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Radiation-Induced Small Intestine Damage

Fei Ye1, Jing Ning2, Zeenath Fardous3 , Takanori Katsube4 ,
Qiang Li1, and Bing Wang4

Abstract
Radiation damage assessment of the small intestine is important in nuclear accidents or routine radiotherapy of abdominal tumors.
This article reviews the clinical symptoms and molecular mechanisms of radiation-induced small intestinal damage and summarizes
recent research on biomarkers of such damage. Citrulline is the most promising biomarker for the evaluation of radiation-induced
small intestinal damage caused by radiotherapy and nuclear accidents. This article also summarizes the factors influencing plasma
citrulline measurement investigated in the latest research, as well as new findings on the concentration of citrulline in saliva and
urine after different types of radiation.
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Introduction

Nuclear weapons used in wars, accidents at industrial and

nuclear power plants, accidental exposures from medical

sources of radiation, environmental factors, and nuclear terror-

ist attacks are some of the ways humans face radiation-related

injuries. Where a radiation source is known, every effort should

be made to avoid exposure to radiation and shorten the expo-

sure time, avoid the radiation source, and seek shelter. Once the

human body is exposed to radiation, appropriate screening and

medical aid should be applied immediately. In the various sce-

narios mentioned above, because of differences in factors such

as gender, age, radiation dose and rate, radiation type, external

or internal exposure, health background, lifestyle habits, etc.

identifying the irradiated population and applying timely med-

ical assistance are very complex tasks. A radiation biomarker (a

biomarker) refers to a class of substances that can be utilized to

indicating the interaction between biological systems and

radiation. The ideal radiation biomarker can reflect the radia-

tion dose received by the individual, type of radiation, exposure

time, damaged organ, and pathological stage of damage. Radia-

tion biomarkers can be used to screen individuals exposed to

radiation during a nuclear accident, assess health risks, and

provide timely mitigation or preventive measures.

In recent decades, research on radiation markers has become

increasingly detailed. Candidate genes for various radiation mar-

kers screened from human blood have been systematically

reviewed by Lacombe.1 However, because the sampling and

research methods of many studies are different, further research

is required. The gastrointestinal (GI) tract consists of

radiation-sensitive organs and it is the first to have a systemic

crisis after being exposed to radiation, which affects nutrition

intake and even causes systemic inflammation. Gut health

assessment should be given high attention in the early stages

of assisting irradiated persons. In addition, in the radiotherapy

of celiac tumors, the intestinal toxicity caused by irradiation is

the biggest cause of normal tissue damage and limit radiation
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efficiency dose. Therefore, it is necessary to pay attention to the

evaluation of intestinal radiation damage in daily radiotherapy

practice. This article reviews the advances in the discovery and

evaluation of biomarkers of small intestine damage caused by

ionizing irradiation and provides a novel review of plasma citrul-

line research that is most promising for clinical application.

Radiation Damage of the Small Intestine

The intestines are the foci of radiation protection. The GI tract is

a normal entrance and absorption pathway for nutrients, has a

high degree of structural complexity, and constituted from mul-

tiple cell types, each performing a different function. It is fun-

damentally sensitive to a variety of pathogenic microorganisms,

chemical, and radiation attacks. Studies have found that there are

many factors that affect the initial radiation dose of small bowel

injury. First, different types of radiation cause different degrees

of intestinal damage. For example, neutron radiation causes

more serious intestinal damage than gamma photon radiation.2

Secondly, the volume of the small intestine irradiated is also an

important factor, the larger the exposure volume, the more seri-

ous the damage is.3-5 Irradiated volume of the small intestine

affects not only acute small intestine injury but also chronic

damage. Emami et al6 evaluated the radiation dose associated

with delayed toxicity of the small intestine. When one third of

the small intestine is irradiated, the TD5/5 (5% chance of injury

showing up over the next 5 years) and TD50/5 (50% chance of

injury showing up over the next 5 years) were estimated to be 50

Gy and 60 Gy, respectively. While the TD5/5 and TD50/5 of

whole organ irradiation were 40 Gy and 55 Gy. In addition, the

fixed parts of the small intestine (such as the duodenum and

the terminal ileum) are more sensitive to radiation.7 Because the

growth of small intestinal epithelial cells has a circadian rhythm,

the time period of exposure during the day can also affect the

severity of the injury.8 These uncertainties make it impossible to

have a clear threshold for radiation damage to the small intestine.

