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Abstract

Directed evolution has been used for decades to engineer biological systems at or below the 

organismal level. Above the organismal level, a small number of studies have attempted to 

artificially select microbial ecosystems, with uneven and generally modest success. Our theoretical 

understanding of artificial ecosystem selection is limited, particularly for large assemblages of 

asexual organisms, and we know little about designing efficient methods to direct their evolution. 

Here, we have developed a flexible modeling framework that allows us to systematically probe any 

arbitrary selection strategy on any arbitrary set of communities and selected functions. By 

artificially selecting hundreds of in-silico microbial metacommunities under identical conditions, 
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we first show that the main breeding methods used to date, which do not necessarily let 

communities to reach their ecological equilibrium, are outperformed by a simple screen of 

sufficiently mature communities. We then identify a range of alternative directed evolution 

strategies that, particularly when applied in combination, are well suited for the top-down 

engineering of large, diverse, and stable microbial consortia. Our results emphasize that directed 

evolution allows an ecological structure-function landscape to be navigated in search for 

dynamically stable and ecologically resilient communities with desired quantitative attributes.

INTRODUCTION

Harnessing microbial communities is a major aspiration of modern biology, with 

implications in fields as diverse as medicine, biotechnology, and agriculture 1. Several 

groups have demonstrated that small synthetic communities can be engineered to carry out 

functions such as biodegrading environmental contaminants 2–4, manipulating plant 

phenotypes 5, or producing biofuels 6,7, among others 8,9. Despite these success stories, 

engineering consortia from the bottom-up (i.e. “rational design”) remains challenging. The 

function of a consortium is generally affected by species interactions, which are difficult to 

predict from first principles and expand rapidly with species richness 10–16. Perhaps more 

importantly, microbial communities are rapidly evolving ecological systems, and their 

engineered functions can be disrupted by environmental fluctuations, invasive species, 

species extinctions, or the fixation of mutant genotypes 17–20.

Rather than fighting these eco-evolutionary forces, an alternative “top-down engineering” 

approach seeks to leverage ecology and evolution to find microbial consortia with desirable 

attributes 20–26. Most work has focused on enrichment approaches 22,25–28, but a small 

number of studies have gone further and empirically demonstrated that ecological 

communities can respond to artificial selection applied at the level of the community itself 
29,30. This strategy has been deployed to iteratively optimize complex microbial 

communities that modulate plant phenotypes 1,30–34, animal development 35, or the physico-

chemical composition of the environment 36–40. Despite its conceptual elegance, the success 

of artificial selection at the microbiome level has been mixed and generally modest, and 

artificial selection has not yet been widely adopted in microbiome engineering 1,41.

A limiting factor is that we do not know how to design efficient artificial selection protocols 

at the microbial community level. The selection methods used in early studies (e.g. 30,42) 

were inspired by even earlier work on artificial group selection of either single-species 

populations 43–45, or two-species communities of sexually reproducing animals 29,46. In 

these studies, new generations of communities were created through either: (i) a sexual 

reproduction-like “migrant-pool” strategy, where the communities with the highest function 

were mixed together and then used to inoculate a new generation, or (ii): an asexual-like 

“propagule” reproduction strategy, where the best communities were selected and then 

propagated without mixing 29,30,36. All subsequent microbial ecosystem-selection studies 

followed suit and employed variations of those two methods.

But are selection strategies originally developed for small populations of sexually 

reproducing organisms well suited to efficiently direct the evolution of much larger and 
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diverse communities of generally asexual microbes? Are there other alternatives? To address 

these questions, we set out to explore the effectiveness of all previous selection strategies we 

could find in the literature. To do this, we evaluated them in parallel on the same set of in-
silico microbial communities and for a number of different functions. We show that all of 

these protocols do worse than a simple screen, a no-selection control that has been largely 

missing from previous microbiome selection experiments. The limitations of past protocols 

led us to propose an alternative framework for top-down microbial community engineering 

that is based on the directed exploration of the ecological structure-function landscape (i.e. 

the map between community composition and community function), through iterated rounds 

of randomization and selection 10–12,15,47,48. This approach is inspired by the directed 

evolution field, where proteins and RNA molecules are evolved in the laboratory through a 

guided random exploration of their genotype-phenotype maps 49,50. In the second part of 

this paper, we address how these structure-function landscapes can be systematically 

navigated in search for stable communities of high function.

RESULTS

Migrant-pool and propagule breeding strategies are limited in their ability to breed high-
functioning microbial communities.

A small number of studies have attempted to breed ecological communities (including two 

from our own group), using different variations of the migrant-pool and propagule methods 

of selection 30,32,33,36–38,51. To better understand the limitations of the empirical strategies 

used in the literature, we first set out to systematically evaluate them under identical 

conditions. To do this empirically, one would have to apply all protocols in parallel to the 

same set of communities (hereafter the “metacommunity”29), ideally, in replicate 

experiments and for various different metacommunities. This would require a prohibitively 

large number of experiments, each with its own control lines. We therefore resorted to in 
silico communities, which can provide the required throughput and allow us to rigorously 

compare a large number of selection strategies. For that purpose, and inspired by the work of 

Lenton and Williams 51,52 and others 53–55, we have constructed a flexible computational 

modeling framework (implemented through a Python package, ecoprospector; Fig. 1A, 

Methods) that allows us to implement arbitrary community-level selection strategies on 

arbitrarily large populations of arbitrarily diverse in silico communities (Methods). Microbes 

within a community grow and interact with each other via resource competition following 

the Microbial Consumer Resource Model (MiCRM) 56–59 (Methods). Despite its simplicity, 

the MiCRM exhibits emergent functional and dynamical behaviors that recapitulate those 

observed in both natural 58 and experimental communities 60,61.

Each simulation considers a metacommunity of 96 replicate habitats, all containing the same 

initial composition of 90 resources (Methods). Each of these habitats is seeded with ninoc = 

106 cells, randomly drawn from a regional pool of 2100 species that is unique for each 

habitat (Methods and Supplementary Methods). Each species is represented by a different 

randomly sampled vector of nutrient utilization parameters (Methods). A typical community 

is seeded with 228±14 (Mean±SD) species. The inoculum size and species richness we used 
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are a lower bound for most microbiome enrichment communities (Supplementary Methods) 
60.

Once inoculated, all 96 communities in the metacommunity are allowed to grow for a fixed 

batch-incubation time t (Methods), at the end of which we measure their function F. We 

have tested several functions of varying complexity (Supplementary Methods), and the 

majority of our findings are consistent throughout. For that reason, we focus on the simplest 

function and discuss the rest in the Supplementary Methods. The simplest case is a 

community function that is additive on species contributions: F = ∑iϕiNi, where ϕi and Ni are 

the per-capita contribution of species i and its abundance, respectively (Methods). This 

function is by assumption redundantly distributed in the community and can be carried out 

by all species in isolation. In the Supplement, we show that eliminating this redundancy 

assumption does not qualitatively change our results. Also for simplicity, we assume that the 

per-capita contribution of a species is fitness neutral, an assumption that is relaxed in the 

supplement.

At the end of each batch-incubation a subset of those communities with highest F are 

selected to breed the next generation, according to the selection strategy that is being 

evaluated (Fig. 1A–B). This involves transferring cells and leftover nutrients into new 

habitats with all nutrients replenished (Methods). In addition, for the migrant-pool strategies, 

each offspring community is seeded by multiple parents, and so we also have dispersal. 

Because cells are randomly sampled, this step introduces stochasticity in the population 

dynamics that may cause fluctuations around any dynamical attractor. We also note that 

species are not allowed to evolve (i.e. change their uptake rates) at any point during the 

simulations.

Strategies from previous experimental work were adapted to our specific standardized 

conditions (e.g. 96 communities, incubation time, dilution factor, etc.) from the papers 

where they were originally used (Methods; Supplementary Table 1). To evaluate the 

effectiveness of these adapted strategies under our in silico conditions, we applied each of 

the twelve selection protocols to the same starting metacommunity for a total of 20 rounds 

of artificial selection (i.e. community “generations”). To evaluate the stability of the selected 

function when community-level selection is not constantly applied, we passaged all 

communities without selection for an additional 20 transfers, giving them time to reach 

equilibrium (Fig. 1B).

To illustrate a typical outcome, we plot in Fig. 1C–D a representative artificial selection 

(AS) line where we used the original migrant-pool strategy introduced in ref 30. For 

reference, we also show the outcome of a random selection (RS) control, where 

communities were chosen randomly for reproduction (also adapted from that used in 30). As 

shown in Fig. 1C, the mean function in the AS line increases more than in the RS control, 

indicating a positive response to selection. Importantly, however, the function of the highest-

performing community (Fmax) in the AS line is lower than in a third “no selection” (NS) 

control line 43, where each community in the starting metacommunity is passaged without 

community-level selection (Fig. 1D; Supplementary Fig. 1). In other words, a simple 

“ecological prospecting” procedure, where we screen 96 stable enrichment communities for 
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function and select the best (e.g. 62) would have found a better community than the multiple 

rounds of artificial selection we applied at the community level. We note that a NS control 

line has been missing in all microbiome selection experiments we are aware of.

