than
the transparent ones. As a solution, algorithms such as LIME and iBreakDown show promise for
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explaining the predictions of any complex, black-box model [134–137]. It is worth mentioning that the
so-called explainable prediction models are most beneficial from the datasets that have a small number
of features from input data. Feature selection/engineering in machine learning is an ongoing research
topic. In that respect, automated and flexible feature engineering algorithms may be essential to increase
the throughput, reproducibility, and transferability. Although several machine learning methods have
been experimented, the interpretation of several complicated cases is still unfeasible and remains
an open question [138]. Interestingly, an expert knowledge-collecting tool called tinderesting allows
experts to rate the features, which will be subsequently used to train a machine learning model and
may improve the overall performance of the prediction model in dynamic metabolomics studies [139].

Metabolomics research often recruits a small sample size, usually less than 300 per group for
classification purposes, which may not ensure the study’s reliability [140]. Hence, meta-analysis
has evolved as a method of choice to enhance the study’s robustness and minimize the risk of false
discoveries [141]. Finally, the value of meta-analysis in metabolomics has been demonstrated to
increase the probability of determining metabolites associated with the phenotype of interest [142,143].
Robust meta-analysis and network-based interaction visualization frameworks should be investigated
for metabolomics datasets to bring the interpretation of metabolomics data to the next level. Of note,
another method to increase the study robustness given small sample size is the application of appropriate
study design such as prospective longitudinal study.

6. Fundamental Requirements on Standards for Reporting Metabolomics-Based Biomarker
Studies at Clinical and Epidemiological Scale

The standard for reporting metabolomics-based biomarker discovery studies is still ambiguous
and incomplete [144]. A thorough understanding of principles, adequate guidelines, and practical
tools has minimized the pitfalls and fortified critical appraisal, validation, and replication of studies.
The main characteristics of reporting principles are matching, exhaustive, skeptical, second-order,
transparent, and reproducible [145]. In clinical metabolomics studies, authors are urged to report
whether data appear reasonably matched to the hypothesis (data matching), whether there are alternative
approaches to explore data (exhaustiveness), whether the analysis addresses any other premises or
questions (skepticism), whether data pertain directly to the investigation or just contribute to relevant
background (second-order), whether there are means such as data visualization or data summary
included in the analysis that highlights the connection between data and results (transparency), and
whether the code and data are made available in open sources (reproducibility) [145]. There are
several reporting guidelines for clinical studies and multivariable prediction models, especially for
diagnostic and prognostic purposes, such as the Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis (TRIPOD) statements, the Standards for the Reporting of
Diagnostic Accuracy Studies (STARD), and the Biospecimen Reporting for Improved Study Quality
(BRISQ) [146–148]. However, these guidelines are poorly incorporated in the omics field in general and
in metabolomics in particular. Specifically, the assessment of metabolite and lipid biomarkers currently
makes up a considerable portion of metabolomics research applications, whereas epidemiological
studies have their unique features at the population level. Collectively, a reporting guideline combining
biomarker diagnostic/prognostic characteristics with distinct epidemiological aspects in terms of study
design, sample size, analytical approach, confounding, and bias should be developed to fully satisfy
metabolomics study at clinical and epidemiological scales. The QUADOMICs tool, an adaptation
for omics study of the Quality Assessment of Diagnostic Accuracy Studies (QUADAS), assesses the
methodological quality of omics-based diagnostic studies, and could be considered as a prototype to help
develop an appropriate guideline for metabolomics [149]. Recently, a novel reporting guideline based
on R Markdown template for the data analysis step of biomarker discovery metabolomics studies has
been issued [150]. The new guideline, along with our suggested one in reference to STROBE, TRIPOD,
and QUADOMICs, if applied, will improve the completeness, transparency, and reproducibility of
clinical lipidomics and metabolomics study (Table 3). Metabolomics journals should obligate authors to
share their code as a requirement for publication rather than recommend it.
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Table 3. Proposed checklist for clinical metabolomics-based biomarker discovery and validation in reference to STROBE, TRIPOD, and QUADOMICs.

Section/Topic Item Essential
Topic

STROBE
[151]

TRIPOD
[146]

QUADOMICs
[149]

Our In-House
Assessment [143] Checklist Item 1

1. Title and abstract

Title 1a Yes 1 1 Specify the study design with developing and/or validating purpose, the target population,
and the outcome with simple and straightforward terms in the title.

Abstract 1b Yes 1 2

Depending on the target journal, provide in the abstract a precise and structured summary of
objectives, study design, study participants, sample size, type of samples (e.g., plasma,
serum, or urine), analytical platform, predictor variables, outcome, statistical method, results,
and conclusions.

2. Introduction

Background 2a Yes 2 3a
Provide the scientific and clinical background (including the diagnostic or prognostic
purpose) and explain the rationale for developing and/or validating the multivariable
prediction model, in regard to existing models.