Acute radiation damage occurs when the systemic dose exceeds

2 Gy, and as the level of radiation exposure increases, the sever-

ity of symptoms also increases.9 Studies have also found that

doses as low as 1.5 Gy can cause the prodromal stage of nausea,

vomiting, and gastric cancer.2 In some experiments the dose that

caused the collapse of the GI system was 6-10 Gy.10 While some

researchers believe that the losing of intestinal crypt cells and

breakdown of the mucosal barrier occurs between 5-12Gy.11

Moreover, from the experimental data of the monkeys listed in

Table 1, it can be seen that if different observation time points

are selected, different conclusions will be obtained.

The pathophysiological mechanism of gastric syndrome

caused by radiation is complex, involving the loss of crypt

cells, reduction in the number of intestinal villi, poor regenera-

tion of intestinal stem cells after irradiation, and systemic

inflammatory response syndrome (SIRS) caused by a variety

of cytokines and growth factors.14,15 In addition to the intest-

inal damage caused by the direct effect of radiation, it is gen-

erally believed that the bystander effect caused by radiation

will also cause intestinal damage16 through 2 pathways of inter-

cellular gap and paracrine.17 Some irradiated cells can cause

damage to neighboring cells through soluble components18,19

or release of exosomes. In 2007, Gaugler’s research demon-

strated that in high-dose radiation in vitro experiments, irra-

diated EC epithelial cells plays essential role in the initiation of

the pathogenesis of intestinal damage to radiation, ie, epithelial

cell lethality. A similar phenomenon was also discovered in the

study when using Dark Agouti rats for fractional exposure

experiments.20 In recent years, the rise of organoids has led

to new methods for the study of bystander effects. Enteroids,

small intestinal crypt organoids, consist of a 3D epithelial

monolayer that maintains crypt-villus architecture with repli-

cating ISC intestinal stem cells that differentiated into the

major small intestinal epithelial lineages.21,22 Using Enteroids,

Leonetti’s research23 have found Ceramide and its related

enzyme acid sphingomyelinase (ASM) are secreted by

Table 1. The Influence of Time Course and Dose on the Observation of the Severity of Small Bowel Injury Caused by Radiation in Non-Human
Primates.

Species (radiation condition) Dose Time course symptom

Rhesus macaque12(X-ray; Total
body irradiation)

10.0 *14.0 Gy Day 4 post-TBI on average, peaking
at day 7

Diarrhea

10.0Gy Day 5 on average, peaking at day 7 Grade 2 Dehydration
14.0 Gy Peaking at day 7 Grade 3Dehydration

10.0 *14.0 Gy Day 7 on average Crypt numbers reaching 10% loss of
pre-irradiation body weight.

10.0Gy On day 7 post-TBI Crypt numbers decreased to 30% of control.
10.0Gy On day 10 post-TBI Crypt numbers decreased to 24.8% of control.
10.0Gy On day 15 post-TBI Crypt numbers restored to 44% of control.
11.5Gy On day 7 post-TBI Crypt numbers decreased to 6% of control.
11.5Gy On day 10 post-TBI Crypt numbers restored to 28.8% of control.
11.5Gy On day 15 post-TBI Crypt numbers restored to 25% of control.

Rhesus monkeys13 (X-ray; Total
abdominal irradiation)

9.5Gy Appeared initially at 5 days, continued
through 14 days

Diarrhea

9.5Gy At 7 and 14 days after post TAI, but not
at 35 days after TAI

Crypts/millimeter were reduced significantly
relative to baseline controls.
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irradiated endothelial cells and act as bystander factors to

enhance the radiotoxicity of intestinal epithelium. The rapid

turnover of intestinal epithelial cells results in the intestinal

mucosa being particularly sensitive to high radiation exposure

during radiation therapy or any other nuclear exposure. There-

fore, maintaining intestinal homeostasis is essential in order to

resist radiation-induced GI damage.24 After being exposed to

radiation, living organisms often show active or passive

changes in biological macromolecules such as nucleic acids,

proteins, and metabolites in cells, organs, and body fluids. We

wish those biological macromolecules can reflect the exposure

time and radiation characteristics (type, dose, dose rate, etc.),

and changes in biological macromolecules in such as injured

organs can provide urgently required information to emergency

medical service professionals.

