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ABSTRACT

The current classification of cells in an organism is
largely based on their anatomic and developmen-
tal origin. Cells types and tissues are traditionally
classified into those that arise from the three em-
bryonic germ layers, the ectoderm, mesoderm and
endoderm, but this model does not take into account
the organization of cell type-specific patterns of gene
expression. Here, we present computational models
for cell type and tissue specification derived from
a collection of 921 RNA-sequencing samples from
272 distinct mouse cell types or tissues. In an un-
biased fashion, this analysis accurately predicts the
three known germ layers. Unexpectedly, this analy-
sis also suggests that in total there are eight major
domains of cell type-specification, corresponding to
the neurectoderm, neural crest, surface ectoderm,
endoderm, mesoderm, blood mesoderm, germ cells
and the embryonic domain. Further, we identify pu-
tative genes responsible for specifying the domain
and the cell type. This model has implications for
understanding trans-lineage differentiation for stem
cells, developmental cell biology and regenerative
medicine.

INTRODUCTION

Careful morphological studies of animal embryos indicate
that as the embryo generates a complete body plan, the

cells segregate into three germ layers or lineages of cells,
composed of the endoderm (liver, lungs, etc.), mesoderm
(heart, circulatory system, etc.) and ectoderm (skin, neural
tissue, etc.), supplemented with embryonic tissues, extraem-
bryonic tissues (placenta, primitive endoderm) and germ
cells (sperm, oocytes) (1–4). Embryonic development has
been extensively explored in animals where embryogenesis
can proceed in vitro, particularly Xenopus, Zebrafish and
Caenorhabditis elegans (5,6), and this work culminated in a
description of the complete deterministic cell lineage for C.
elegans (7). However, development is less well understood
in mouse and other higher mammals, due to the inability to
monitor development in vitro for extended periods of time.
Instead, elaborate lineage tracing, morphology and genetic
studies must tease apart the developmental processes that
occur in mammalian embryos as they develop a complete
body plan. However, there are several aspects of embryoge-
nesis that are difficult to explain. The three germ lineages
form during gastrulation of the embryo, yet cells show sur-
prising plasticity even late in development, as lineage trac-
ing studies indicate cross-lineage seeding can occur much
later than gastrulation (1,7–9). In adult tissues, there are
no known examples of natural trans-lineage differentiation,
suggesting potent barriers blocking these conversions. Sim-
ilarly, the three germ lineage model of cell type has limita-
tions, as, for example, the neural crest has long been argued
as a fourth germ lineage (10).

We reasoned that development leaves an ‘imprint’ upon
later cell types, and that this imprint would manifest as
lineage-specific gene expression programs that are main-
tained in adult tissues. By building models of gene expres-
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sion organization we can then reconstruct developmental
patterns from adult tissues. We became interested in using
RNA-sequencing (RNA-seq) to understand the systematic
organization of cell type by understanding gene expression
programs in a global manner. RNA-seq is a powerful tech-
nique for the integration of diverse datasets as raw data is
stored at an early stage of analysis, permitting the reanal-
ysis of old data as novel computational techniques are de-
veloped. Critically, it is possible to uniformly compare data
across labs and experimental platforms in a way that is chal-
lenging for microarray technologies (11,12), albeit microar-
ray studies can contain many thousands of samples, a scale
difficult to achieve with RNA-seq (13,14).

Using a dataset consisting of 921 RNA-seq samples, rep-
resenting 272 normal mouse cell types or tissues, we built
computational models of the global organization of gene
expression patterns with the aim to understand how cell
types and tissues are related and organized. Our results in-
dicate the existence of new ‘domains’ of cell types, which are
distinct from the existing three germ layers. We propose the
division of the ectoderm into three domains (neurectoderm,
surface ectoderm and the neural crest), and the division of
the mesoderm into two new domains (the mesoderm proper
and the immune system/blood mesoderm). This analysis re-
sulted in the identification of a set of domain-specific mas-
ter regulator genes and a topological map of developmen-
tal potential. This work constitutes a useful resource of uni-
formly analyzed RNA-seq data that covers a wide spectrum
of mouse cell types and tissues, and the domain-specific
genes described here will be of interest for developmental
biologists and for researchers interested in cell fate conver-
sions for regenerative medicine.

