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Reduced representation bisulfite sequencing (RRBS), which couples bisulfite conversion and next generation sequencing, is an
innovative method that specifically enriches genomic regions with a high density of potential methylation sites and enables
investigation of DNA methylation at single-nucleotide resolution. Recent advances in the Illumina DNA sample preparation
protocol and sequencing technology have vastly improved sequencing throughput capacity. Although the new Illumina technology
is now widely used, the unique challenges associated with multiplexed RRBS libraries on this platform have not been previously
described. We have made modifications to the RRBS library preparation protocol to sequence multiplexed libraries on a single
flow cell lane of the Illumina HiSeq 2000. Furthermore, our analysis incorporates a bioinformatics pipeline specifically designed
to process bisulfite-converted sequencing reads and evaluate the output and quality of the sequencing data generated from the
multiplexed libraries. We obtained an average of 42 million paired-end reads per sample for each flow-cell lane, with a high unique
mapping efficiency to the reference human genome. Here we provide a roadmap of modifications, strategies, and trouble shooting

approaches we implemented to optimize sequencing of multiplexed libraries on an a RRBS background.

1. Introduction

The emergence of next generation sequencing (NGS) in
recent years has revolutionized genetic researchers’ abil-
ity to interrogate genomes on an unprecedented scale.
The sequencing-by-synthesis NGS technologies are evolving
rapidly and throughput capacity is increasing exponentially
[1, 2]. The Illumina sequencing platform, on which we focus
here, involves clonal amplification of adaptor-ligated frag-
ments of genomic DNA that are sequenced using reversible
terminator-based chemistry. NGS has a broad scope of
applications including de novo genome assembly, transcrip-
tomics, SNP discovery and clinical diagnostics [3-5]. Of
particular interest is the potential that NGS has for the field
of epigenetics, specifically genome-wide DNA methylation
analysis. Catalyzed by DNA methyltransferases (DNMTs),
DNA methylation involves the covalent addition of a methyl
group (CHj3) to the cytosine (C) to make 5-methylcytosine

(5mC) [6]. In mammals, this stable modification almost
exclusively occurs in the context of CpG dinucleotides
[7, 8]. DNA methylation has been associated with gene
silencing, tissue differentiation, genomic imprinting, X chro-
mosome inactivation, phenotypic variation, and possibly
disease susceptibility [9—-13]. Aberrant DNA methylation is
implicated in several diseases and has a well-established role
in tumorigenesis [14].

Recently, several NGS-based methods have been devel-
oped to profile the DNA methylation status of a genome.
Among them, reduced representation bisulfite sequencing
(RRBS) can be used to generate comprehensive methylomes
[15]. Compared to whole genome methylation sequenc-
ing, RRBS provides an alternative sequencing technology
at a reduced cost [16] and it is used by many groups
worldwide [17-22]. By representing a small fraction of
the genome (~2.5% of the human genome), it reduces
the amount of sequencing required, while enriching for
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promoter associated CG-rich regions. The method involves
bisulfite conversion, which converts unmethylated cytosines
to uracil, while leaving methylated cytosines unchanged,
thereby generating base-pair resolution DNA methylation
profiles.

Alignment of bisulfite-converted sequence reads to a
large reference genome brings computational challenges.
A thymine (T) in the sequenced read could reflect either
an unmethylated C or a T, but not vice versa. Therefore,
the asymmetric mapping increases the chances of false-
positive matches and the search space for mapping [23].
Nevertheless, several tools and pipelines have been developed
that enable molecular biologists to analyze the large volume
of methylation data with increasing ease [16, 24, 25].

Recent advances in the Illumina sequencing platform
(see Table S1 in Supplementary Material available online
at doi: 10.1155/2012/741542) have increased the capacity
from 20-30 million reads per lane (Genome Analyzer/GAII)
to ~200 million reads per lane (HiSeq 2000). In the case
of smaller or reduced representation genomes, such a high
number of reads provides ample coverage. Indeed, multi-
plexed sequencing of these smaller or reduced representation
genomes permits considerable cost savings. DNA libraries
for multiplexed sequencing are prepared by ligating adaptors
containing different 6 bp index sequences to each fragmented
DNA sample (Supplementary Figure 1). This allows multiple
samples to be combined into a single sequencing reaction
and then individually identified and demultiplexed during
base-calling analysis.