This experiment illustrates that the mean function in the metacommunity can increase 

simply because of selection against the worst-performing communities. Importantly, the goal 

of top-down microbiome engineering is not to improve the mean function, but to find 

communities with higher functions. Therefore, we propose that the difference between the 

function Fmax of the highest-performing community (hereafter referred to as the “top 

community”) in the artificial selection line relative to a no selection control (Q=Fmax[AS]-

Fmax[NS]) is a better metric to quantify the success of a selection strategy for top-down 

engineering purposes. Values of Q>0 indicate a successful selection experiment, whereas 

Q<0 indicates an unsuccessful one. Using this metric, we evaluated the success of the twelve 

propagule and mixed-pool protocols used in previous empirical studies, including our own 

(Fig. 1E–F) 30–33,35–40. To obtain a statistically sound assessment, we applied each selection 

method to N=100 independent artificial selection lines, each with their own NS and RS 

controls (where applicable; Methods). All randomly sampled parameters, including the per-

capita species contribution (ϕi), 96 regional species pools, the initial resource environment 

(Rɑ) and the initial species abundances (Ni) were resampled for each of the 100 replicates 

but were kept constant across selection methods (and so the statistical analysis is always 

pairwise). For all twelve protocols, the mean function increased in response to selection 

relative to the NS control (the enrichment screen; Fig. 1E) and the RS control 

(Supplementary Fig. 2). Yet, in line with what we observed in Fig. 1D, all protocols failed to 

improve Fmax relative to the NS control (Fig. 1F)

Selecting communities before they are stable is inefficient.

As is the case in all previous artificial selection experiments, our communities are 

propagated in serial batch-culture. Within each batch incubation, the community goes 

through an ecological succession. At the end of each batch, a small number of cells are 

randomly drawn from the community and used to seed a new habitat where all nutrients 

have been replenished, starting a new batch. Inspired by Doulcier et al, we may see each 

succession as a “developmental” process at the community level. Communities at the end of 

a batch incubation can be thought of being in an “adult state” and ready for reproduction, 

whereas communities at the beginning of an incubation are in an “infant state” 53. In absence 

of artificial community-level selection, our in silico enrichment communities eventually self-

assemble into a dynamical state where successions are identical every generation 

(Supplementary Fig. 3). Note that this is due exclusively to population dynamics, and that no 

evolution or migration is necessary 60,63–65. We say that communities are “generationally 

stable” when the successions are identical across community generations and, therefore, the 

composition of an adult “offspring” community is the same as that of its adult “parent”. In 

our simulations, we typically need >5 generations to approach a generationally stable state 

(Methods).

We speculated that a reason why the selection strategies we evaluated above may be failing 

to improve Fmax is that, following the original protocols, we started selection at the end of 
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the first batch when the communities are not yet generationally stable. Consistent with this 

hypothesis, we found that the community rank (from the highest to lowest function) in the 

first generation is a poor predictor of the rank of generationally stable communities 

(Supplementary Fig. 4; Spearman’s ρ=0.423, p < 0.01, N=96). In other words, artificial 

selection in early generations favors communities that had a high function early on, but 

which end up having mediocre functions once they are generationally stable (Supplementary 

Fig. 4). This explains why Q<0 for the vast majority of strategies. In Supplementary Figs. 5–

7, we further show that the large population sizes (N=106) of the infant communities in our 

simulations (which are in the lower end of what is common in experimental microbiome 

selection) and the lack of heritability away from equilibrium also contribute to the failure of 

the propagule and mixed pool methods to improve Fmax. Both of these methods represent a 

small subset of all possible ways one could generate an offspring population from the 

selected members of the parent population. Therefore, we asked if other methods could be 

used that would increase the success of artificial selection to engineer communities from the 

top-down.

An artificial community-level selection strategy inspired by directed evolution of 
biomolecules.

Directed evolution is a form of artificial selection that has been applied for decades to 

optimize molecular and cellular phenotypes 49,66,67. In its most common implementation, 

directed evolution is an iterative process that navigates the genotype-phenotype map in 

search of a genetic variant of high function 50,68,69. The process starts by screening a library 

of genetic variants. Those that are closest to the desired phenotype are selected and their 

mutational neighborhood is then randomly explored through mutagenesis or recombination, 

in search of new variants with even higher function. The best among those are selected, and 

the process can be continued as many times as needed 68. We reasoned that generationally 

stable communities of high function can be similarly found through an iterative, guided 

exploration of their ecological structure-function landscape (Fig. 2A).

To that end, we designed a directed evolution approach which consists of the following 

sequence of steps (Fig. 2A): (i) An initial library of communities is created by inoculating 

identical habitats from different species pools, and serially passaged in the absence of 

(community-level) artificial selection to allow all communities to stabilize. (ii) The 

generationally stable communities are then screened for a community-level function of 

interest, and the highest-performing community is selected. (iii) The selected generationally 

stable community continues to be passaged intact into the offspring generation, retaining its 

function and composition. The rest of the offspring generation will consist of proximal 

“compositional variants”, which have been subject to some perturbation (using one of a 

variety of possible methods presented below) in order to generate random differences in 

community composition relative to their ancestor. (iv) The offspring communities are 

allowed to reach their own generationally stable equilibria; and (v) the now generationally 

stable offspring communities are scored for function (Fig. 2A). The process can be repeated 

as many times as needed.
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How may we generate proximal compositional variants of the best parental community? 

Various approaches are available including adding or removing species, in bulk or in 

isolation. In Fig. 1, the large population sizes of infant communities (n~106) led to a low 

between-population variation in the selected function (see Supplementary Discussion), thus 

failing to generate a diverse enough pool of proximal compositional variants (Supplementary 

Fig. 5). We reasoned that a more stringent propagule bottleneck may be able to better 

explore the structure-function landscape, a process that has been successfully applied in the 

past to converge on simpler, functional consortia by dilution-to-extinction 70. To test this 

idea, the top community from a stable parent metacommunity was selected after 20 serial 

transfers (with dilution factor = 103×), and then used to seed a new generation by subjecting 

it to 95 separate harsh dilution shocks (dilution factor = 108×), which led to a mean 

bottlenecked “infant” population size of n=9.76±3.12 cells (Mean±SD) (Fig. 2B). The 95 

resulting “offspring” communities differed from each other in which species from the 

parental community were randomly sampled in the dilution shock. When subject to serial 

batch culture, they converged to different generationally stable compositions after 20 

additional generations (Supplementary Fig. 8). Since they vary in their composition (they are 

compositional variants), the stable offspring communities also had different functions and 

some were higher than their parent’s (Fig. 2B).

Consistent with our hypothesis, (Fig. 2C), the propagule method works best at exploring the 

structure-function landscape and improving Fmax when we use harsh bottlenecks (starting 

population sizes of order n~10) but it fails at exploring the landscape when the number of 

cells after the bottleneck is above n~103. For mean bottleneck sizes around n~1, community 

diversity is too low and the function diminishes. The hump-shaped dependence of Fmax on 

the dilution strength shown in Fig. 2C is consistent with the findings of dilution-to-

stimulation experiments 70.

Besides bottlenecks, many other community perturbations can be applied to explore the 

proximal ecological space in search for compositional variants with high function. For 

instance, we could create these variants by invading the top parental community with a 

single, high-ϕi species (i.e. a “knock-in”) (Fig. 2E) 71. One could also create variants of a 

community by selectively eliminating (“knocking-out”) one of its members (e.g. a species 

with low-ϕi, or one which competes with a higher-contributing species) (Fig. 2F). In 

practice, entirely knocking out a species from a natural habitat is challenging, but tools exist 

for the depletion or knock-down of species from natural and synthetic communities 72–76. 

Larger and more blunt perturbations are also possible: for instance, we could create a library 

of variants by invading the top parental community with a randomly sampled set of species 

from multiple different regional pools (i.e. a set of migration events) (Fig. 2G), or by 

coalescing the top parental community with a library of other generationally stable 

communities 77,78 (which is a form of migrant-pool method) (Fig. 2H). Another approach is 

to introduce a library of small random shifts to the nutrient composition, which leads to a 

rearrangement in species composition and therefore to different functions (Fig. 2I). We have 

applied all of these perturbations to N=100 independent lines (Methods), and in all cases 

they were successful at producing one or more dynamically stable community variants with 

higher function than the best member of the parent population (Figs 2D–I).
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Iteratively combining bottlenecks and migrations to optimize community function selects 
for high-functioning communities that are ecologically stable.

Some of the perturbations in Fig. 2 work by eliminating taxa that are deleterious to 

community function (e.g. the single species knockouts or the dilution shocks). Others work 

by adding taxa that are beneficial to community function (e.g. single species knock-ins, or 

multi-species invasion from the regional pool). We hypothesized that a method that 

combines random elimination of resident strains with random addition of new strains could 

help us find high-function variants, as such a method could simultaneously eliminate 

deleterious species and add beneficial ones. Although random deletion can also eliminate 

beneficial strains and random addition may contribute deleterious ones, by “tossing the dice” 

a sufficiently large number of times we have a chance to find one or more variants where the 

combined effects aligns in the same beneficial direction, reaching high-function regions of 

the ecological space inaccessible through either method alone.

To test this hypothesis, we directed the evolution of a metacommunity (N=96 communities) 

using either a species deletion protocol (the dilution bottleneck in Fig. 2D), a species 

addition protocol (the migration we introduced in Fig. 2G), or a protocol that combined both 

perturbations simultaneously (Fig. 3A; Methods). As we show in Fig. 3B–D, the strategy 

that combines both perturbations finds a higher-function community than the two 

perturbations alone. When we replicated this experiment 100 times with different 

metacommunities, we found that the combination of both perturbations produced a 

significantly higher Q than either the dilution shock (Q = 641±163 vs 155±95, Mean±SD, 

two-sided paired t-test, p<0.01, N=100) or the migration protocol (Q = 641±163 vs 

438±152, Mean±SD, two-sided paired t-test, p<0.01, N=100) (Fig. 3E).