MATERIALS AND METHODS

RNA-seq working dataset and analysis pipeline

In total, the RNA-seq dataset used in this study consists
of 921 biological samples, which resulted in 272 distinct
C/Ts, collated from 113 publications (Supplementary Ta-
ble S1, Supplementary Figure S1A and B). Raw RNA-seq
data was downloaded from the short read archive (SRA)
(15) and uniformly reanalyzed using RSEM (v1.2.31) (16)
and bowtie2 (v2.2.8) and then normalized for GC content
using EDASeq (v2.4.1) (17) (Supplementary Figure S1C),
as previously described (11,18), except a threshold of 40
GC-normalized tags in any two samples were required to
keep a gene. The Ensembl (mm10, v79) transcriptome was
used for the RSEM alignment (see also Supplementary Re-
sults for a detailed description of the RNA-seq analysis
pipeline). Samples in which <10% of the sequence library
mapped to the transcriptome or with <0.4 million mapped
reads were discarded. The mean expression of biological
replicates was taken where biological replicates were avail-
able. Sequence depths ranged from 0.4 million mapped se-
quence tags (NK cells replicate 1), to 166 million mapped se-
quence tags (HSC MPP1 replicate 2), with a mean of 21 mil-
lion mapped sequence tags (Supplementary Figure S1D).
The typical Pearson correlation between biological repli-
cates was >0.8 (Supplementary Figure S1E). 192 C/Ts have
at least one replicate, whilst 80 samples are from a single un-
replicated experiment. For the complete 29 267 genes in our

selected annotation we could robustly detect 25 075 genes
(Supplementary Figure S1F). Of the remaining genes, most
were unannotated or predicted gene (Supplementary Fig-
ure S1G). The normalized RNA-seq data table, which in-
cludes all 25 075 genes (rows) and 272 C/Ts (columns) is
included as a Supplemental Data File, and the entire anal-
ysis pipeline, starting from the RSEM output is available at
https://bitbucket.org/oaxiom/big tree pub.

Construction of C/T co-regulatory networks, principal com-
ponent analysis (PCA) and self-organizing maps (SOMs)

C/T networks were constructed by taking the pair-wise R2

correlation coefficient between all C/Ts and a network was
constructed by building edges between nodes (C/Ts), based
on weak (R2 > 0.55) or strong (R2 > 0.8) correlations. All
networks were laid out using ‘neato’ (http://graphviz.org/)
and the analysis was performed using the ‘network’ module
of glbase (19). PCA was performed using the ‘pca’ module
of glbase (19), which relies on sklearn PCA function. SOMs
and PCA were constructed using a filtered set of genes (Sup-
plementary Figure S2), the MDS to seed the SOM training
network was generated from the first 13 principal compo-
nents using the MDS sklearn function. SOMs were gener-
ated using the ‘som’ module of glbase.

RESULTS

RNA-seq data collection and properties

To explore the organization of gene expression and its
relationship to cell type-specification we set out to col-
lect a dataset that could comprehensively cover the ma-
jor cell types and tissues in the mouse. We collected pub-
lically available RNA-seq data, based on three criteria:
(i) normal wild-type cells and tissues, (ii) non-cancerous,
non-transformed and (iii) not in vitro-derived. The ex-
ceptions were CD4+ T helper cells, bone marrow-derived
macrophages, eosinophils, mast cells and dendritic cells,
all of which are derived from an already committed
hematopoietic precursor cell (Supplementary Table S1).
The dataset also included some non-transformed cell types
that can be maintained in culture and are thought to be re-
lated to their in vivo counterparts: specifically, embryonic
stem cells (ESCs), epiblast stem cells (EpiSCs), trophoblast
stem cells, fibroblasts, adipocytes and keratinocytes (Sup-
plementary Table S1). Cancerous cells were excluded due
to the common observation of exaggerated transcriptomes
and distorted responses to stimuli (14,20), and ESC-derived
in vitro differentiated cells were excluded, as they typically
do not mature into their in vivo equivalents (21). Using
these criteria, the final dataset consists of 921 individual
RNA-seq experiments, which, after taking the mean of the
available biological replicates, resulted in 272 distinct cell
types/tissues/treatments (hereafter: ‘C/T’, as previously
used in the CellNet studies (20)) (Supplementary Table S1,
Supplementary Figure S1A). It would be preferable to use
only purified individual cell types instead of mixed heteroge-
neous tissues. However, this data is not currently available,
particularly in less well-studied tissues that cannot be easily
dissociated into individual cell types (i.e. those cell types not
in the early embryo or in the immune system). For example,