Meissner’s group has previously described the RRBS
protocol in several articles [15, 20, 26, 27]. In each of
these articles, the protocol was described for the Illumina
Genome Analyzer sequencer, where one RRBS library was
sequenced per lane. However, due to the increased capacity
of the new HiSeq 2000 sequencer (almost 8-fold increase in
terms of read numbers), it became inevitable to sequence
multiple RRBS libraries in one single flow-cell lane. The
library preparation method for multiplexed runs and the
sequencing pipeline significantly differ from the described
Genome Analyzer workflow. Here we describe the required
modifications of the original protocol and the strategies
we employed for successful sequencing. Specifically, we
demonstrate improved strategies for bisulfite conversion,
library purification, and PCR amplification.

Further, the previous protocols focused only on library
preparation methods, but the downstream data processing
and bioinformatics were not described. We show the steps
and challenges involved in base calling of multiplexed RRBS
libraries due to its unique base composition. We describe
a pipeline to evaluate and improve the quality of the data
obtained and increase the output from indexed sequencing
runs. Additionally, we comment on the different data formats
generated by different versions of the sequencing chemistry
and the sequence alignments with high mapping effi-
ciency, which demonstrates the effectiveness of the method
described. This paper provides a complete workflow starting
from library preparation to base calling and to successful
mapping of the obtained library.
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2. Methods

Previous papers have described in detail the process of
generating reduced representation libraries for methylation
analysis [15, 26, 27]. Here, we briefly describe the protocol
with emphasis on the modifications required to make suc-
cessful multiplexed libraries for sequencing. Key differences
between the previously used paired-end library preparation
protocol and the TruSeq (version 2) multiplexing protocol
are outlined in Supplementary Table S2.

2.1. Library Preparation. Although the TruSeq protocol
recommends 1 ug of input DNA for normal genomic DNA
library preparation, we found that for RRBS this amount
was not sufficient. For RRBS, 2.5ug of genomic DNA
was digested overnight with Mspl (New England Biolabs,
Ipswich, MA) using 20 units of enzyme per ug of DNA
to ensure complete digestion. Digested DNA was purified
on a QIAquick spin column (Qiagen, Hilden, Germany).
Then, end repair and addition of 3’A overhangs were
performed using the TruSeq DNA kit (Illumina, San Diego,
CA). Indexed TruSeq adaptors were ligated according to the
manufacturer’s protocol and purified with AMPure beads
(Agencourt Bioscience, Beverly, MA). For detailed method-
ology of multiplexed adaptor ligation, see Supplementary
Table S3. DNA fragments ranging from 160 to 340bp
(40-220bp of DNA plus 120bp of adaptors) were excised
from a 3% (w/v) NuSieve GTG agarose gel (Lonza, Basel,
Switzerland) and purified using the QIAquick gel extraction
protocol.

2.2. Bisulfite Conversion. Previously published methods rec-
ommend two rounds of bisulfite conversion with the Qiagen
EpiTect kit for complete bisulfite conversion of human
RRBS libraries [27]. However, we found that two rounds
of conversion and purification resulted in significant loss of
the template in the bisulfite-converted library leading to a
requirement for high cycle number for library amplification.
Also, 5-methylcytosine can undergo deamination, at a slow
rate, during prolonged bisulfite treatment [28]. Based on
a small number of samples, we achieved more consistent
bisulfite conversion of size-selected libraries using the EZ
DNA methylation kit (Zymo Research, Irvine, CA). Although
the manufacturer’s instructions are to incubate DNA samples
with bisulfite reagent for 12—16 hours at 50°C, we incubated
them for 18-20 hours. This longer incubation period was
associated with consistent conversion of human genomic
DNA and minimal loss during the process.