Clinical Symptoms of Small Intestinal
Damage Caused by Radiation

The small intestinal epithelial cells are constantly renewed, and

the cells migrate from the intestinal crypt along the sides of the

villi and eventually fall off at the top. Controlling cell adhesion

during cell migration, division, and differentiation is essential

to maintain its healthy and sustainable regeneration.25 Com-

plex gene expression networks26,27 control the steady-state of

multicellular proliferation, starting from stem cells.28 These

overly complex control networks are most vulnerable to radia-

tion damage.29

Radiotherapy of abdominal and pelvic malignancies usually

causes severe intestinal toxicity,30 which is an important clin-

ical problem that restricts the dose determination in radiother-

apy. The total risk of this complication depends on the stage of

cancer, patient age, GI condition, and radiation type, dose and

fractionation.31 Radiation destroys and depletes stem and

immature cells, making it impossible for the body to fully

compensate for defects caused by the exfoliation of differen-

tiated cells. This results in a change in the morphology of

the mucous membrane in an inflamed form. In turn, the rapid

natural renewal of the intestinal mucosa makes these cells

particularly vulnerable to cytotoxicity treatment.

Mucositis, also known as mucosal barrier damage, has

complex pathological and clinical manifestations.32 It is char-

acterized by physiological changes in the epithelial layer—

from erythema to ulcers. Mucositis is also one of the most

debilitating side effects of radiotherapy and chemotherapy.33

The epithelial barrier lining the GI tract is composed of a

single layer of epithelial cells,34 forming a mechanical barrier

that separates the inside of the human body from the outside

world. Mucosal damage disrupts the body’s natural barrier

against infection. In addition, a weakened immune system is

a factor leading to the dynamic development of infection.

Inflammation, the loss of mucosal integrity, and neutropenia

increase the risk of local bacterial, fungal, and viral

infections.

Molecular Mechanism of Small Intestine
Damage Caused by Radiation

Owing to the particularity of the small intestine, there is cur-

rently no molecular model for small intestinal mucosal damage

caused by radiation, but it is generally believed that the damage

process of oral epithelial cells should be consistent with that of

small intestinal mucosal epithelial cells.35 Treister and Sonis36

observed that the general cellular process of mucosal injury

involves not only the damage to epithelial cells, but also the

participation of other molecular processes. Recent studies have

shown that the mechanisms involved in the pathogenesis of

mucositis are more complex than direct damage to the epithe-

lium alone. Radiation therapy with multiple doses of radiation

will trigger a series of biological events in the intestinal villi

epithelial cells. It is generally believed that the mucosal dam-

age caused by radiation can be divided into 5 stages, according

to the model introduced by Sonis.37,38 Different regions of the

mucosa may undergo each stage of damage independently.37,39

a. Initial stage: Radiation directly damages epithelial

cells, the basement membrane, and submucosal blood

vessels. The direct effects of radiation cause DNA

damage and the death of epithelial cells. The reactive

oxygen species generated by the indirect effects of

radiation are also considered to play an important role

in the occurrence of mucosal damage.40 The formation

of these lesions leads to the activation of nuclear factor

kB (NF-kB).41

b. Inflammatory factor stage: This stage involves the acti-

vation of inflammatory cytokines such as interleukin

1, tumor necrosis factor alpha (TNF-a), and interfer-

ons (IFN), and the initiation of angiogenesis. During

epithelial cell injury and death, the second messenger

is activated, leading to the upregulation of pro-

inflammatory cytokines and tissue damage.42 The

activation of messenger molecules causes the onset

of inflammation. Intestinal changes at this stage

include intestinal epithelial cell apoptosis and morpho-

logical changes of the small intestinal villi.