https://bitbucket.org/oaxiom/big_tree_pub
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the neural crest is only represented by samples derived from
tissues, whilst the endoderm, mesoderm and ectoderm are
substantially represented by tissue-derived RNA-seq sam-
ples (Supplementary Figure S1B). Moreover, although tis-
sues are composed of a mix of cell types, evidence from the
C. elegans indicates that tissues and organs are mostly com-
posed of cells derived from a single germ lineage (6,7), and
hence tissues may still be a useful dataset to extract global
patterns of organization from.

This RNA-seq data collection was analyzed using a uni-
form analysis pipeline beginning with the raw unmapped
FASTQ files and ending with normalized tag counts for
gene expression (Supplementary Figure S1C–E). In total,
we could detect 25 075 out of 29 267 annotated genes (Sup-
plementary Figure S1F). Of the genes we did not detect
most were predicted genes (43%), olfactory genes (22%) or
lincRNAs (11%) (Supplementary Figure S1G). The FAN-
TOM5 dataset (22) is a similar large-scale atlas of cell type
and tissue expression, but we could not adequately merge
our dataset with the FANTOM5 dataset, most likely due to
differences in the technology used to generate gene expres-
sion measurements (RNA-seq versus deepCAGE) and am-
biguities in combining gene versus transcript quantitation
(Supplementary Figure S3).

Computational models of C/T gene expression organization

We next set out to organize C/Ts into ‘domains’ of related
C/Ts, analogous to germ lineages, except the domain or-
ganization is derived from the global organization of C/T
gene expression. This is based on the idea that development
leaves an ‘imprint’ of the preceding developmental process
that can be detected in somatic tissues. Two computational
approaches were used to model the domains: tree cutting of
a clustered co-correlation network (Figure 1) and principal
component analysis (PCA) (Figure 2). For the PCA genes
were filtered to remove very low expressed genes and genes
with low variance (Supplementary Figure S2 and Supple-
mentary Results). We will use these two complementary
methods to argue for the division of C/Ts into eight major
domains of gene expression: the neurectoderm, neural crest,
surface ectoderm, endoderm, mesoderm, blood mesoderm,
germ cells and the embryonic domains.

The blood mesoderm is distinct from the mesoderm proper

In the first approach to understand the organization of
gene expression and its relationship to C/T-specification, a
network was generated from the pair-wise correlation be-
tween all samples based on the strength of the correlation
(Figure 1A). Each C/T was annotated with the presumed
germ lineage, starting with the endoderm, mesoderm, ecto-
derm, germ cells and embryonic (oocyte through to ESCs)
(Figure 1A). To rule out the influence of alternative, non-
biological technical factors that could erroneously influence
the clustering of the C/Ts, we collected metadata about
the C/Ts, specifically, C/T derivation method, number of
studies and replicates per C/T, the read lengths and read
type, the sequencing machine and the number of mapped
sequence tags (Supplementary Table S1). These metadata
were then projected onto the correlation networks and none

of the metadata could cluster the C/Ts in a meaningful way
(Supplementary Figure S4A–H). We used tree-cutting of
the clustered co-correlation matrix to guide the discrimi-
nation of specific domains of C/Ts and build major do-
mains of C/T identity (Supplementary Figure S5A and B).
Although, tree-cutting does not always show good perfor-
mance, particularly when compared to gene regulation per-
turbation networks (20), to date there is not sufficient RNA-
seq data to build these perturbation models. Tree-cutting
indicated that at two clusters early embryonic and germ
cells were distinct and at three clusters the blood mesoderm
(hematopoietic system) was distinct (Supplementary Figure
S5A and B). An alternative approach using PCA, similarly
indicated that the blood mesoderm and neurectoderm split
at PC1 and the remaining mesoderm C/Ts and embryonic
C/Ts split at PC2 (Figure 2A and B). Additionally, based on
the use of E-Cadherin (Cdh1) and N-Cadherin (Cdh2), as a
rough proxy for epithelial/mesenchymal C/Ts respectively
(23), the blood mesoderm could be classified as neither ep-
ithelial nor mesenchymal (Supplementary Figure S5C and
D). A similar separation of the blood mesoderm C/Ts from
other C/Ts was previously observed in a systematic analy-
sis of microarray data (14,24). Based on these arguments we
designated the blood mesoderm as a distinct domain, sepa-
rate from other mesoderm C/Ts (Figure 1B and C).