2.3. Amplification. The previously described paired-end pro-
tocol used the forward and reverse primers P.E. 1.0 and
PE. 2.0 to amplify libraries [27]. The TruSeq protocol has
streamlined the library amplification workflow by providing
two master-mixed reagents, a PCR master mix and a PCR
primer cocktail. However, we found that in contrast to a
normal genomic DNA library used as a positive control,
this protocol did not amplify bisulfite-converted libraries
within 20 or 30 cycles of PCR. We optimized the library
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amplification step by incorporating the TruSeq primer
cocktail into the PCR protocol used by Smith et al. [26].
For amplification of the bisulfite-converted DNA, we used
PfuTurbo Cx DNA polymerase (Stratagene, La Jolla, CA).
It has been proposed that a high frequency of uracils in
bisulfite-converted DNA results in uracil stalling by the
DNA polymerase [26]. PfuTurbo efficiently reads through
uracils in the template strand, but its enhanced proofreading
activity prevents PCR-induced point mutations. The final
libraries (1.44uL of bisulfite-converted DNA per 12 uL
PCR reaction) were amplified using 1.45 U PfuTurbo Cx
DNA polymerase, 0.3 mM dNTP stock, and 1.44 uL TruSeq
PCR primer cocktail (see Supplementary Table S4) with
the following thermocycler conditions: 95°C for 2 min, n
X (95°C for 30s, 65°C for 30 s, and 72°C for 45 s),
72°C for 7min. Initially, analytical PCR reactions were
performed to determine the optimal number of cycles for
amplification of libraries (a higher number of cycles can
induce amplification bias). Libraries were amplified with
15-18 cycles of amplification and then visualized on a 4—
20% Criterion gradient polyacrylamide TBE gel (BioRad
Laboratories, Hercules, CA) stained with SYBR green nucleic
acid gel stain (Life Technologies, Grand Island, NY).

2.4. Assessment of of Library Quality. To verify fragment size
and quality of the amplified libraries, individual aliquots
were run on a 2100 Bioanalyzer (Supplementary Figure S2)
using a high-sensitivity DNA chip (Agilent Technologies,
Santa Clara, CA). Libraries were quantified using a Qubit 2.0
fluorometer (Life Technologies, Grand Island, NY).

2.5. Sequencing. Libraries were pooled at equimolar concen-
trations based on Qubit measurements and sequenced on a
single flow cell lane of an Illumina HiSeq 2000 sequencer
with a paired end, 100bp run. The initial forward read is
termed Read1 and the reverse read is termed Read2. 5% phiX
genomic DNA (control) was spiked into the lane. In between
these 2 reads, a 6-cycle read is made of the adaptor index
sequence to allow for demultiplexing of the pooled samples.

2.6. Base Calling. Illumina base calling is usually performed
by the real-time analyzer (RTA) running on the sequencer,
but in some cases, as described in Section 3, it was necessary
to repeat the base-calling step afterwards. The Illumina
Off line Basecaller (OLB) v 1.9.4, running on a Redhat
Linux server, was used for this. The application applies the
same algorithm as the original RTA application, using the
compressed image files generated by the machine, but allows
a wider range of processing options to be employed [29].

2.7. Generating FASTQ File. FASTQ sequence file generation
from the raw base-call data was performed using Illumina’s
CASAVA v1.8.2 package [30]. CASAVA scripts use the details
of each sample, including its lane and index sequence, to
identify the contents of each flow-cell lane and to partition
multiplexed reads into index-specific FASTQ files. The
amplification steps used in flow cell preparation generate
a series of clusters of identical sequences at a specific

pixel location on the flow-cell surface. Since the position
is conserved through the reads (Readl, Read2, and the
6bp index read), individual reads are identified by the
pixel coordinates of the cluster on the flow-cell surface.
CASAVA permits various processing options but, for the
work described here, the output becomes a directory for each
index containing a single gzip-compressed FASTQ file for
each of the forward and reverse reads of a paired-end run.
The logistics of running a flow cell require that the paired-
end chemistry is applied to all samples if any on the cell
needs that processing; CASAVA can be directed to ignore
the reverse read or the extra data can be disregarded if not
required. In the event that CASAVA finds reads for which
the index sequence cannot be identified, through sequencing
errors, the reads are saved in to a directory of “undetermined
indices.”

2.8. Data Processing. Quality evaluation of the sequenced
reads, filtering, processing and alignment of each dataset
have been performed as previously published [24]. Briefly,
the quality of the reads was checked using the FASTQC
(version 0.10) program and then adaptor contamination
was removed using cleanadaptors [24]. The alignment was
performed using Bismark v0.6.4 [25] against the GRCh37.65
build of the human genome. The key aspects of the data
processing are described in Section 3.