c. Signaling and amplification stage: This stage involves

the enhanced release of cytokines, leading to mucosal

damage and loss of its integrity and continuity. Primar-

ily, macrophages begin to produce pro-inflammatory

cytokines such as TNF-a, and activate molecular path-

ways that amplify mucosal damage. The cascading

effect of inflammatory factors leads to the increased

involvement of immune cells and apoptosis of mucosal

epithelial cells.

d. Barrier dysfunction stage: At this stage, the small intes-

tine produces mucosal ulcers. The ulcer phase is char-

acterized by the disruption of the continuity of the

epithelial barrier. The disruption of barrier function

is the result of the combined action of epithelial cell

apoptosis, the development of mucosal ulcers, inflam-

matory cell infiltration, dysfunction of the local

Ye et al 3



immune response mechanism, and microbial translo-

cation (viz., of bacteria, viruses, and fungi). Metabo-

lites of intestinal microorganisms are also one of the

causes of inflammatory cell infiltration.

e. Recovery stage: Owing to the continuous differentia-

tion and proliferation of mucosal cells, the integrity

and continuity of the epithelium and the normal

functioning of the small intestine villi are restored.43

At this stage, the microvessels in the villi of the small

intestine are also recovered further.44

Biomarkers of Radiation Damage in the Small Intestine

In recent decades, biomarkers of radiation damage in the small

intestine have been researched extensively, and many methods

and candidate biomarkers have emerged. Studies on the small

intestine generally focus on the unique features of the small

intestine, such as absorption, barriers, and amino acid synth-

esis. Owing to technological progress, various advanced meth-

ods such as mass spectrometry and nucleic acid sequencing

have been incorporated in the research methods in recent years.

The use of various omics methods has promoted the birth of

more noninvasive methods. However, there is currently no

small intestinal radiation damage biomarker approved by com-

petent authorities, and there is not even a “gold standard” in the

industry. Additionally, among the several possible candidate

biomarkers currently under investigation, almost all of them

fail to meet the screening requirements of ideal radiation bio-

markers specific for radiation types. Only the radiation dose

has a good correlation within some candidate biomarkers.

Many potential radiation biomarkers targeting the small intes-

tine have been proposed, such as diamine oxidase (DAO) cal-

protectin and gut flora. DAO45-48 is a highly active intracellular

enzyme in the upper villi of the small intestine of humans and

mammals. It is closely related to the integrity and damage of

the intestinal mechanical barrier. However, the low level of

DAO in the blood makes it difficult to detect, and it is easily

confused with heparin in the blood.49,50 Calprotectin51,52 is a

calcium- and zinc-binding protein with a molecular weight of

36 kD. The concentration of calprotectin in feces has been

identified as a sensitive biomarker for intestinal inflammation.