Neurectoderm, neural crest and surface ectoderm are sepa-
rate domains from the ectoderm

Visual inspection of the co-correlation network revealed
three areas of the network that were composed of ectoderm
C/Ts (Figure 1B). The C/Ts within the areas were related,
and suggested three names for these domains: the neurec-
toderm (brain and spinal cord), surface ectoderm (skin,
keratinocytes) and neural crest (molars, mandibular arch).
Tree-cutting indicated a division between the neurectoderm
and the surface ectoderm as the neurectoderm split from the
surface ectoderm at seven clusters (Supplementary Figure
S5B). PCA separated the neurectoderm on PC1, the neu-
ral crest on PC4 and the surface ectoderm on PC12 (Figure
2A). Based on these arguments we divide cells into eight ma-
jor domains: Neurectoderm, blood mesoderm, mesoderm,
embryonic, neural crest, endoderm and the surface ecto-
derm, supplemented by germ cells. The number of C/Ts in
each domain ranges from the smallest (7, germ cells) to the
largest (105, blood mesoderm) (Figure 2C).

The expression pattern of long non-coding RNAs alone can
recover the embryonic, neurectoderm, blood mesoderm, germ
cell, neural crest and mesoderm domains

The analysis presented above uses combinations of either
all expressed genes or filtered gene sets. Potentially other
important regulatory genes may contain the pattern of
domain-specific gene expression. Long non-coding RNAs
(lncRNAs) lack an obvious protein coding-sequence, in-
stead they function as RNA molecules and are implicated in
a wide array of developmental and biological processes (25–
27). The transcriptome annotation used in this analysis (En-
sembl version 79), contained 1789 expressed lncRNA genes
(Figure 2D). Intriguingly, when we subjected just these 1789
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Figure 1. A relational network of mouse C/Ts. Co-correlation network of mouse C/Ts. C/Ts were correlated (R2) and then clustered together in a network.
Strong links (bold lines) are C/Ts with a correlation >0.8 and weak links (dotted lines) are C/Ts with a correlation >0.55. Each C/T in the network could
only have a maximum of 10 edges to the best scoring other C/T. All expressed genes were used to generate the co-correlated network. (A) Colors indicate
the annotated lineage, using the traditional three-germ lineage model. (B) Same as in panel A, but annotated with the individual C/T name and using a
proposed 8 domain model of development. (C) Schematic layout of the network, same as in panel B.
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Figure 2. Principal component analysis (PCA) of C/Ts. A filtered set of genes was used to perfrom PCA (Supplementary Figure S2A). (A) Selected principal
component (PC) scatter plots indicating the emergence of domains of C/T identity. Blood mesoderm and neurectoderm emerge at PC1, embryonic and
mesoderm at PC2, germ cells at PC4 and PC5, neural crest at PC4, the endoderm at PC7 and the surface ectoderm emerges at PC12. Percentages in brackets
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Barchart of the number of C/Ts in each domain. (D) Selected PCs generated using only lncRNA annotated genes. The embryonic domain emerges at PC1,
neural crest at PC2, the blood mesoderm at PC3, germ cells and the neurectoderm at PC4.

lncRNAs to PCA, we could recover the embryonic domain
(PC1), neural crest (PC2), blood mesoderm (PC3), germ
cells (PC4), and neurectoderm (PC4/5) (Figure 2D). At no
PC did we observe separation of the endoderm or the sur-
face ectoderm. This result suggests that the domain-specific
gene expression pattern is encoded not just within the pat-
tern of expression of coding genes, but also within the ex-
pression pattern of lncRNAs.