Objectives 2b Yes 3 3b Determine the objectives and hypotheses, emphasizing if it is a development and/or
validation research of the model.

3. Methods

Ethical approval 3a Yes Clearly report ethics committee approval and participant consent.

Study design 3b Yes 4 4a Item 1 State the study design (e.g., case-control, cohort, randomized trial, or registry data) or source
of data (e.g., biobank, public database).

Setting 3c Yes 5 4b Describe the settings, locations, and relevant dates where the data were collected, including
periods of follow-up, if applicable.

Participants 3d Yes 6 5a–5c Item 1 and 2 Item 2–6

(a) Cross-sectional study: Give the inclusion and exclusion criteria, and the sources and
methods of recruitment of study participants.
(b) Longitudinal study: Give the inclusion and exclusion criteria, and the sources and
methods of recruitment of study participants. Describe follow-up methods. Give diagnostic
criteria and prior treatment, if applicable. For developing purpose, the spectrum of patients
should represent those who will receive the test in practice.

Sample size 3e Yes 10 8 Explain how the sample size was determined.

Sample collection 3f Yes Item 3 and 4 Item 8

Describe the type of samples, the procedures and timing of biological sample collection with
reference to clinical factors and the methods to control metabolome changes (e.g., arterial
versus venous blood, circadian oscillations, pre- and post-prandial status, the time between
sampling and storage).

Sample storage 3g Yes Item 5 Item 8 Describe the methods to control chemical and enzymatic degradation and/or interconversion.

Sample preparation 3h Yes Item 5 Item 9 Describe the methods to control analytical errors and between-batch variations.

Data acquisition 3i Yes Item 10–13 Describe the experimental conditions, the analytical validation methods, and the number of
batches of analysis.

Data preprocessing
and treatment 3j Yes Item 15

Report parameters for peak detection (i.e., algorithms and acceptance criteria for valid peaks),
deconvolution, alignment, and correction. Describe the methods to filter data noise, impute
missing values, and correct batch effects (e.g., data-driven, internal standards-based, or
QC-based normalization).
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Table 3. Cont.

Section/Topic Item Essential
Topic

STROBE
[151]

TRIPOD
[146]

QUADOMICs
[149]

Our In-House
Assessment [143] Checklist Item 1

Predictors 3k Yes 8 7a–7b Define all variables and explain their measurements used in constructing the multivariable
prediction model.

Bias 3l Yes 9 Characterize any attempts to show and solve potential sources of bias.

Missing data 3m Yes 12 9 Describe how missing data (e.g., samples) were handled.

Metabolite identification 2 3n Yes Item 14 Describe the methods for metabolite identification and the level of confidence of identified
compounds. Report whether a match with authentic standards has been conducted.

Multi-omics data integration 3o Optional
Report the multi-omics data integration, if available. Description of integration strategies,
such as post-analysis data integration or simultaneous integration from different omics data
types, is recommended.

Statistical analysis
and modeling 3p Yes 12 10a–10e and

12 Item 16 Item 16

Describe statistical methods, the methods to detect outliers, validation methods, and
performance measures (e.g., AUC, accuracy, sensitivity, and specificity). Describe any
updates of the model after the validation, if done. For the validation purpose, determine any
inconsistencies from the development data.

Outcome 3q Yes 7 6a–6b Explain the assessment of outcome that is predicted by the multivariable prediction model.
Report any efforts to the blind assessment of the predicted outcome.

4. Results

Participants 4a Yes 13 13a–13c

Report numbers of study participants at each stage (e.g., numbers potentially eligible,
screened for eligibility, validated eligible, included in the study, finishing follow-up, and
analyzed) and the number of participants with missing information for predictors and
outcome. Give reasons for non-participation or exclusion at each stage.

Descriptive data 4b Yes 14 13a–13c Designate characteristics of study participants (e.g., baseline demographic, clinical, and
socioeconomic status) and information on potential confounding factors.

Data exploratory analysis 4c Yes Report exploratory data analysis (e.g., using unsupervised learning approaches).

Model development 4d Yes 15–16 14a–14b
Specify the number of participants and outcomes in each analysis. Report the unadjusted and
adjusted potential confounders that may influence associations between each predictor
and outcome.

Model interpretation 4e Optional 15–16 15a–15b Item 14 and 15
Present the full prediction model to enable reproducibility for individuals. Explain how to
interpret the prediction model in a human-friendly approach (e.g., LIME, iBreakDown).
In case uninterpretable, indeterminate data should be reported.

Model performance 4f Yes 15–16 16 Report measures of performance of the prediction model. Describe the effects of unbalancing
(e.g., cases versus controls) to the performance of the model.