It is highly sensitive and noninvasive, but low in specificity and

cannot distinguish the anatomical site of intestinal injury.53,54

The composition of the microbiome in gastrointestinal tract is

unique to an individual. However, it is not fixed and can be

altered according to various factors such as changes in envi-

ronment, drugs, and diseases. Studies have shown that radiation

can cause significant changes in the gut microbiota.55,56 And

microbiome plays an important role in the pathogenesis of

radiation-induced intestinal damage.57 Although compared

with the sham irradiated control, the intestinal microbiome of

radiated one shows a reduction of specific flora,58,59 the

amount of microbe reduction cannot linearly indicate the radia-

tion dose. Moreover, certain pre-existing pathology can also

affect the specificity of intestinal flora as a marker of radiation

damage.60 The data form patients that scheduled to receive

abdominal radiotherapy in 3 different clinical trials,61-63 and

normal C57 mice in an abdominal irradiation experiment60

shown that the microbiota profile changed greatly before and

after irradiation. However, there were discrepancies regarding

the nature of these alterations between studies.64

Citrulline as Biomarkers of Radiation Damage
in the Small Intestine

Features of citrulline secretion in the small intestine. Citrulline is

currently the most in-depth researched candidate that meets most

requirements (tissue specificity, volume-response relationship,

etc.). The citrulline test mainly evaluates the loss of intestinal

epithelial cells, which is an important manifestation of acute and

chronic intestinal radiation damage. There are currently 2 path-

ways found in the synthesis of citrulline in vivo, and these 2 path-

ways are mainly completed in the small intestine. The first is the

synthesis of citrulline from glutamine, which requires 5 mito-

chondrial enzymes: phosphate-dependent glutaminase (PDG),

pyrroline-5-carboxylic acid synthase (P5CS), ornithine amino-

transferase (OAT), Ornithine carbamyltransferase (OCT), and

Carbamoyl phosphate synthase I (CPSI), of which P5CS is the

key regulator65-68 and unique to small intestinal epithelial

cells.66,69,70 Proline synthesis of citrulline and arginine is another

important pathway for citrulline synthesis. This pathway involves

4 mitochondrial enzymes,71 namely proline oxidase (PROox),

OAT, OCT, and CPSI. Although the key regulatory enzymes of

this pathway, PROox and CPSI,65,72 are also found in the liver and

kidneys, the activity of PROox in the small intestine is relatively

high, that is, 10 times and 6 times higher than that in liver and

kidney, respectively, in piglets,71 and the total number of small

intestinal cells is much larger than liver and kidney cells.73 The

main consumer of citrulline is the kidney. In a study by Wind-

mueller et al.,74 citrulline utilization was measured in isolated

livers perfused for 150 min with blood-plus-plasma. A tracer dose

of L-[carbamoyl-14C] citrulline was added to the recycling per-

fusate, which contained 124 mM citrulline. After 150 min and

about 40 passes through, about 90% of the labeled citrulline

remained, which indicates that the liver is very inefficient in

metabolizing citrulline. In contrast, 35% of citrulline is consumed

by arterial blood as it passes through the kidney.74,75 Nowadays,

the small intestinal absorptive epithelium is widely regarded as

the main source of circulating citrulline.

In several organ exclusion experiments, it was observed that

no part of the body, except the intestine, releases large amounts

of citrulline under physiological conditions.74 The use of

specific inhibitors of small intestinal OAT66 and OCT76 for

small bowel targeting intervention significantly reduced

plasma citrulline concentrations, which can also support this

conclusion.

Experimental and clinical data77 have shown an uneven

distribution of citrulline production within the small intestine.

It was observed that the P5CS activity of rats is distributed in

the duodenum, upper jejunum, lower jejunum, and ileum at

26%, 31%, 33%, and 10%, respectively.69 However, the data
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provided by Crenn et al.78,79 indicate that there is a volume