SOMs support the division of C/Ts into eight domains and
suggest further possible subdivisions

To explore the gene expression pattern of the C/Ts within
each domain and explore the domain-specific gene expres-
sion programs self-organizing maps (SOMs) were generated
for all 272 C/Ts. SOMs are a computational technique that
can be used to intuitively represent a C/Ts total gene ex-
pression in a single small image (28–30). The SOMs con-
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tain all genes, arranged in a co-correlated set of active genes
that appear as yellow-red ‘hotspots’. We trained the SOMs
using an initial seed generated from a multi-dimensional
scale (MDS) plot of the first 13 principle components (Fig-
ure 3A). Similar to the correlation networks, projection of
metadata onto the trained MDS did not reveal a strong in-
fluence of non-biological factors on the arrangement of the
C/Ts (Supplementary Figures S6 and S7). Once trained on
the MDS, the SOMs also supported nine major divisions,
consisting of the embryonic (Figure 3B), endoderm (Fig-
ure 3C), surface ectoderm (Figure 3D), mesoderm (Figure
3E), neurectoderm (Figure 3F), neural crest (Figure 3G),
germ cells (Figure 3H) and blood mesoderm (Figure 3I).
Certain partially committed cells show signs of their even-
tual fate, for example, primordial germ cells show germ cell
domain character (Figure 3B, red arrow). Also there is fine
grained structure between different C/Ts within each do-
main. For example, early versus late embryonic cells show
both shared and distinct gene expression profiles (Figure
3B), and myeloid and lymphoid cells of the blood meso-
derm can also be discriminated by their SOMs (Figure 3I).
However, overall it is remarkable how the SOMs can accu-
rately represent the domains of gene expression in the spe-
cific C/Ts.

The Euclidean distances between SOMs helps refine C/T do-
main membership

SOMs can also be used as a measure of similarity to de-
termine if an individual C/T is allocated to the correct do-
main. For each domain the average SOM was generated us-
ing all C/T SOMs within the domain, and the Euclidean
distance of each C/T to the domain-average SOM was mea-
sured (Supplementary Table S2). The Euclidean distance
between each SOM and the domain-average SOM can be
used as a proxy to determine C/Ts closer to alternate do-
mains (Supplementary Table S2). We plotted the distri-
butions of inter-domain and extra-domain Euclidean dis-
tances as support for genuine separation between the C/Ts
that make up the domains (Figure 4A). Overall, the do-
mains were distinct and showed good within-group mem-
bership, however, there remained fifteen potential C/Ts for
which the SOM was closer to an alternate domain, rather
than their presumed developmental domain (Supplemen-
tary Figure S8). The distinction between the endoderm and
mesoderm is not ideally clear, and nine of the fifteen cell
types were either annotated as endoderm when they are pre-
sumed to come from the mesoderm or vice versa (Supple-
mentary Figure S8A and B). For the remaining misanno-
tated C/Ts, the pineal gland is derived from the neurecto-
derm, but was annotated to the mesoderm (Supplementary
Figure S8C). Close inspection of the pineal gland SOM in-
dicated a mixed neurectoderm/mesoderm signature (Sup-
plementary Figure S8C) and may reflect difficulties in accu-
rately dissecting this tissue. Similarly, the Dermis (E18.5)
C/T showed a mixed surface ectoderm/mesoderm SOM
(Supplementary Figure S8D) and may reflect a mixing of
the surface ectoderm and mesoderm in the lower layers of
the skin. EpiSCs (region-selective) are an embryonic stem
cell type that has restricted potential compared to normal
EpiSCs (31). Intriguingly, instead of the embryonic domain,

these cells were annotated as closer to the neural crest (Sup-
plementary Figure S8E), perhaps suggesting a bias in their
developmental potential. Finally, several extraembryonic
C/Ts were annotated as closer to the endoderm than the
embryonic domains (Supplementary Figure S8F), this am-
biguity perhaps reflects similarities in gene expression pro-
grams between extraembryonic and embryo-proper tissues.
Overall, the SOMs are capable of accurately distinguishing
between the different domains.

Topological surfaces reveal domain-specific gene expression
programs

We next set out to utilize the SOMs as a topological map
of the differentiation potential of the cells, and to utilize
this map to discover the underlying organization of gene
expression that explains the domains. Regions of high co-
regulated genes appear as ‘hotspots’ in the SOM maps
(yellow-red; Figure 3B–I), and the C/Ts that make up each
domain can be combined into a domain-average SOM (Fig-
ure 4B). The SOMs also indicate potential contaminating
C/Ts in alternate domains, a phenomenon that manifests
as small hotspots of genes in common between two or more
domains. For example, small amounts of blood mesoderm
character is present in most SOMs (Figure 4B, red arrows),
likely reflecting circulating immune cells in almost all tissues
of the body.