3. Results and Discussion

We have optimized the RRBS library preparation protocol
and typically sequenced five multiplexed libraries on a
single flow-cell lane of the Illumina HiSeq 2000. We obtain
an average of 42 million paired-end reads per sample,
with a high unique mapping efficiency to the reference
human genome. Here we discuss the critical aspects of the
DNA sample preparation protocol and data processing and
comment on relevant troubleshooting approaches on an
RRBS background.

The TruSeq protocol recommends the use of AMPure
beads for purification of DNA fragments. However, this
method is optimized for fragments >100 bp length. Conse-
quently fragments shorter than 100 bp will be lost during the
purification process, resulting in a much lower coverage of
the genome (see Supplementary Figure S3). For the RRBS
protocol, selection of 40-220bp fragments (preligation)
is necessary and therefore, prior to adaptor ligation, we
recommend that DNA is purified using columns designed
to retain DNA fragments within this size range. After the
adaptors are ligated the fragment sizes are modified to 160—
340 bp in length.

TruSeq adaptor ligation at a 2.5: 1 (adaptor: DNA) ratio
resulted in a distinct band at 125bp in all our libraries
following PCR amplification (Figure 1), which we had not
observed in library preparations using the paired-end sample
preparation kit that preceded the TruSeq protocol. Since the
band is smaller than the DNA fragments excised from the gel,
we concluded this band was a product of PCR amplification.
Although we suspected the 125 bp band was due to adaptor-
adaptor dimerization, reducing the adaptor, DNA ratio did
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FIGURE 1: Representative analytical PCR of size-selected RRBS
libraries.The 160-340 bp size-selected RRBS libraries (represented
by a, b, and ¢) were amplified with either 15 or 20 cycles of
PCR to determine the optimal number of cycles for large-scale
amplification. PCR products were visualized on a 4-20% Criterion
gradient polyacrylamide TBE gel stained with SYBR green nucleic
acid gel stain alongside a 25 bp DNA ladder. For these libraries, 13
(a) and 14 (b and c) cycles were chosen for large-scale amplification.
The distinct band at 125 bp in all libraries was possibly due to
adaptor-adaptor dimerization.

not eliminate these bands. However, we successfully bypassed
this issue by performing a second round of gel size selection
following PCR amplification, removing the dimer from the
final library.

In addition to this residual adaptor contamination,
sequencing of size-selected RRBS libraries (160-340 bp) can
result in adaptor sequence reads at the 3" end of the shorter
fragments. These adaptor reads will interfere with alignment
and possibly contribute to misalignment events and false
methylation calls. We recommend removal of potential
adaptor contamination by in silico tools (e.g., cleanadaptors)
and assessment of the quality of the sequenced reads prior to
mapping and further analysis [24].

RRBS libraries are generated after digestion with the
methylation insensitive enzyme Mspl. Due to the direc-
tionality of the Illumina platform and the protocol used,
we obtained reads exclusively from Mspl digested 5'CGG
strands (the recognition motif of Mspl is C'CGG). The
result of this protocol is that our reads will always start with
CGG (when the first C is methylated) or TGG (when the
first C is unmethylated and is converted to T after bisulfite
conversion and PCR). This nonrandom base composition
is a unique property of RRBS libraries, which significantly
differs from normal genomic libraries. The Illumina RTA
algorithm uses the first 4 sequencing cycles of Readl to set
internal standards for fluorescence throughout the run, a
system based on the assumption that a relatively random
distribution of bases will be found in at least two of those
cycles. We were concerned that Mspl fragmentation and the
bisulfite chemistry together might confound this scheme as
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each of our fragment begins with CGG or TGG and therefore
cause suboptimal standardization for the run, potentially
leading to less accurate base calling.

The base composition features for our libraries are
illustrated in Figure 2, which shows the intensities for each
base channel over all machine cycles for two lanes: 2A (lane
4) contains regular multiplexed human genomic libraries
and 2B (lane 8) contains our multiplexed bisulfite-converted
libraries (note that the spikes present at 100 cycles in
both lanes correspond to the 6bp index sequence read).
The biased frequencies of C and T in the RRBS samples
are evident in Readl, as are the corresponding A and G
biases in Read2. This skewed base composition is a specific
feature of RRBS libraries as the other non-RRBS multiplexed
genomic libraries have a normal distribution of all four bases
(Figure 2(a)).