An important strength of using directed evolution to engineer microbial communities from 

the top-down is that we find high-functioning communities that are dynamically stable. 

Because, by design, the function we are selecting for is additive and the per-capita 

contribution of each species (ϕi) is not affected by other species, one could argue that a 

“synthetic” bottom-up approach where we just mix high-contributing taxa would have 

worked equally well (if not better) than our artificial selection protocols. This ‘rational 

design’ is intuitively appealing given that the directed evolution protocol used in Fig. 3D 

selects for communities enriched with high ϕi species (Supplementary Fig. 9–10). While this 

may be true, since the communities in Fig. 3 have been formed by recurrent invasions from 

the regional species pool, they are likely to be more robust to external invasions than 

“synthetic” bottom-up consortia. To test this hypothesis, we went back to the artificial 

selection line shown in Fig. 3D, and created a “bottom-up” synthetic consortium by mixing 

together the n species with the highest ϕi in the regional pool (where n is the number of taxa 

in our artificially selected community, allowing us to control for the effect of biodiversity on 

functional stability 79) (Fig. 4A; Methods). We then allowed this synthetic community to 

stabilize in the same environment and propagation conditions that were used in the artificial 

selection line.

As shown in Fig. 4B, the generationally stable synthetic community has indeed higher 

function than the directed evolution experiment. Yet, when we invaded both communities 

with the same random sample of species from the regional pool (containing 100 cells and, 
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on average, 45 species; Methods), the function of the synthetic community collapsed below 

the artificially selected community (Fig. 4B). By averaging over 95 independent invasion 

experiments, we obtained the average Resistance (R) (a metric of ecological stability, which 

we calculated as in Shade et al 80), as well as the average community function after invasion 

(F*) (Supplementary Methods). As we anticipated, the artificially selected community was 

more resistant to invasion (considering either metric) than the synthetic consortium 

(F*=1077±48 vs 114±314, and R=0.974±0.072 vs 0.054±0.122, respectively; Mean±SE, 

p<0.01 in both cases; two-sided paired t-test, N=95) (Fig. 4C–D). The synthetic consortium 

also has lower resistance than the one found by an enrichment screen (the top community in 

the NS line: R=0.898±0.150 vs 0.054±0.122, respectively; Mean±SE, p<0.01; two-sided 

paired t-test, N=95) (Fig. 4C–D).

When we repeated every step of this experiment for the remaining 99 artificial selection 

lines in Fig. 3E, we found that these results were generic. The function of the bottom-up 

synthetic consortia (Fsyn) is generally higher than the Fmax found through directed evolution 

and enrichment screens (Fig. 4E). However, the synthetic communities are less resistant to 

invasion than the artificially selected communities (Mean(R)=0.867±0.045 vs 0.217±0.119, 

and Mean(F*)=1261±190 vs 530±309 (Mean±SE) respectively, p<0.01 in both cases, two-

sided paired t-test, N=100) (Fig. 4F). Importantly, the directed evolution communities were 

more resistant to invasion, on average, than those found through enrichment screens, even 

though resistance to invasion was not directly selected for (R = 0.867±0.045 vs 0.793±0.087 

and Mean(F*) =1261±190 vs 660±180 (Mean±SE), p<0.01 in both cases, two-sided paired 

t-test, N=100) (Fig. 4F). This indicates that the repeated migrations that are part of the 

protocol in the directed evolution experiment confer the selected communities with higher 

stability to this perturbation (though not necessarily to other perturbations, Supplementary 

Fig. 9). Our results also suggest that a simple screen may allow us to find a more 

ecologically stable (if also lower functioning) community than a synthetic consortium, at 

least when ecological stability is not engineered into the consortium.

DISCUSSION

Directed evolution can be used to iteratively optimize the function of microbial 

communities, through sequential rounds of exploration and selection. Previous approaches to 

engineer communities from the top-down include enrichment (which is often followed by a 

perturbation such as a bottleneck, to reduce community complexity) 20,22–24,28,81,82, and 

selective breeding by artificial selection 1,30–33,35–41. The directed evolution approach we 

have studied here combines components of both approaches: the iterative search that is 

inherent of the latter, with the idea of building stable consortia and exploring compositional 

variants of the former. In addition to inducing evolutionary changes in the resident species, 

the methods to generate compositional variants and explore the ecological structure-function 

landscape include many ecological perturbations that randomly sample new species in and 

out of the community. For instance, bottlenecking (also known as dilution-to-extinction 
21,22,27,70,81,83) is a blunt method for randomly removing “deleterious” taxa, which has the 

cost of also eliminating potentially beneficial species. Horizontal immigration from the 

regional pool may create variants that contain new and potentially “beneficial” species, but it 

has the cost of potentially adding species with deleterious effects. A selection method that 
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combines the two with strong selection is able to compensate for the specific weaknesses of 

each, leading us to high-function regions of the ecological structure-function landscape that 

were not reached by any of the two individual strategies alone (Fig. 4). These communities 

are also ecologically resistant to invasions compared to both enrichment and synthetic 

communities assembled by artificially mixing together species with high per-capita function.

As is the case for any computational model, ours has simplifying assumptions and, 

therefore, limitations. We discuss them at length in the Supplementary Discussion. Perhaps 

the most notable one is that, for simplicity, we have focused on a function that is additive on 

the species contributions and which carries no cost at the individual level. We relax both 

these assumptions in the Supplementary Methods. We show that our main findings also hold 

when we work with non-additive functions, including those modeling realistic community 

objectives such as resisting invasion from an undesired organism or the elimination of a 

specific metabolite (Extended Data Fig. 1). In addition, our main results were found to hold 

true under alternative ecological scenarios, which include growth media of different richness 

and interactions ranging from pure nutrient competition to cross-feeding (Extended Data 

Fig. 2); alternative functional responses by the species in our communities (Extended Data 

Fig. 3); different methods of sampling taxa from the environment (Extended Data Fig. 4); 

and various distributions of per-capita species contributions to the community function: from 

highly redundant to rarefied (Extended Data Fig. 5). Finally, we also show that our results 

hold true when species contributions to the function under selection are not fitness neutral 

(Extended Data Fig. 1). Although many microbial functions, such as the secretion of 

metabolic byproducts and overflow metabolites do not incur any cost to their producer 84, 

many other functions are costly for the contributing cell 85.

On this note, it is important to note that our simulations do not include within-species 

evolution. It is thus possible that, on an evolutionary timescale, the directly evolved 

communities would be vulnerable to “cheater” mutants which forgo the cost of functional 

contributions in favour of faster growth, outcompeting their direct ancestors as would be 

predicated by social evolution theory 85. The timescale over which evolution would degrade 

community function is unknown, through recent community evolution experiments suggest 

that evolution is heavily constrained when species are embedded within a complex 

community 86. Furthermore, recent artificial community-level selection experiments suggest 

that one may be able to preserve a costly community function that may be prone to 

exploitation by cheaters (the expression of an extracellular enzyme) by continuously purging 

those communities where cheating phenotypes arise (i.e. purifying selection at the 

community-level)40.

It is important to highlight that the mechanisms we have considered here to generate 

variation between communities are all purely ecological, as we do not allow evolution within 

species. Taken as a unit, one can consider communities to be evolving: we are introducing 

heritable variation between them and then selecting upon that variation, and this results in 

changes in the genetic makeup of the communities (i.e. their metagenomes) as well as in 

their attributes 55,87. Explicitly incorporating within-species evolution into our framework 

(for example by allowing new mutants to arise within each growth cycle) represents an 

exciting future direction for this work and would allow us to explicitly explore the complex 
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trade-offs between community function, ecological stability and evolutionary resilience. We 

hope that our results will not only clarify the limitations of previous approaches to 

artificially selecting communities, but also motivate the development of new empirical 

methods for the directed evolution of microbial communities.

METHODS

The ecoprospector package.

All the results presented in this paper are generated using ecoprospector, a new freely 

available Python package for implementing artificial selection of microbial communities 

using customisable protocols. The package builds off the recently published community-
simulator package (which is a dependency of ecoprospector) 88 and implements protocols in 

a modular manner that allows an extremely large parameter space of possible protocols to be 

explored. The parameters for all simulations implemented in this paper are stored in csv files 

(Methods).

Microbial Consumer-Resource Simulations:

We model microbial community dynamics using the Microbial Consumer Resource Model 

(MiCRM) 56–59 (See Supplementary Methods). The MiCRM is a minimal model for 

microbial communities growing in well-mixed resource limited environments (such as in 

batch culture or in a chemostat). Briefly,the MiCRM models the change through time in i) 

the abundance of a set of consumer species denoted by Ni and ii) the concentration of a set 

of resources denoted by Rα. In the simulations presented in the main text of this paper 

consumer and resource dynamics can be described by the following sets of equations:

dNi
dt = Ni∑α

Rαciαn

1 + Rαciαn /σmax
(Eq.1)

dRα
dt = − ∑jNj

Rαciαn

1 + Rαciαn /σmax
(Eq. 2)

In this version of the MiCRM ecological interactions between species arise from the uptake 

of resources to the environment and the dependence of resource import rate on resource 

concentration follows a Hill (type-III) function: 
Rαciαn

1 + Rαciαn/σmax
 where ciα is the uptake rate 

of species i for resource α, σmax is the maximum resource uptake rate and n is the hill 

coefficient for the functional response. For all simulations in the main text we have set σmax 

= 1 and n = 2. A more general version of this model can be found in the Supplementary 

Methods and the full list of parameters are in Supplementary Table 2. There we also show 

that our results are not limited to the simplification presented here but hold true for different 

functional responses (Extended Figs. 1–5).
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Initial conditions:

All simulations are done considering a metacommunity made up of multiple independent 

communities each of which is simulated using the MiCRM. In order to set the consumer 

uptake rates across the metacommunity and the initial resource and species compositions of 

each community, we have adapted the method for constructing random ecosystems from 

community-simulator. The parameters associated with this and the values we used are 

outlined in Supplementary Table 3 (adapted and expanded from Marsland et al 2020) and 

Supplementary Table 4. Unless otherwise specified these values are set to the default values 

used in the community-simulator package. These parameters will be referenced throughout 

the rest of the methods section.