The maximum depth of all of the domain-average SOMs
was used to construct a topological map of the C/T do-
mains (Figure 4C). This surface contains hills and valleys
that represent particular domains of gene expression (Fig-
ure 4D), somewhat like the islands in the ‘ocean expanses’
between cell fates (32,33), or as ‘attractors’ in the state space
of dynamical systems (34), although unlike the Wadding-
ton epigenetic model it does not contain any downward
slope (35). In this topological map, the attractors are sets
of domain-specific genes, and the genes can be extracted by
taking all of the domain-specific nodes in the bottom 80%
of the SOM (the white regions in Figure 4B, and the col-
ored regions in Figure 4D). The domains had between 393–
1040 domain-specific genes (Figure 4E, Supplementary Ta-
ble S3). In total, there were 5093 domain-specific genes and
as genes can be in more than one domain, the total set of
unique genes was 4870 (Supplementary Table S3).

Extracting domain-specific gene expression programs from
the domain average SOMs

To confirm the role of the domain-specific genes in
their respective domains we analyzed the domain-specific
genes defined by the SOMs for over-enriched GO terms
(Figure 5A). For seven of eight domains we discovered
domain-relevant significantly enriched GO terms, specif-
ically, ‘stem cell population maintenance’ (embryonic),
‘spermatogenesis’ (germ cells), ‘skin development’ (surface
ectoderm), ‘synaptic transmission’ (neurectoderm), ‘angio-
genesis’ (mesoderm), ‘xenobiotic metabolic process’, (endo-
derm, i.e. liver/intestine function), and ‘regulation of im-
mune response’ (blood mesoderm). For the remaining neu-
ral crest domain a relevant term was less obvious and only
‘morphogenesis of an epithelium’ is suggestive of the ep-
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ithelial to mesenchymal transitions that are critical for the
formation of this domain during development (36).

Each domain contains many different types of gene
with diverse biological function, GO analysis using the
‘molecular function’ category revealed that the cell sur-
face molecules are important components of the domain-
specific genes (Figure 5B), in agreement with other reports
that gene products localizing to the cell surface are C/T-
specific (37,38). The GO analysis also revealed the presence
of sequence-specific transcription factors as a major class of
domain-specific genes (Figure 5B). To explore this in more
detail, we collected various types of regulatory genes and
measured what percentage of the total class of genes is spe-

cific to a domain (Figure 5C). This analysis again high-
lighted the cell surface receptors as major determinants of
domain-specific expression, along with transcription fac-
tors. Other classes of regulatory molecules seemed less im-
portant, with the exception of RNA binding proteins in
the neurectoderm and embryonic domains and the ubiq-
uitin ligases in the neurectoderm and germ cells (Figure
5C). This domain-specific enrichment of different classes
of regulatory molecules hints at differences in developmen-
tal control, such as cell autonomous embryonic develop-
ment, driven by TFs, versus the co-operative action of adult
tissues, driven by cell–cell communication. The domain-
specific TFs were then scored for a relevant or irrelevant
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mouse knockout (i.e. does the mouse knockout cause a rel-
evant phenotype in appropriate domain-related tissues?),
and, as a control, the genes from one domain were scored as
if they were relevant in an alternate domain, to estimate the
approximate number of matching phenotypes expected by
chance alone (Supplementary Table S4). For all domains,
>40% of the TFs showed a relevant domain-specific mouse
knockout phenotype (Figure 5D), whilst phenotypes by
chance alone were <40%. Interestingly, the TFs in the em-
bryonic domain also showed an increased likelihood of an
embryonic lethal mouse knockout phenotype (Figure 5D),
supporting their involvement in embryonic development,
although as embryonic lethal mouse phenotypes are poten-
tially easier to observe this may bias their increased likeli-
hood. This analysis indicated that these TFs are relevant to
their specific domain and so comprise a regulatory mod-
ule that helps determine the overall domain-specific gene
expression program.