Reference standards
comparison 4g Optional Item 6–13 Item 7 Compare the constructed models with currently approved approaches (e.g., CA 19.9 for

diagnosing pancreatic cancer).

Model updating 4h Optional 17 17 Report the results of any updates of the model. An updated model using quantitative
information of the tentative biomarkers are strongly recommended.
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Table 3. Cont.

Section/Topic Item Essential
Topic

STROBE
[151]

TRIPOD
[146]

QUADOMICs
[149]

Our In-House
Assessment [143] Checklist Item 1

5. Discussion

Key results 5a Yes 18 Summarize critical results in harmony with study objectives.

Interpretation 5b Yes 20 19a–19b

Give an overall evaluation of results based on study objectives, results from previous similar
studies, and other related evidence. For validation purpose, discuss the results in regard to
the performance of development data, and any other validation data from the
public databases.

Limitations 5c Yes 19 18 Discuss the limitations of the study, considering sources of potential confounders, biases, and
statistical uncertainty.

Implications 5d Yes 21 20 Discuss the potential application of the model into clinical settings and suggestions for future
research and practice.

6. Other information

Supplementary materials 6a Yes 21 Provide available supplementary files, such as the full study protocol and generated datasets.

Funding 6b Yes 22 22 Give the sources of funding and the influence of each funder on the outcome and, if
applicable, for the original study from which the current paper arises.

Conflicts of interest 6c Yes Clearly declare potential conflicts of interest.

Repositories for
generated data 6d Yes Report the public repository for generated data concerning FAIR (Findability, Accessibility,

Interoperability, and Reusability) principles 3.

Executive commands 6e Optional Report any programming code used (e.g., R code).

Note: 1 The description was adopted with modifications from STROBE, TRIPOD, and QUADOMICs guidelines along with our in-house assessment. 2 Metabolite identification step can be
performed prior to or after the Statistical analysis and modeling step. 3 In reference to [152].
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7. Multi-Omics Integration for Precision Medicine

The exponential increase in amount of data in association with the gradual rise in sample numbers
is the de facto characteristic of omics sciences. Single omics analysis usually reveals correlations of
reactive processes rather than causations [153]. Years of constant endeavors have proved that focusing
on technological “silos” is incapable of finding solutions to complex molecular pathophysiological
issues [154]. It is undeniable that metabolomics itself brings substantial advantages to the multi-omics
system, particularly in the diseases that have dysregulated metabolism, such as diabetes and cancer.
For instance, in the predictive model of stress events in prediabetes patients, the classification performance
of metabolomics was only overshadowed by that of multi-omics with the area under the receiver
operating characteristic curve, reaching 80.1% [155]. The integration of multi-omics data, however,
has the power to explain potential causative changes, strengthen the contribution of omics science to
our understanding of biomedicine, and provide a complete picture of diseases [156]. In the context
of data explosion at every omics level and accumulated knowledge of complex interactions between
those molecular layers, a better paradigm integrating multi-omics is a potential solution to comprehend
the underlying biological processes as well as to give better predictions on the outcome of interest
(e.g., diagnosis, prognosis) [157–159]. For this exact reason, the idea of a single platform for a unifying
proteomics-metabolomics analysis has been proposed [160]. We hereby provide some excellent examples
to demonstrate the potential of multi-omics approaches. The combination of multi-omics technologies
is undeniable in investigating cerebrospinal fluid (CSF) and expanding the coverage of CSF metabolites
since biomolecules are interactive to exert their functions at multiple levels in a biological specimen [161].
The combination of multi-omics with the prospective longitudinal characteristic helps reinforce the
causality. An integrated network analysis of genomics, metabolomics, and Alzheimer’s disease (AD)
risk factors in 1111 subjects of Wisconsin Registry for Alzheimer’s Prevention study revealed that several
genes might be indirectly associated with AD risk through particular metabolites [162]. In type 2 diabetes
mellitus, a rich longitudinal investigation integrating transcriptomics, proteomics, metabolomics, and
microbiomics sheds light on several molecular pathways, host-microbe interactions, and responses to
infections that differed between glucose-dysregulated and healthy subjects, and highlighted the diverse
intra- and inter-individual variabilities [155]. Another example, the transcriptomics-metabolomics
integrated longitudinal research on molecular profiles of host-microbe interactions provided the most
comprehensive summary, until now, of dysbiosis state in the gut microbiome in inflammatory bowel
disease [163]. Fusing genome-wide association studies information with metabolomics data permits
the simultaneous assessment of the genetic (or intrinsic) and environmental (or extrinsic) effects on
disease phenotypes, which is better than using solely metabolomics [164]. Recently, an in-depth,
prospective, longitudinal, phenotyping study gathering information on medical history, clinical and
behavioral status, genome, transcriptome, proteome, immunome, metabolome, microbiome, exposome,
and imaging from 109 subjects has been developed to comprehensively determine health status and
establish risk profiles of metabolic, cardiovascular, fitness-frailty, cognitive, infectious, psychological,
oncological, and inflammatory diseases [165].