Uptake rates:

In our simulations of consumer-resource dynamics, species differ solely in the uptake rate 

for different resources ciα. All ciα are sampled from the same probability distribution. In 

community-simulator ciα can be sampled from one of three different distributions: i) a 

Gaussian distribution ii) a Gamma distribution, or iii) a Bernoulli distribution with binary 

preference levels set by c0 and c1 (referred to as the binary model). Denoting the total uptake 

capacity of species i by Ci = ∑α ciα, these distributions are parameterized in terms of mean 

and variance in total uptake rate: μc = <Ci> and σc
2 = Var(Ci).

For our purposes none of these distributions were suitable because i) we wanted all ciα to be 

positive (unlike the gaussian distribution) ii) we wanted ciα of some resources to be 0 (unlike 

the gamma distribution) and iii) we wanted more than two possible values of ciα (unlike the 

binary model), To address these limitations, we introduced a new sampling method that 

combines the gamma distribution and the binary model. Under this approach ciα can be 

written as the product of X and Y, where X is sampled using the binary model and Y is 

sampled from a gamma distribution. The mean and variance of Y is constrained to values 

that ensure that mean and variance of Ci are still μc and σc
2.

Specifically, under the binary model:

X = c0 + c1Z (Eq.3)

Where Z is sampled from the Bernoulli distribution with p =
μc

Mc1
, where M is the total 

number of resources (Supplementary Table 3). Therefore

Mean(X) = c0 + μc
M (Eq.4)

V ariance(X) = c1μc
M (1 − μc

Mc1
) (Eq.5)

Because ciα = XY, to ensure that μc = <Ci> and σc
2 = Var(Ci) we set:
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Mean(Y ) = μc/M
Mean(X) (Eq.6)

V ariance(Y ) = σc2/M − V ar(X)Mean(Y )2

V ar(X) + Mean(X)2 (Eq.7)

Initial resource conditions

All communities within a metacommunity are grown on the same set of M = 90 resources. 

In order to generate an arbitrary ‘rich’ medium, the initial abundance of each resource (Rα
0) 

is obtained by first sampling it from a uniform distribution between 0 and 1 and then 

normalizing Rα
0 so that the total resource concentration (∑αRα

0) is equal to Rtot = 1000. All 

communities within a metacommunity have the same Rα
0 for all α.

Initial consumer conditions.

Each simulation of a single metacommunity starts with H = 2100 possible species. Each of 

the 96 communities in a metacommunity is inoculated from a different regional species pool, 

by sampling ninoc cells from it. All species pools contain the same set of 2100 species but 

differ from each other in the distribution of species abundances (i.e., the ranks of species 

abundance differ across pools). As such, some taxa will be exceedingly rare in some species 

pools (and are therefore extremely unlikely to be sampled into that well during inoculation), 

while being common in others (making it more likely that they will be sampled in the wells 

inoculated from those). In practice this can be done experimentally by inoculating each well 

of a 96-well plate from a different environmental inoculum (i.e different aquatic and 

terrestrial communities from various natural and artificial sources: leaf litters, sewage, soil 

samples, or the built environment). We have shown in previous work that this strategy 

generates widely different starting communities at the species level 60, which exhibit 

sufficient functional variation to elicit a strong response to artificial community-level 

selection 40.

The abundance of each species i (where i ranges from 1–2100) in any one of the species 

pools (Ui) follows a power-law distribution with exponent a and probability density 

function:

P (Ui) = aUi
a − 1 (Eq. 8)

We use a power law distribution as natural microbial communities often follow power-law 

like abundance distributions 89. We set a to 0.01 as for our ninoc value this gives us 

communities at the start of our simulations with 225±12 (Mean±SD, for 96 communities) 

species, which is comparable to previous work (i.e 110–1290 ESVs in 60). In addition the 

rarefaction curves for our initial communities are qualitatively similar to rarefaction curves 

obtained from experimental studies (Supplementary Fig. 11). We have also confirmed that 

our results are robust to alternative methods for seeding the initial metacommunity 
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(Supplementary Methods, Extended Fig. 4). Cell counts are converted into initial species 

abundances Ni through a conversion factor ψ which we set at 106. This means that a value of 

ninoc = 106 cells is equivalent to a total abundance Ninoc = 1 (arbitrary units) in the initial 

inoculum. Because each community is inoculated from a different species pool (each with its 

own abundance distribution), the abundance of each of the H species differs across 

communities ensuring that our simulations start with compositional and functional 

variability (Fig. 2B).

Incubation.

Once the initial resource and consumer abundance has been set and the MiCRM parameters 

have been sampled a single community-level ‘generation’ is simulated by propagating the 

system forward for an incubation time t via numerical integration of dynamical equations 

(Eq. 1–2). During a batch incubation, resources are depleted (and not replenished) as the 

consumers increase in density. At the end of each batch incubation at time t the function of 

each community in the metacommunity is quantified (see following section) and the 

communities are ranked in terms of their function.

Serial Passaging.

During a single batch incubation, resources are depleted (but not replenished) as consumers 

grow on them. We do not impose any mortality within each batch period, consistent with 

recent empirical findings 60, and neither species nor resources are externally removed or 

supplied during an incubation period (as they would, for instance, in a chemostat). The 

batches are incubated for a period of time t, which, consistent with experimental practice, 

does not necessarily correspond to the time required to deplete all of the supplied nutrients. 

Rather, the length of the incubation time is a free parameter in our simulations, and it can be 

altered to improve the outcome of artificial selection, reflecting empirical practice 37. Within 

each batch period the community undergoes an ecological succession which is truncated at 

time t. With exception of the limit case when t goes to infinity and all resources are depleted 

(so growth stops), the species and resources do not reach a fixed stable equilibrium or 

climax within a batch. Nonetheless, when communities are subject to multiple rounds of 

passaging and incubation communities do converge to a batch or ‘generational’ equilibrium 

characterized by repeatable community dynamics following each round of dilution 

(Supplementary Fig. 3). We refer to this repeatable ecological succession as “generational 

stability” as it reflects convergence of communities to an identical composition at equivalent 

time-point within a batch (i.e. a community generation), without them being a climax 

community.

Community function.

The function F of each community is measured at the end of each generation In principle, 

any arbitrary community function can be chosen as the “phenotype” under selection. For 

example, one could consider the total biomass of the community, the species richness of the 

community, the distance of the abiotic environment from some target state, the resistance to 

invasion etc. In the main text of this paper, we have limited our analysis to a simple additive 

case:
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F = ∑iϕiNi (Eq. 9)

where ϕi is the per-capita contribution of species i and Ni is its population size. We sampled 

ϕi from a normal distribution of mean 0 and standard deviation σ = 1 so species can have 

both positive and negative effects on the function of interest. An example of a function that 

may be modeled in this manner is the production of vitamin B12 by the gut microbiome, 

which often benefits the host animal 90,91. Some species in the microbiome produce this 

vitamin, whereas others are known to degrade or uptake those beneficial molecules, 

competing with the host.

The choice of this sampling distribution for ϕi does not qualitatively impact our findings. For 

instance, in Extended Data Fig. 5 we repeat all of our simulations for other sampling 

methods where all ϕi are ≥ 0. These could correspond to other biologically realistic additive 

functions such as the total biomass of the community 38, the amount of light scattered on a 

specific wavelength 53, or the amount of an enzyme secreted into the environment 10. As we 

show on Extended Fig. 5, using this and other sampling distributions does not alter our 

findings in any significant manner. For each independent metacommunity simulation we 

sampled ϕi at the start of the experiment and then held the values constant (i.e. species were 

not “evolving” their ϕi trait).

Selection matrix.

After the function of each community has been measured, the ‘parental’ communities are 

‘passaged’ to produce a new set of ‘offspring’ communities. The metacommunity size is 

kept constant (so the number of offspring communities is equal to the number of parent 

communities). Passaging simulates the pipetting of bacterial culture into wells containing 

fresh media (such as from one 96-well plate into another). Which parental communities are 

selected to contribute species to each offspring community depends on its ranked function. 

This is specified by a selection matrix S whose element Suv determines the fraction of cells 

from the parental community of rank function v that are used to inoculate offspring 

community u (Supplementary Fig. 1).

In principle any arbitrary fraction of a parent community of rank v can be transferred to 

offspring community u. For the simulations presented in this paper we have set a standard 

dilution factor d and all non-zero elements of the S matrix are set to 1/d. Note that the 

selection matrix S is similar to the transfer matrix f used in the community-simulator 
package 88 except the indices of the parent community are based on the ranked function of 

the community rather than being positional.