To understand the transcriptional regulatory programs
underlying each domain in closer detail, the mean Z-

score of expression was measured for all TFs within each
domain (Figure 6A, Supplementary Table S5). Within
the domains are many well-known C/T-specific regula-
tors (Figure 6A). For example, critical regulators of the
embryonic domain included: Pou5f1, Sox2, Nanog, Es-
rrb, Dnmt3l, Utf1 (34,39,40), along with the primitive
endoderm genes, Gata4, Gata6 and Eomes (41), and
the trophoblast genes, Hand1 and Tfap2c. Other do-
mains also contained well known C/T-specific regula-
tors: blood mesoderm––Tal1 (42,43), endoderm––Foxa1
and Hnf4a (21), mesoderm––Irx3, Irx5 (44), neural
crest––Nr2f1, Msx1, Msx2 (45,46), neurectoderm––Sox10,
Olig1, Olig2, Neurod1, Neurod2, Neurod6, Myt1, Myt1l
and Pou3f2 (47–49), surface ectoderm––Trp63 (50), and
germ cells––Dmrtb1 (51). Other classes of regulatory fac-
tors important for specific domains were also identified, for
example Dnmt3l and other epigenetic regulatory enzymes
were identified as specific to the embryonic domain (Fig-
ure 6B, Supplementary Table S6), as were the RNA bind-
ing proteins Lin28a/b (Figure 6C, Supplementary Table
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Figure 6. Transcription factors specific to a domain are important C/T regulators. (A) Heatmaps of the C/T expression of transcription factors identified
by the SOMs as domain-specific. The domain is indicated with a red label on the heatmap. The gene expression matrix was first background subtracted to
remove the influence of ‘non-expressed genes’ below the threshold of 40 normalized sequence tags, log2 transformed and converted to a gene-wise Z-score.
Displayed here is the mean of the Z-scores for all of the C/Ts in the respective domains for all TFs annotated as domain-specific. (B) Heatmap of epigenetic
factors in the embryonic domain. Shares the same color-bar scale with panel A. (C) Heatmap of RNA binding proteins in the embryonic domain. Shares
the same color-bar scale with panel A. (D) TFs that appear in more than 1 domain. (E) TFs used in trans-domain differentiation protocols, either identified
as domain-specific (top) or not identified (bottom). The black squares indicate the target domain the TF was used to differentiate a C/T to.

S7). Additionally the receptors and cell surface molecules
emerge as a major class of regulatory molecule (Supplemen-
tary Figure S9A–H, Supplementary Table S8) particularly
in somatic C/Ts. These non-TF factors may play context-
specific roles in their respective domains.

We noticed that many TFs were not confined to a single
domain but could be found within multiple domains (Fig-
ure 6D, Supplementary Table S9), particularly TFs such

as Sox9, which was identified as domain-specific for the
mesoderm, neural crest, neurectoderm and surface ecto-
derm domains. This matches closely to Sox9’s known bio-
logical functions, as Sox9 is known to regulate neural crest
development (52), glial cell commitment in the neurecto-
derm (53), chondrocyte function in the mesoderm (54) and
hair stem cell development in the surface ectoderm (55).
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Figure 7. Domain-specific genes can be used to score in vitro differentiation direction. Domain-specific genes were counted as expressed in mouse ESCs or
in their differentiated progeny and are presented as the percent of the total domain-specific genes expressed in those cells. (A) Percent of domain-specific
genes from the indicated domains in mouse ESCs (top) or in vitro differentiated cardiomyocytes (bottom). Data was from GSE67868 (59). (B) Percent of
domain-specific genes from the indicated domains in mouse ESCs (top) or in vitro differentiated motor neurons (bottom). Data was from GSE60240 (60).
(C) Percent of domain-specific genes from the indicated domains in mouse ESCs (top) or mouse ESCs treated with the pro-differentiation agent retinoic
acid (bottom). Data was from GSE39523 (61).

Other cross-domain TFs may also similarly participate in
multiple roles in multiple domains.