In order to counteract the possible bias one could
include an internal standard (genomic DNA that can be
expected to have random base composition in the first 4
cycles) at a sufficiently high level in the same lane or, as
a subsequent operation, to set the standards from a lane
containing clusters that are expected to be random. Although
the latter operation is an option of the RTA system, we
did not perform this step since it is not necessarily obvious
in advance which other lanes might contain appropriately
random samples or generate good-quality sequence data.
For that reason, postrun standardization using a designated
standard lane with the Illumina off-line base-calling appli-
cation (OLB) was performed. OLB applies the same base-
calling algorithm as RTA. We used the OLB program to
repeat base calling using intensity data derived from genomic
DNA (Figure 2(a)) as the standard. Detailed comparisons of
base calling performed by RTA and OLB for each sample are
illustrated in Table 1. For Readl, OLB showed an increase,
ranging from 1.8% to 3.5%, in the proportion of sequence
retained after quality trimming to a Phred score of 30
(fastq_quality_trimmer -t 30) compared to RTA. In contrast,
Read2 showed more variable results with some libraries
giving a decrease in retained bases: the difference ranged
from —1.6% to 0.9%. Further, OLB showed an increase in
the number of reads returned by CASAVA for both Readl
and Read2 for all RRBS libraries (Table 1). We then checked
the quality of the sequencing reads generated by RTA and
OLB with FASTQC (version 0.10) and found that the average
Phred score value is marginally higher for the reads derived
from OLB than RTA (Figure 3).

After base calling we obtained, for example, a total
55.3 Gb of sequence from one lane and 32.8, 49.4, 60.0,
27.5, and 41.7 million paired-end sequence reads for each
of the five libraries, which ensures high coverage of CpG
sites in the reduced representation genome (Table 2). The
variation in read numbers led us to investigate the number
of undetermined indices during base calling. We found
that a total of 13.2 million reads had undetermined indices
(for both Readl and Read2), being 10.9% of the total
reads obtained. The genomic DNA control lane used by
OLB had a total of 5.5% undetermined reads, which could
suggest that the RRBS library contributes to more misreads
during the index sequence read cycles, perhaps through more



Journal of Biomedicine and Biotechnology

Percentage of all intensities lane 4
100 T T T T

90 b

80

70

60

50

(%)

40

30

20

10

O 1 1
0 50 100 150 200 250
Cycle number
- A - G
-o— C - T

()

Percentage of all intensities lane 8
100 T T T T

90 b

(%)

0 I

200

0 50 100 150 250
Cycle number

- A - G

-o— C - T

(b)

FIGURrE 2: Comparison of base-calling between regular genomic libraries and RRBS libraries. Relative intensities for each base channel are
shown across the 200 cycles of a 100 bp paired-end HiSeq 2000 sequencing run. A. Regular multiplexed human genomic libraries, lane 4. B.

Multiplexed RRBS libraries, lane 8.

TaBLE 1: Comparison between base calling performed by RTA (real-time analyzer) and OLB (off-line basecaller) of multiplexed samples.

Sample ID Number of Number of Percentage of change Number of Number of Percentage of change
bases after RTA  bases after OLB (RTA versus OLB) reads after RTA  reads after OLB (RTA versus OLB)

Readl

1 1520286198 1548285294 1.8 16377421 16503971 0.8

2 2282620124 2350814836 3.0 24702835 25201462 2.0

3 2753391480 2846632920 3.4 30043201 30847092 1.7

4 1280388372 1325584268 3.5 13754015 14152462 2.9

5 1837282806 1881566740 2.4 20849236 21178885 1.6
Read2

1 1512562937 1503732114 -0.7 16377421 16503971 0.8

2 2214536843 2212529249 —0.1 24702835 25200712 2.0

3 2621636705 2631071280 0.4 30043201 30847092 2.7

4 1265479416 1276840465 0.9 13754015 14152462 2.9

5 1516530411 1492797800 -1.6 20849236 21178885 1.6

mispriming. The extent to which index sequence misreading
occurs with different libraries may vary and may contribute
to variable numbers of reads generated for each. Moreover,
accurate quantification of the libraries and pooling the
different libraries in equimolar ratio could play an important
role in multiplexed runs to achieve similar sequencing yields
for each indexed sample.