We also note that whilst for most protocols rank function is determined across the entire 

metacommunity, for a few simulations we carried out here we used block designs. In these 

cases a metacommunity is divided into multiple sub-metacommunities (sublines) and the 

rank function is quantified within each sub-metacommunity. The rank function within each 

sub-metacommunity is then used to determine which parents are selected. For these cases 

the selection matrix is divided into blocks along the v axis with each sub-metacommunity 

Chang et al. Page 15

Nat Ecol Evol. Author manuscript; available in PMC 2021 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



being allocated one block. Communities are then sorted by rank along the v axis within each 

block. See 35,39 in Supplementary Table 1 for examples.

Passaging:

The passaging algorithm considers the transfer of both resources and species. Resource 

concentrations Rα are treated as continuous, and we assume they are transferred without any 

noise. Let Rα
u be the concentration of resource α (ranging from 1–90) in offspring 

community at position u (ranging from 1–96) and Rα
v be the concentration of resource α in 

parent community with rank v (ranging from 1–96). We can then write

Rα
u = Rα

0 + ∑vRα
vSuv′ (Eq. 10)

Where Rα
0 (the initial resource condition), denotes the amount of Rα in the freshly supplied 

medium. The term ∑vRα
vSuv captures the resources that are passed from either one or 

multiple parent communities (depending on the selection matrix S) to the offspring 

community.

Species abundances Ni are treated as discrete in order to incorporate demographic noise. Let 

Ni
u be the abundance of species i in offspring community u and Ni

v be the abundance of 

species i in parent community with rank v. The total number of cells of all species (z) that 

are passaged from parent community with rank v to offspring community u is distributed 

according to a Poisson distribution:

z ∼ Poisson(ψ∑iNi
vSuv) (Eq. 11)

Note that ψ is the conversion factor that determines the amounts of cells equivalent to Ni = 

1, in this case ψ=106. The species identity of each cell transferred to community u is then 

determined by multinomial sampling with the probability of any one cell belonging to 

species i being equal to the relative abundance of species i in the parent community 

(πi =
Niv

∑iNiv
). This procedure is repeated for every pair of parent (v) and offspring 

community (u). After this has been completed, the total number of cells of each species 

transferred to each offspring community is converted back into abundances (Ni
v) using the 

conversion factor ψ.

Aside from the introduction of Poisson sampling for the total cell number, this procedure is 

identical to the one used in the community-simulator package. Poisson sampling accounts 

for variability in total number of cells transferred after each generation, an important source 

of error (compositional variation) in the batch culture lab experiments we are modelling 

here.
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Random seed.

A single random seed is used to uniquely determine the initial abundance condition of 

metacommunity, the species features ciα and ϕi, and resource composition in the medium 

Rα0. Whilst each community in the metacommunity will have different initial species 

abundances, each random seed is associated with a unique set of initial species abundances 

across the entire metacommunity. As well as ensuring that our results are reproducible, this 

allows us to carry out different protocols on identical sets of starting communities. For this 

reason most statistical comparisons in this paper are paired, reflecting the fact that the results 

are non-independent when different protocols are tested using the same random seed. All 

simulations throughout the main text were run for 100 unique seeds and those in the 

Extended Figs. 1–5 were run for 20 unique seeds.

Directed evolution.

After seeding the metacommunity, we allow all 96 communities to stabilize by propagating 

them for 20 transfers without selection (using S=(1/d)I, as we do in the no-selection control). 

Then the highest functioning community is selected and passaged into 96 fresh habitats with 

a dilution factor of d=103× (the same one that had been used during the 20 previous 

transfers). One of these new communities is left unperturbed. The other 95 copies are all 

perturbed as described below in an attempt to push the community to a new stable state. 

After the perturbation, all communities, including the unperturbed community, are grown for 

20 generations without selection (S=(1/d)I) to let them reach a stable state.

In Figures 2D–I, we consider six different types of perturbation and their magnitudes that 

are applied to the 95 copies of the top-performing community (Supplementary Table 5):

• Bottleneck perturbation. This approach involves subjecting the 95 communities 

to an additional dilution step. This is done by repeating the passaging protocol 

described previously using S=(1/dbot)I where dbot is the bottleneck dilution 

factor. For figures 2B and 2D the dbot=105. An average of N=9.76±3.12 (Mean

±SD) cells remain in the community after a bottleneck of this magnitude. In 

figure 2C we carried out this procedure multiple independent times using a 

gradient of bottleneck dilution factors (ranging from dbot=10, to dbot=8×105).

• Species knock-in. This approach involves introducing a different high-

functioning species from the regional pool into each of the 95 communities. A 

collection of candidate high-performing species is first prepared by growing 

every single species from the regional pool in monoculture, passaging them in 

the same batch condition as the communities for 20 serial transfers, and then 

identifying the top 5% of species (threshold percentile θ=0.95) according to their 

rank function. This gives us a collection of 105 candidate species from the pool 

of H = 2100. We then invaded each of the 95 communities with a different 

randomly chosen candidate from this set. This is done by introducing 103 cells of 

the chosen species into each community after they have been diluted. 103 is 

chosen to minimize the probability of stochastic extinction of the invader.

• Knock out. This approach involves eliminating one of the species in the 

community, so that all offspring communities have n-1 species (whereas the 
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parent had n). In each community we delete a different taxa. When n <95 (as is 

the case for our simulations) the number of perturbed offspring communities is 

equal to n. The 95-n ‘spare’ communities are left unperturbed.

• Migration. This approach involves perturbing the communities by invading with 

them a random set of species sampled from different regional pools. We use the 

same approach that we used to initially inoculate the communities. To recap, for 

each community we added nmig=106 cells randomly sampled from different 

regional species pools, in which the species abundances are distributed according 

to Eq. 5. The number of cells introduced via migration is comparable to the 

number of cells in the communities after the regular batch dilution (~106)

• Coalescence. This approach involves coalescencing the copies of top-performing 

communities with the other stable communities in the metacommunity before 

selection. To do this, the parents metacommunity is not discarded at the point of 

directed evolution. Instead, it is kept and the offspring metacommunity is grown 

for a single generation (so that both the parent and offspring metacommunities 

are in stationary phase). The two metacommunities are then mixed, generating a 

new metacommunity of coalesced communities. Let J be the resource and 

consumer abundance of the offspring metacommunity and K be the resource and 

consumer abundance of the parent metacommunity. The consumer and resource 

abundance of the mixed metacommunity L is simply:

L = (1 − fcoa)J + fcoaK (Eq. 12)

For our simulations we use a fcoa = 0.5, equivalent to mixing equal volumes. To 

inoculate into the offspring community, the coalesced communities are then 

diluted with a dilution factor d=103× (using S = I/d).

• Resource shift. This approach involves introducing a different random change to 

the ‘media’ (Rα0) of each of the 95 communities. We have a complex media of 

M=90 Resources. We first select the most abundant resource in the media and 

reduce its abundance by δR1. This amount of resource is then added to one of the 

other 89 resources chosen at random. For our simulations we set δ = 1. Unlike 

other perturbations mentioned above that only happen in the short term (pulse 

perturbation), the changes in nutrient composition is permanent and persists for 

the rest of the simulation (press perturbation) 80.

Note that whether a type of perturbation performs better than others depends on its 

magnitude (e.q., dilution factor in bottleneck, or amount of resource being shifted), which 

we have not systematically explored except for the bottleneck (Figure 2B). We chose the 

parameter values so that the effect sizes shown in Figures 2D–I all have a similar magnitude, 

but quantitative comparisons among them should be avoided.

Code Availability.

All simulations were conducted in python using ecoprospector (https://github.com/Chang-

Yu-Chang/ecoprospector). All the data analysis was conducted in R. The complete code 
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used for this paper including the ecoprospector package can be found in the Zenodo 

repository (https://doi.org/10.5281/zenodo.4608427).

Data Availability.

All data generated and analyzed in this paper can be found at https://doi.org/10.5281/

zenodo.4608427
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Extended Data

Extended Data Figure 1. Non-additive function, costly function, and two empirically motivated 
functions.
(A) Illustration of the different types of community function we have considered. In addition 

to the additive function used in the main text we have simulated four other community 

functions: a non-additive pairwise function, a costly function, a function that maximises the 

consumption of a target resource, and a function that maximizes resistance to an invader. 

Panels B-F reproduce the main results reported in Figures 1–4. (B) Difference in Fmax 
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between the artificial selection line (AS) and no-selection line (NS) for all previously 

published protocols, corresponding to Fig. 1F. (C) Difference in Fmax between parent (before 

directed evolution) and offspring (after directed evolution) for the 6 types of perturbation 

considered in figure 2, this plot aggregates the results shown in Fig. 2D–I. (D) Reproduction 

of Fig. 3E, to show that iteratively combining migrations and bottlenecks does better than 

either alone. Q is obtained from each of the three iterative protocols at generation 460 (E) 

Reproduction of Fig. 4E, where we compare Fmax of the no-selection (NS), directed 

evolution (DE), and synthetic communities; (F) Mean function (F*) of the DE, NS and 

Synthetic communities following an ecological perturbation (migration). This corresponds to 

the y-axis of Fig. 4F.
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Extended Data Figure 2. Alternative ecological scenarios with metabolic cross-feeding.
Besides the rich medium without cross-feeding shown in the main text, we have included 

two other ecological scenarios: i) rich medium with cross-feeding and ii) simple minimal 

medium with cross-feeding. The layout of (B-F) follows Extended Data Fig. 1B–F, 

reproducing the main results from Fig. 1–4.
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Extended Data Figure 3. Functional responses.
The resource import rate depends on its concentration in the environments, which can take a 

linear (type I), Monod (type II), or Hill (type III) form. A Type-III functional response is 

used in the simulation presented in the main text. The layout of (B-F) follows Extended Data 

Fig. 1B–F, reproducing the main results from Fig. 1–4.
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Extended Data Figure 4. Alternative Metacommunity sampling approaches.
We simulate three metacommunity sampling approaches: i) Each community is seeded with 

106 cells drawn from a different regional pool, where the species abundances in each 

regional pool are drawn from a power-law distribution with a = 0.01, ii) Each community is 

seeded with 106 cells drawn from a different regional, where the species abundances in each 

regional pool are drawn from a log-normal distribution with mean μ = 8 and standard 

deviation σ = 8, iii) Each community is seeded with a randomly chosen set of 225 species 

and they are all set to have the same initial abundance. The simulation in the main text 
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adopts the power-law distribution approach. The layout of (B-F) follows Extended Data Fig. 