Domain-specific genes as transdifferentiation markers

To determine the utility of these TFs in potential trans-
differentiation experiments, we analyzed the known TF-
mediated trans-differentiation protocols (56). Many of
these protocols are within-domain transdifferentiation pro-
tocols. For example, in the conversion of fibroblasts to car-
diomyocytes, both cell types are mesoderm-derivatives (57),
whilst the transdifferentiation of macrophages to B cells, in-
volves two blood mesoderm cell types (58). Of the transd-
ifferentiation protocols that we could identify as crossing
a domain, and that were not going from the embryonic do-
main to a differentiated somatic cell (56), 40% (36/91) of the
TFs utilized for transdifferentiation were domain-specific
(Figure 6E, Supplementary Table S10). Monte Carlo simu-
lation of the expected number of matching TFs, drawn from
all expressed TFs, suggests the expected number of obser-
vations by chance alone is 1.2% (1.1/91, 100 000 simula-
tions, P < 0.01 Fisher exact test). Consequently, although
we cannot identify all trans-differentiation TFs, the lists of
domain-specific TFs is a potentially useful set of genes to
extract putative candidate TFs for trans-domain differenti-
ation experiments, and to score the destination of in vitro
differentiated cells. As an example of the latter, we analyzed
three RNA-seq datasets that profiled the differentiation of
mouse ESCs to determine the lineage commitment as the
cells are in vitro differentiated. Mouse ESCs differentiated
to cardiomyocytes (59) showed a downregulation of em-
bryonic domain genes, and an upregulation of mesoderm
and neural crest genes (Figure 7A), and in vitro differenti-
ated motor neurons (60) showed a strong commitment to
a neurectoderm cell fate (Figure 7B). Conversely, retinoic
acid treatment of ESCs (61) showed a commitment to mul-
tiple cell fates (Figure 7C). This analysis shows the utility of

these gene sets to identify the direction of in vitro differen-
tiation.

DISCUSSION

The three germ layer model of cell type classification is
the major model for specification of cell type during de-
velopment (62). Derived mainly from morphological and
anatomical observations it has been wildly successful in
defining C/T organization. Here, we reinterpret this model
using computational and genomics techniques to under-
stand the global organization of C/Ts and their relation-
ships. Using co-correlation networks, PCA and SOMs these
models suggest the existence of eight major domains of
C/T identity, corresponding to the neurectoderm, neural
crest, surface ectoderm, endoderm, mesoderm, blood meso-
derm, germ cells and embryonic domains. Intriguingly we
could recover most of this domain-organization using only
lncRNA expression, suggesting that the domain-specific
pattern of gene expression is embedded within the expres-
sion pattern of multiple regulatory molecules.

The analysis performed here is capable of detecting genes
required for domain maintenance, but one caveat remains
the difficulty of these techniques to detect genes only re-
quired during the creation of the domain during develop-
ment. For example, two TFs critical for the formation of
the endoderm and trophectoderm, Sox17 and Cdx2, respec-
tively (63–65), were not detected by the SOMs as specific
to the embryonic domain, as would be expected. Similarly,
of the known neural crest master regulators, Nr2f1, Nr2f2,
Msx1, Msx2 and Tfap2a (45,46), only Nr2f1, Msx1 and
Msx2 were detected as domain-specific. Potentially, these
missing TFs are only required for initiation and not main-
tenance of the C/T-domain during development, making
their identification difficult when analyzing mature domain-
committed C/Ts.
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In summary, we propose that mouse C/Ts are composed
of eight major domains: the neurectoderm, neural crest,
surface ectoderm, endoderm, mesoderm, blood mesoderm,
germ cells and embryonic domains. This model has poten-
tial implications for understanding development, adult tis-
sue homeostasis and manipulation of cell types in vitro. In
combination with other computational approaches such as
the perturbation modeling of CellNet (20) or the system-
atic identification of C/T-specific TFs (13,66), these analy-
ses can be used to optimize in vitro transdifferentiation pro-
tocols. In the future it will be desirable to build models of
C/T and domain specification in human (67), and also from
multiple levels of data, from promoter and enhancer data
(22,68,69), to epigenomic data (70), and mass spectrometry-
based techniques (71,72), such as in the integrative frame-
work of Mogrify (73), and so build detailed, rationally de-
signed roadmaps for in vitro transdifferentiation of desired
cell types. Ultimately, the ability to profile the gene expres-
sion of single cells will reshape the concept of cell type iden-
tity (43,74,75) and enhance our understanding of the critical
concept of cell type.
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