Previously, we described a pipeline for the efficient pro-
cessing of RRBS data for methylation analysis [24]. Following
a similar strategy, we preprocessed the data and aligned
the reads against the complete human reference genome
(NCBI GRCh37 build) using the bisulfite aligner Bismark
[25] and contrasted the mapping performance of both RTA
and OLB derived data (Table 3). We did not observe major
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FIGURE 3: Per base sequence quality of sample 2 as generated by FASTQC for the dataset obtained from RTA base calling (a) and OLB base
calling (b). The yellow box plots (red bar: median, box: interquartile ranges 25-75%, and whisker: 10-90% percentile) show the base-calling

quality scores across all sequencing reads of sample 2. The blue line indicates the mean quality score. The other samples had similar per base
sequence quality.

TaBLE 2: Details of data generated for multiplexed RRBS libraries.

Sample ID Adaptor Raw. data includling After RTA ba?e calling  Sequence vzolume Uncompressed, 2 Paired—ertd
index ID cif files (Gb) (Gb) (Gb) reads (Gb) reads (10°)

1 1 3.30 8.6 32.8

2 3 4.99 12.9 49.4

3 8 320 55.3 6.06 15.7 60.0

4 9 2.78 7.2 27.5

5 10 4.21 10.9 41.7

"RTA uses the cif files to perform the base calling and produce. bcl files; the samples are not demultiplexed at this stage.
2CASAVA performs the demultiplexing and uses the. bl files to generate FASTQ files for each of the samples.
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TasLE 3: Comparison of mapping performance between RTA and OLB datasets.
Sample ID RIA OLB
Unique mapping (%) Uniquely aligned reads Unique mapping (%) Uniquely aligned reads

1 71.2 11513092 71.9 11681235

2 59.4 13998639 58.3 13945432

3 66.5 18785673 55.3 15940503

4 71.4 9603345 71.9 9907812

5 63.4 11296038 63.8 11508956

' The mapping runs were performed on a Mac Pro with 64 bit duo quad core Intel Xeon processors and with 22 Gb RAM running Mac OS 10.6. The samples
were mapped using Bismark v0.6.4 against the GRCh37.65 build of the human genome.

differences in mapping efficiencies between the datasets,
except decreased mapping for sample 3 on the OLB data. This
analysis shows that it is worthwhile assessing the benefits of
running OLB for each sequencing run for libraries that have
significantly nonrandom base composition (e.g., RRBS) to
ensure the quality of the data obtained. However, the choice
of which dataset will be processed for further analysis will be
based on the extent of improvement in the number of high-
quality reads retained and the mapping efficiency. Our results
suggest that comparing the performance of each sample (on
OLB and RTA datasets) and then choosing the samples with
higher quality and better mapping in combination from both
datasets will maximize the data returned from an individual
library after demultiplexing.

Progressive refinements in the instruments and sequenc-
ing chemistry have extended the lengths of reads and these
changes have been accompanied by updates to the analytical
software. Consequently changes have been made in the
header lines of the FASTQ output files: the tile numbering
has been changed and the quality codes have switched from
an [llumina-defined scheme to that of Sanger [31]. Examples
of FASTQ files from two different generations of machines,
chemistry, and software are shown in Supplementary Fig-
ure S4. While these changes may seem minor, they can
pose issues with specific tools for further analysis of the
data, for example, graphical quality checks according to
tiles (SolexaQA [32], or the methylation analysis of CpG
sites. Differences in header lines between different files can
confound programs used in further data processing. Hence,
it becomes necessary that appropriate changes are made
in scripts that interface with programs or that adequate
flexibility is written into programs or scripts in order that
they work with the data generated from the different versions
of the chemistry and software.

4. Conclusions

Although the original RRBS methodology is well described,
multiplexing such libraries is relatively new and the unique
challenges associated with it have not been previously
described. It will become increasingly desirable to do
multiplexed (indexed) runs in the future for reduced
representation and smaller genomes as the coverage and

output from the sequencing run is increasing rapidly. How-
ever, methylation sequencing is more complex compared to
other methods, so modification of the standard protocol
is necessary. We have illustrated a successful strategy to
generate high-quality methylation data from multiplexed
runs. The challenge will however remain for molecular
biologists to analyze and interpret the data as the volume of
the data will also increase exponentially and computational
tools will need to be updated in parallel with the advances in
sequencing platforms and chemistry.

Abbreviations

RRBS: Reduced representation bisulfite sequencing
NGS: Next generation sequencing

RTA: Real time analyzer

OLB: Off-line base-calling application.
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