1B–F, reproducing the main results from Fig. 1–4.

Extended Data Figure 5. Different distributions of per capita species contribution to additive 
community function.
Per capita species contribution drawn from i) normal distribution centered around 0 with 

standard deviation sd=1, ii) normal distribution with mean=11 and sd=1, iii) uniform 

distribution ranged from min=0 to max=1, iiii) a sparse additive function where 20% of the 

species contribute to community function.In the main text, per capita species contribution 
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uses normal distribution with mean=0 and sd=1. The layout of (B-F) follows Extended Data 

Fig. 1B–F, reproducing the main results from Fig. 1–4.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS:

The authors wish to thank Hernan Garcia and Rob Phillips for inviting most of us, either as instructors or as 
students, to the Physical Biology of the Cell summer course a the Marine Biology Laboratory in Woods Hole, MA, 
where this project was started and the first version of the ecoprospector package was coded. We also wish to thank 
Brian Von Herzen for his input and discussion while we were at MBL. This work was supported by the National 
Institutes of Health through grant 1R35 GM133467-01, and by a Packard Foundation Fellowship to AS. C-YC was 
supported by a graduate fellowship Government Scholarship to Study Abroad by the Government of Taiwan. MR-G 
was supported by a Gaylord Donnelley postdoctoral fellowship through the Yale Institute for Biospheric Studies.

REFERENCES

1. Mueller UG & Sachs JL Engineering Microbiomes to Improve Plant and Animal Health. Trends 
Microbiol 23, 606–617 (2015). [PubMed: 26422463] 

2. Gilbert ES, Walker AW & Keasling JD A constructed microbial consortium for biodegradation of 
the organophosphorus insecticide parathion. Appl. Microbiol. Biotechnol 61, 77–81 (2003). 
[PubMed: 12658518] 

3. Yoshida S, Ogawa N, Fujii T & Tsushima S Enhanced biofilm formation and 3-chlorobenzoate 
degrading activity by the bacterial consortium of Burkholderia sp. NK8 and Pseudomonas 
aeruginosa PAO1. J. Appl. Microbiol 106, 790–800 (2009). [PubMed: 19191976] 

4. Piccardi P, Vessman B & Mitri S Toxicity drives facilitation between 4 bacterial species. Proc. Natl. 
Acad. Sci. U. S. A 116, 15979–15984 (2019). [PubMed: 31270235] 

5. Herrera Paredes S et al. Design of synthetic bacterial communities for predictable plant phenotypes. 
PLoS Biol 16, e2003962 (2018). [PubMed: 29462153] 

6. Minty JJ et al. Design and characterization of synthetic fungal-bacterial consortia for direct 
production of isobutanol from cellulosic biomass. Proc. Natl. Acad. Sci. U. S. A 110, 14592–14597 
(2013). [PubMed: 23959872] 

7. Jiang Y, Dong W, Xin F & Jiang M Designing Synthetic Microbial Consortia for Biofuel 
Production. Trends Biotechnol 0, (2020).

8. Eng A & Borenstein E Microbial community design: methods, applications, and opportunities. Curr. 
Opin. Biotechnol 58, 117–128 (2019). [PubMed: 30952088] 

9. Fredrickson JK ECOLOGY. Ecological communities by design. Science 348, 1425–1427 (2015). 
[PubMed: 26113703] 

10. Sanchez-Gorostiaga A, Bajić D, Osborne ML, Poyatos JF & Sanchez A High-order interactions 
distort the functional landscape of microbial consortia. PLoS Biol 17, e3000550 (2019). [PubMed: 
31830028] 

11. Senay Y, John G, Knutie SA & Brandon Ogbunugafor C Deconstructing higher-order interactions 
in the microbiota: A theoretical examination. bioRxiv 647156 (2019) doi:10.1101/647156.

12. Gould AL et al. Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci. U. S. A 115, 
E11951–E11960 (2018). [PubMed: 30510004] 

13. Mickalide H & Kuehn S Higher-Order Interaction between Species Inhibits Bacterial Invasion of a 
Phototroph-Predator Microbial Community. Cell Syst 9, 521–533.e10 (2019). [PubMed: 
31838145] 

14. Sanchez A Defining Higher-Order Interactions in Synthetic Ecology: Lessons from Physics and 
Quantitative Genetics. Cell systems vol. 9 519–520 (2019). [PubMed: 31951552] 

Chang et al. Page 26

Nat Ecol Evol. Author manuscript; available in PMC 2021 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. Guo X & Boedicker JQ The Contribution of High-Order Metabolic Interactions to the Global 
Activity of a Four-Species Microbial Community. PLoS Comput. Biol 12, e1005079 (2016). 
[PubMed: 27623159] 

16. Sundarraman D et al. Higher-Order Interactions Dampen Pairwise Competition in the Zebrafish 
Gut Microbiome. MBio 11, (2020).

17. Goldman RP & Brown SP Making sense of microbial consortia using ecology and evolution. 
Trends Biotechnol vol. 27 3–4, author reply 4 (2009). [PubMed: 19022510] 

18. Brenner K, You L & Arnold FH Response to Goldman and Brown: Making sense of microbial 
consortia using ecology and evolution. Trends Biotechnol 27, 4 (2009).

19. Escalante AE, Rebolleda-Gómez M, Benítez M & Travisano M Ecological perspectives on 
synthetic biology: insights from microbial population biology. Front. Microbiol 6, 143 (2015). 
[PubMed: 25767468] 

20. Gilmore SP et al. Top-Down Enrichment Guides in Formation of Synthetic Microbial Consortia for 
Biomass Degradation. ACS Synth. Biol 8, 2174–2185 (2019). [PubMed: 31461261] 

21. Cortes-Tolalpa L, Jiménez DJ, de Lima Brossi MJ, Salles JF & van Elsas JD Different inocula 
produce distinctive microbial consortia with similar lignocellulose degradation capacity. Appl. 
Microbiol. Biotechnol (2016) doi:10.1007/s00253-016-7516-6.

22. Lee D-J, Show K-Y & Wang A Unconventional approaches to isolation and enrichment of 
functional microbial consortium--a review. Bioresour. Technol 136, 697–706 (2013). [PubMed: 
23566469] 

23. Lazuka A, Auer L, O’Donohue M & Hernandez-Raquet G Anaerobic lignocellulolytic microbial 
consortium derived from termite gut: enrichment, lignocellulose degradation and community 
dynamics. Biotechnol. Biofuels 11, 284 (2018). [PubMed: 30356893] 

24. Puentes-Téllez PE & Falcao Salles J Construction of Effective Minimal Active Microbial Consortia 
for Lignocellulose Degradation. Microb. Ecol 76, 419–429 (2018). [PubMed: 29392382] 

25. He X, McLean JS, Guo L, Lux R & Shi W The social structure of microbial community involved 
in colonization resistance. ISME J 8, 564–574 (2014). [PubMed: 24088624] 

26. Jung J, Philippot L & Park W Metagenomic and functional analyses of the consequences of 
reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated 
microcosms. Sci. Rep 6, 23012 (2016). [PubMed: 26972977] 

27. Franklin RB & Mills AL Structural and functional responses of a sewage microbial community to 
dilution-induced reductions in diversity. Microb. Ecol 52, 280–288 (2006). [PubMed: 16897310] 

28. Kang D et al. Enrichment and characterization of an environmental microbial consortium 
displaying efficient keratinolytic activity. Bioresour. Technol 270, 303–310 (2018). [PubMed: 
30236907] 

29. Goodnight CJ Evolution in metacommunities. Philos. Trans. R. Soc. Lond. B Biol. Sci 366, 1401–
1409 (2011). [PubMed: 21444314] 

30. Swenson W, Wilson DS & Elias R Artificial ecosystem selection. Proc. Natl. Acad. Sci. U. S. A 
97, 9110–9114 (2000). [PubMed: 10890915] 

31. Jochum MD, McWilliams KL, Pierson EA & Jo Y-K Host-mediated microbiome engineering 
(HMME) of drought tolerance in the wheat rhizosphere. PLoS One 14, e0225933 (2019). 
[PubMed: 31800619] 

32. Mueller UG et al. Artificial Microbiome-Selection to Engineer Microbiomes That Confer Salt-
Tolerance to Plants. bioRxiv 081521 (2016) doi:10.1101/081521.

33. Panke-Buisse K, Poole AC, Goodrich JK, Ley RE & Kao-Kniffin J Selection on soil microbiomes 
reveals reproducible impacts on plant function. ISME J 9, 980–989 (2015). [PubMed: 25350154] 

34. Panke-Buisse K, Lee S & Kao-Kniffin J Cultivated Sub-Populations of Soil Microbiomes Retain 
Early Flowering Plant Trait. Microb. Ecol (2016) doi:10.1007/s00248-016-0846-1.