The practicality of clinical metabolomics, as a core member of the omics-informed precision
medicine system, is suggested in Figure 3. When all pitfalls are overcome, we may be able to establish
a model from quantitative multi-omics data to determine the normal range of the population and is
capable of detecting unspecific abnormal multi-omics profiles as seen in Figure 3A. It is essential to
emphasize that the genetic background should be considered along with other socioeconomic factors,
and the interactions among factors should be taken into account when constructing an omics-based
model [166,167]. Combining with the advancement of omics-based disease-specific prediction, persons
with a suspect medical condition will be determined for a proper intervention (Figure 3B). With the
accumulation of these smart engines over time, together with benefits from data sharing of every
aspect, we will be able to transform the medical system, of which omics profile is the major pillar
(Figure 3C). The future of precision medicine is personomics, which is the combination of multi-omics,
environmental factors, social interactions, and lifestyles (behaviors) based on unique personal references.
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socioeconomic factors; (b) corresponding models constructed for disease-specific purposes; (c) the
next-generation healthcare system based on advances in smart engines with omics data as the primary
pillar, and promoted by data sharing and machine learning.

Once again, it is important to emphasize the extraordinary role of machine learning in advancing
multi-omics studies and reshaping our healthcare system. High quality multi-omics studies should
formulate proper study hypotheses and select samples considering biological matrix characteristics.
Regarding data processing and analysis, they are expected to handle and store samples avoiding
adverse effects caused by intrinsic and extrinsic factors, carefully collect quantitative multi-omics
data and associated meta-data, and employ better integration and interpretation software. For data
replication, authors should adopt minimum standards for multi-omics methods and meta-data, and
develop new tools for depositing intact multi-omics data rather than splitting it into multiple single
datasets [168]. Regarding this matter, considerable efforts have been made toward an algorithm and
comprehensive tools for analyzing omics data at the multi-omics scale to archive the most information
and eliminate the most noise [169–171]. Herein, three major opinions have been raised with distinct
properties: the genome first, the phenome first, and the environment first approaches [153]. Future
tools and software should consider the interactions between different omics layers to extend the
potential of this approach entirely.

8. Potential Bioethical Issues Associated with the Sharing of Clinical Metabolomics and
Lipidomics Data

As in genomics, the most mature of the omics fields, there are ethical concerns that are worth
paying attention to when we handle metabolomics data, including, but not limited to, privacy and
identifiability, harmonization across sites regarding informed consent and institutional review board,
incidental findings, data ownership, and funding priority [172]. Toward clinical application, the
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completeness of personal information, including medical records, medication lists, and socioeconomic
status, would be the major obstacle. Sharing data from research involving human samples should
comply with the ethical, legal, and social implications, and patient privacy must always be protected
as the first priority [173]. Nevertheless, unlike genomics, metabolomics data have a cross-sectional
characteristic and are not unique to a particular individual; therefore, they do not contain factors
listed in the “Safe Harbor” method for de-identification under the Health Insurance Portability and
Accountability Act privacy rule. There are currently no known methods of recognizing a patient based
on their metabolic panel, except potentially for rare diseases [173]. In this way, risks of identification
can be avoided, which is the everlasting concern for genomics research participants who are afraid that
their genomic information may be used for adversary attacks.

9. Perspectives and Conclusions

It is undebatable that the availability of research data and standardized report publications will
substantially eradicate barriers against scientific progress. Throughout the paper, we have made
considerable attempts to explore the remaining challenges, evaluate current opportunities, and suggest
several future directions that should be considered by the metabolomics and lipidomics community to
facilitate data acquisition, analysis, and sharing at the clinical and epidemiological scale. Physicians
should be prepared to use “cognitive computers” applying artificial intelligence and machine learning,
which in the near future, will be implemented in the hospital settings to assist in disease diagnosis and
prediction of patient outcomes. In the big picture, metabolomics and lipidomics research has to be allied
to a network of multi-layer omics combining with the power of machine learning, artificial intelligence,
and standardized QA/QC protocol. We are also pioneers in the suggestion of a complete framework
for quantitative metabolomics research strictly based on standardizations and reporting guidelines
from study design to interpretation to the end-users. On the whole, the metabolomics community
is encouraged to be involved in the joint multi-omics platforms, e.g., The Cancer Genome Atlas and
International Cancer Genome Consortium, to facilitate the advancement of molecular research and
precision medicine. International and multidisciplinary efforts are required to achieve this goal. Finally,
although we did not intensively go through related bioethical issues in this review, they should always
be taken into account to complement the next-generation healthcare system.
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