35. Arora J, Mars Brisbin MA & Mikheyev AS Effects of microbial evolution dominate those of 
experimental host-mediated indirect selection. PeerJ 8, e9350 (2020). [PubMed: 32676220] 

36. Swenson W, Arendt J & Wilson DS Artificial selection of microbial ecosystems for 3-chloroaniline 
biodegradation. Environ. Microbiol 2, 564–571 (2000). [PubMed: 11233164] 

Chang et al. Page 27

Nat Ecol Evol. Author manuscript; available in PMC 2021 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Wright RJ, Gibson MI & Christie-Oleza JA Understanding microbial community dynamics to 
improve optimal microbiome selection. Microbiome 7, 85 (2019). [PubMed: 31159875] 

38. Blouin M, Karimi B, Mathieu J & Lerch TZ Levels and limits in artificial selection of 
communities. Ecol. Lett 18, 1040–1048 (2015). [PubMed: 26259498] 

39. Raynaud T, Devers M, Spor A & Blouin M Effect of the Reproduction Method in an Artificial 
Selection Experiment at the Community Level. Frontiers in Ecology and Evolution 7, 416 (2019).

40. Chang C-Y, Osborne ML, Bajic D & Sanchez A Artificially selecting bacterial communities using 
propagule strategies. Evolution (2020) doi:10.1111/evo.14092.

41. Arias-Sánchez FI, Vessman B & Mitri S Artificially selecting microbial communities: If we can 
breed dogs, why not microbiomes? PLoS Biol. 17, e3000356 (2019). [PubMed: 31469824] 

42. Day MD, Beck D & Foster JA Microbial Communities as Experimental Units. Bioscience 61, 398–
406 (2011). [PubMed: 21731083] 

43. Wade MJ Group selections among laboratory populations of Tribolium. Proc. Natl. Acad. Sci. U. 
S. A 73, 4604–4607 (1976). [PubMed: 1070012] 

44. Wade MJ An experimental study of group selection. Evolution 31, 134–153 (1977). [PubMed: 
28567731] 

45. Wade MJ A Critical Review of the Models of Group Selection. Q. Rev. Biol 53, 101–114 (1978).

46. Goodnight CJ Experimental Studies of Community Evolution I: The Response to Selection at the 
Community Level. Evolution 44, 1614–1624 (1990). [PubMed: 28564309] 

47. Guo X & Boedicker J High-Order Interactions between Species Strongly Influence the Activity of 
Microbial Communities. Biophys. J 110, 143a (2016).

48. Stein RR et al. Computer-guided design of optimal microbial consortia for immune system 
modulation. Elife 7, (2018).

49. Arnold FH Innovation by Evolution: Bringing New Chemistry to Life (Nobel Lecture). Angew. 
Chem. Int. Ed Engl 58, 14420–14426 (2019). [PubMed: 31433107] 

50. Tracewell CA & Arnold FH Directed enzyme evolution: climbing fitness peaks one amino acid at a 
time. Curr. Opin. Chem. Biol 13, 3–9 (2009). [PubMed: 19249235] 

51. Williams HTP & Lenton TM Artificial selection of simulated microbial ecosystems. Proc. Natl. 
Acad. Sci. U. S. A 104, 8918–8923 (2007). [PubMed: 17517642] 

52. Williams HTP & Lenton TM Artificial Ecosystem Selection for Evolutionary Optimisation. in 
Advances in Artificial Life 93–102 (Springer Berlin Heidelberg, 2007).

53. Doulcier G, Lambert A, De Monte S & Rainey PB Eco-evolutionary dynamics of nested Darwinian 
populations and the emergence of community-level heredity. Elife 53433 (2020).

54. Xie L, Yuan AE & Shou W Simulations reveal challenges to artificial community selection and 
possible strategies for success. PLoS Biol 17, e3000295 (2019). [PubMed: 31237866] 

55. Wilson DS Complex Interactions in Metacommunities, with Implications for Biodiversity and 
Higher Levels of Selection. Ecology 73, 1984–2000 (1992).

56. Marsland R 3rd et al. Available energy fluxes drive a transition in the diversity, stability, and 
functional structure of microbial communities. PLoS Comput. Biol 15, e1006793 (2019). 
[PubMed: 30721227] 

57. Marsland R, Cui W, Goldford J & Mehta P The Community Simulator: A Python package for 
microbial ecology. bioRxiv 613836 (2019) doi:10.1101/613836.

58. Marsland R, Cui W & Mehta P A minimal model for microbial biodiversity can reproduce 
experimentally observed ecological patterns. bioRxiv 622829 (2019) doi:10.1101/622829.

59. Advani M, Bunin G & Mehta P Statistical physics of community ecology: a cavity solution to 
MacArthur’s consumer resource model. J. Stat. Mech 2018, 033406 (2018). [PubMed: 30636966] 

60. Goldford JE et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 
(2018). [PubMed: 30072533] 

61. Lu N, Sanchez-Gorostiaga A, Tikhonov M & Sanchez A Cohesiveness in microbial community 
coalescence. bioRxiv 282723 (2018) doi:10.1101/282723.

62. Faith JJ, Ahern PP, Ridaura VK, Cheng J & Gordon JI Identifying gut microbe-host phenotype 
relationships using combinatorial communities in gnotobiotic mice. Sci. Transl. Med 6, 220ra11 
(2014).

Chang et al. Page 28

Nat Ecol Evol. Author manuscript; available in PMC 2021 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



63. Estrela S et al. Metabolic rules of microbial community assembly. bioRxiv 2020.03.09.984278 
(2020) doi:10.1101/2020.03.09.984278.

64. Friedman J, Higgins LM & Gore J Community structure follows simple assembly rules in 
microbial microcosms. Nat Ecol Evol 1, 109 (2017). [PubMed: 28812687] 

65. Venturelli OS et al. Deciphering microbial interactions in synthetic human gut microbiome 
communities. Mol. Syst. Biol 14, e8157 (2018). [PubMed: 29930200] 

66. Hall BG Experimental evolution of a new enzymatic function. II. Evolution of multiple functions 
for ebg enzyme in E. coli. Genetics 89, 453–465 (1978). [PubMed: 97169] 

67. Smith GP & Petrenko VA Phage Display. Chem. Rev 97, 391–410 (1997). [PubMed: 11848876] 

68. Bloom JD & Arnold FH In the light of directed evolution: pathways of adaptive protein evolution. 
Proc. Natl. Acad. Sci. U. S. A 106 Suppl 1, 9995–10000 (2009). [PubMed: 19528653] 

69. Romero PA, Krause A & Arnold FH Navigating the protein fitness landscape with Gaussian 
processes. Proc. Natl. Acad. Sci. U. S. A 110, E193–201 (2013). [PubMed: 23277561] 

70. Ho K-L, Lee D-J, Su A & Chang J-S Biohydrogen from cellulosic feedstock: Dilution-to-
stimulation approach. Int. J. Hydrogen Energy 37, 15582–15587 (2012).

71. Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR & Sonnenburg JL An exclusive metabolic 
niche enables strain engraftment in the gut microbiota. Nature 557, 434–438 (2018). [PubMed: 
29743671] 

72. Ting S-Y et al. Targeted Depletion of Bacteria from Mixed Populations by Programmable 
Adhesion with Antagonistic Competitor Cells. Cell Host Microbe (2020) doi:10.1016/
j.chom.2020.05.006.

73. Sheth RU, Cabral V, Chen SP & Wang HH Manipulating Bacterial Communities by in situ 
Microbiome Engineering. Trends Genet 32, 189–200 (2016). [PubMed: 26916078] 

74. Lemon KP, Armitage GC, Relman DA & Fischbach MA Microbiota-targeted therapies: an 
ecological perspective. Sci. Transl. Med 4, 137rv5 (2012).

75. Harcombe WR & Bull JJ Impact of phages on two-species bacterial communities. Appl. Environ. 
Microbiol 71, 5254–5259 (2005). [PubMed: 16151111] 

76. Chan BK et al. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol 
Med Public Health 2018, 60–66 (2018). [PubMed: 29588855] 

77. Rillig MC, Tsang A & Roy J Microbial Community Coalescence for Microbiome Engineering. 
Front. Microbiol 7, 1967 (2016). [PubMed: 27999571] 

78. Sierocinski P et al. A Single Community Dominates Structure and Function of a Mixture of 
Multiple Methanogenic Communities. Curr. Biol 27, 3390–3395.e4 (2017). [PubMed: 29107553] 

79. Tilman D The ecological consequences of changes in biodiversity: A search for general principles. 
Ecology 80, 1455–1474 (1999).

80. Shade A et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol 3, 
417 (2012). [PubMed: 23267351] 

81. Kang D et al. Construction of Simplified Microbial Consortia to Degrade Recalcitrant Materials 
Based on Enrichment and Dilution-to-Extinction Cultures. Front. Microbiol 10, 3010 (2019). 
[PubMed: 31998278] 

82. Zanaroli G et al. Characterization of two diesel fuel degrading microbial consortia enriched from a 
non acclimated, complex source of microorganisms. Microb. Cell Fact 9, 10 (2010). [PubMed: 
20158909] 

83. Peter H et al. Function-specific response to depletion of microbial diversity. ISME J 5, 351–361 
(2011). [PubMed: 20686511] 

84. Pacheco AR, Moel M & Segrè D Costless metabolic secretions as drivers of interspecies 
interactions in microbial ecosystems. Nat. Commun 10, 103 (2019). [PubMed: 30626871] 

85. West SA, Griffin AS, Gardner A & Diggle SP Social evolution theory for microorganisms. Nat. 
Rev. Microbiol 4, 597–607 (2006). [PubMed: 16845430] 

86. Scheuerl T et al. Bacterial adaptation is constrained in complex communities. Nat. Commun 11, 
754 (2020). [PubMed: 32029713] 

87. Lewontin RC The Units of Selection. Annu. Rev. Ecol. Syst 1, 1–18 (1970).

Chang et al. Page 29

Nat Ecol Evol. Author manuscript; available in PMC 2021 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



88. Marsland R, Cui W, Goldford J & Mehta P The Community Simulator: A Python package for 
microbial ecology. PLoS One 15, e0230430 (2020). [PubMed: 32208436] 

89. Shoemaker WR, Locey KJ & Lennon JT A macroecological theory of microbial biodiversity. Nat 
Ecol Evol 1, 107 (2017). [PubMed: 28812691] 

90. Degnan PH, Taga ME & Goodman AL Vitamin B12 as a modulator of gut microbial ecology. Cell 
Metab 20, 769–778 (2014). [PubMed: 25440056] 

91. Degnan PH, Barry NA, Mok KC, Taga ME & Goodman AL Human gut microbes use multiple 
transporters to distinguish vitamin B₁₂ analogs and compete in the gut. Cell Host Microbe 15, 47–
57 (2014). [PubMed: 24439897] 

Chang et al. Page 30

Nat Ecol Evol. Author manuscript; available in PMC 2021 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Migrant-pool and propagule strategies are limited in their ability to find new, high-
functioning microbial communities.
(A) We constructed a Python package, ecoprospector, which allows us to artificially select 

arbitrarily large and diverse in silico communities. The experimental design of a selection 

protocol (e.g., number of communities, growth medium, method of artificial selection, 

function under selection, etc.) is entered in a single input .csv file (Methods). Communities 

are grown in serial batch-culture, where each transfer into a new habitat is referred to as a 

community “generation”. Within each batch incubation, species compete for nutrients from 

the supplied medium. At the end of the incubation period, communities are selected 
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according to the specified, protocol-specific selection scheme, and the selected group is used 

to seed the communities in the offspring generation. Once the protocol is carried out to 

completion, ecoprospector outputs a simple text format for later analysis on community 

function and composition. (B) Illustration of previously used migrant pool and propagule 

selection schemes (AS) as well as the corresponding randomized controls (RS) 29,43. We 

also consider a no-selection ‘control’ scheme (NS). All protocols are applied at the end of 

each community generation and are implemented using a matrix representation depicted in 

Supplementary Fig. 1. A representative outcome of one community-level selection 

experiment is shown in (C-D), where we adapted the selection protocol from the migrant-

pool strategy in ref 30. A metacommunity is seeded by inoculating ninoc = 106 randomly 

drawn cells from a species pool into each of 96 identical habitats and allowing them to grow 

(Methods). The metacommunity was then subject to 20 rounds of selection (generations), 

and then allowed to stabilize without selection for another 20 generations. The function 

maximized under selection F is additive on species contributions, whose per-capita species 

contribution to function is randomly generated (see main text). In each selection round, the 

top 20% communities with highest F (AS; red) (or a randomly chosen set in (RS; blue)) are 

selected and mixed into a single pool which is then used to seed all communities in the next 

generation by randomly sampling 106 cells into them. The NS protocol (green) simply 

propagates the communities in batch mode without selection. The changes in overall 

function over the generations is shown in (C) (average F) and (D) (maximum function Fmax). 

(E) Selection strategies were adapted from twelve experimental protocols in previous studies 

(see Supplementary Table 1; Methods). All were applied to standard metacommunity sizes 

(96 communities), for the same number of generations (20 selection generations + 20 

stabilization generations). All protocols have a significantly greater mean function in the AS 

than in the NS line (two-sided paired t-test, P < 0.01) as well as the RS lines (Supplementary 

Fig. 4). (F) The difference in Fmax between the AS and NS lines (Q). All protocols show a 

Mean Q < 0 (two-sided Welch’s t-test, P < 0.01), indicating that they did not succeed at 

improving the function of the best stabilized community in the ancestral population.
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Figure 2. Directed evolution as an artificial selection strategy for high-performing communities.
(A) Directed evolution of microbial communities can be represented as a guided navigation 

of a dynamic structure-function landscape, which contains several stable fixed points with 

different community functions. Community states are given by the abundances of species i,j 
in the “adult” population at the end of a batch. Each of the stable fixed points represents a 

“generationally stable” equilibrium, as defined in the main text. A library of communities is 

generated by inoculating from a set of different species pools, followed by stabilization 

without selection before being scored for function. The top-performing community is 

selected and either passaged intact into the new generation, or subject to ecological 

Chang et al. Page 33

Nat Ecol Evol. Author manuscript; available in PMC 2021 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



perturbations to generate compositional variants, thereby “exploring” the neighboring stable 

equilibria in the structure-function landscape. We note that this panel is only a cartoon, the 

true structure-function landscape is multi-dimensional, and the dynamical stability of 

equilibria can be significantly more complex than illustrated here. None of those details are 

critical for our results or discussion. (B) A representative outcome of directed evolution of in 
silico microbial communities. N=96 communities are first stabilized by serially passaging 

without selection with a dilution factor of 103× for 20 generations. The community with the 

highest function Fmax(parent) (black dots and line) is selected and used to seed the new 

generation. To that end, the selected community is either passaged intact with the same 

dilution factor of 103× (N=1), or subject to 95 dilution shocks (108×) to generate variants. 

The 96 offspring communities are then propagated for another 20 generations until they 

stabilize. The top offspring variant Fmax(offspring) is highlighted with black dots and line. 

The red dashed line denotes the Fmax of a no-selection line. (C) Sampling the optimal 

bottleneck size by subjecting a single parent community to bottlenecks of different intensity. 

Each bottleneck is applied 95 times. In orange, we trace the Fmax for the highest-function 

variants for each bottleneck size. In purple, we track the mean function. Inset shows the 

outcome of repeating this experiment 100 times with different starting communities (Mean

±SD). This shows that intermediate bottlenecks maximize the Fmax. (D-I) Fmax of 95 stable 

offspring variants generated through a variety of methods (see text for details), as a function 

of the Fmax of the (stable) parental community from which all variants were generated. 

Points above the red dashed line indicated an increase in Fmax from parent to offspring. The 

filled black circle in panel D marks the representative example shown in panel B.
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Figure 3. Iteratively combining bottlenecks and migrations to optimize community function 
selects for high-functioning communities.
(A) Schematic of iterative protocols of directed evolution. A metacommunity of 96 

communities was stabilized for 30 generations by serial batch-culture with dilution factor 

103×(Methods). The top community after 30 generations was selected, and either passaged 

intact to the offspring generation, or used to generate 95 new variants by three different 

means: (red) in addition to the regular dilution factor (103×), we applied a harsh bottleneck 

(104×); (purple) we applied a migration event where 102 cells (~45 species; Methods) were 

randomly sampled from the regional pool and added to each community immediately after 
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passaging them with the regular dilution factor of 103×; (green) a combination of both: after 

the passage with regular dilution factor (103×), communities are first bottlenecked with a 

dilution factor (104×), followed by migration from the regional pool (102 cells of ~45 

species). The 96 offspring communities are stabilized for an additional 20 transfers, 

following which they are scored for function. The process can be iterated at this point (B-D) 

F for all communities in each generation as a function of time. Each vertical dashed line 

marks the time points at which the metacommunities experience selection followed by 

generation of new variants (color represents perturbation type). Red horizontal lines 

represent the Fmax of a no-selection line. (E) Q obtained from each of the three protocols at 

the final time point (generation 460) in N=100 independent selection lines. Each point 

represents the outcome of a different directed evolution experiment. Brackets represent two-

sided paired t-tests (N=100 for each test). ****:p<0.0001.
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Figure 4. Directed evolution produces communities that are resistant to ecological perturbations.
(A) We compare the function and ecological stability of communities engineered from the 

top-down by directed evolution (DE; red), with a synthetic bottom-up consortium (purple). 

A no-selection (NS; green) control is also provided for reference. The DE community was 

found by multiple rounds of selection using a protocol that combines bottleneck and 

migration to generate variants. The synthetic community of equal diversity (species 

richness) was assembled by mixing together high-ϕi species from the regional pool 

(Methods). The top community of the NS control was also chosen as reference. (B) The 

three communities were stabilized for 20 generations (note that the DE and NS were already 

in equilibrium at the start, but the synthetic community was not). After that, each community 

was subject to invasion by a randomly sampled set of species from the regional species pool 

(Methods). This process was repeated 95 independent times for each community. The 

perturbed communities (lighter-color lines) were allowed to equilibrate by passaging for an 

additional 20 generations without artificial selection. Following the perturbation, 

communities reached a new state with function F*, and from the changes in function before 

and after the perturbation we compute the resistance R (inset equation) 80. (C-D) The values 

of F* and R resulting from panel (B) are plotted. Values above brackets represent p-values of 

paired t-tests (N = 95 each test). (E-F) The experiment in (B) was repeated 100 times with as 

many different initial DE, NS, and synthetic consortia. (E) shows Fmax of 100 independent 
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experiments. Values above brackets represent p-values of two-sided paired t-tests (N=100 

each test) (F) Mean(R) vs Mean(F*) for all 100 independent experiments. *:p<0.05, 

****:p<0.0001.
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