effect. The decrease in intestinal absorption after irradiation

is associated with the loss of functionally active intestinal

epithelial cells that make up the surface of the absorbable

mucosa.80-83

Plasma citrulline concentration and the radiation dose. The rela-

tionship between the plasma citrulline concentration and the

radiation dose was proven many times through experiments

and clinical studies. Lutgens et al84 used female NMRI mice

to investigate the relationship between plasma citrulline levels

and X-ray-induced small intestine epithelial cell loss and small

intestinal morphology. The conclusion is that the plasma citrul-

line concentration changes most significantly at the time points

of 84 hours and 4 days after IR. At low doses (0-3 Gy) the

plasma citrulline concentration changes, although it is not obvi-

ous, but at a high dose (3-12 Gy), the decline is obvious. After

the fourth day, the citrulline level began to recover and reached

normal level in mice that received less than 8 Gy irradiation,

while mice that received higher doses of irradiation were not

able to fully recover. Lutgens et al85 conducted a prospective

clinical study in patients undergoing graded radiotherapy for

abdominal and/or pelvic cancer sites (23 patients, 9 males,

14 females, 28.3-72.6 years old). After the initiation of radio-

therapy, the citrulline concentration showed a decrease in rela-

tion to the dose received and the volume of the intestine. The

citrulline concentration in the last 3 weeks of treatment showed

correlation with evaluated clinical toxicity. The acid concen-

tration showed more relevant correlation with the dose or expo-

sure volume than with the evaluated clinical toxicity. From

November 2008 to May 2010, 53 patients (36 prostate cancer,

17 endometrial cancer) who underwent pelvic radiation therapy

were prospectively reviewed in Turkey.30 A strong correlation

between dose-volume and citrulline concentration was also

observed, and the authors recommend that citrulline concen-

tration should be included as an indicator of intestinal toxicity

caused by radiation in future clinical practice. The relationship

between citrulline concentration and intestinal epithelial cell

loss is also observed in other pathological conditions not

related to radiation, such as surgery after small bowel trans-

plantation,78,79,86,87 celiac disease and non-Celiac disease,88

and viral enteritis.89 Overall, plasma citrulline appears to be

a quantitative parameter and it is not depend on related to the

underlying cause of epithelial cell loss.90

Non-Radiation Factors Affecting Plasma
Citrulline Concentration

Crenn91 examined several non-IR factors that affect plasma

citrulline concentrations, including diet, age and ethnicity,

renal function, metabolic stress and inflammation, and liver

function. Recently, a study using 3 types of animals (mice,

minipigs, and Rhesus macaques)92 found that the citrulline

level was significantly reduced by 35.5% (P < 0.0017), when

nonhuman primates (NHPs) anesthetized with ketamine and

acepromazine compared with unanesthetized NHPs. It is also

found that in the postprandial state, the concentration of

citrulline in NHPs decreased slightly, but decreased signifi-

cantly by 12.2%. These results indicate that plasma citrulline

is affected by experimental conditions such as anesthesia and

feeding. In a study by Park et al93 it was found that serum

citrulline levels in mice showed diurnal changes and fluctua-

tions related to food intake with no significant simultaneous

change in the intestinal cell mass. Serum citrulline levels in fed

mice did not change daily, while in fasted mice it was signif-

icantly higher in the morning than at night. These findings

highlight the importance of consistency in sample collection

strategies in translational research.

Citrulline in Non-Plasma Body Fluids

Because blood extraction can cause damage to the body, blood

extraction and storage require professional skills; thus, it is not

the most suitable method for large-scale screening of

radiation-exposed individuals. In addition to detecting citrul-

line in plasma, changes in citrulline concentrations have also

been detected in urine and saliva after exposure to radiation. In

an experiment in which 3 male and 4 female rhesus monkeys

(Macaca mulatta) were irradiated with cobalt 6094 at the dose

of 4 Gy, saliva was collected at different time points and citrul-

line levels were determined by an ultra-high performance

liquid chromatography system in combination with Xevo

G2-S time-of-flight mass spectroscopy (TOF-MS). The results

showed that on the first day after irradiation, the citrulline in

saliva increased rapidly to more than 2 times of that before the

irradiation, and then rapidly decreased again on the third day.

This result is the exact opposite of how plasma citrulline

responds to radiation (which drops significantly in blood). In

C57BL/6 mice, the g-ray (cesium 137) irradiation dose was

0.5-8 Gy, and the sampling time was 1 and 7 days after irradia-

tion. No change in citrulline concentration was found in sal-

iva.95 Although saliva is easy to obtain, as a biomarker its

application has many restrictions because of factors such as

smoking,96 circadian rhythm,97 eating habits,98 and so on. In

some pathological situations, saliva contains certain blood

components, which may affects the results.99

Goudarzi and colleagues100 applied different radiation

patterns to C57BL/6 mice, and compared the effects of internal

(Sr 90 and Cs 137) and external irradiation (low and high dose

rates of X-rays). The results showed that there was no statisti-

cally significant change in urinary citrulline concentration

within 24 hours after 4.4 Gy irradiation with X-rays at a low

dosing rate (3.0 mGy/min). The citrulline levels in mice were

significantly reduced after 90 days of 90Sr (internal irradiation)

exposure with a cumulative dose of 2.0 Gy, and Cs 137 (inter-

nal irradiation) on the fifth day after exposure with a cumula-

tive dose of 4.1 Gy also showed a similar trend. After X-ray

irradiation with 4.4 Gy at a high dosing rate (1.1 Gy/min), the

citrulline level on the 5th day increased significantly. The

results of this study are very important. It illustrates that

changes in citrulline can be detected under internal radiation,

and inhalation internal radiation occurs in many nuclear
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accidents. In several other investigations involving nontargeted

mass spectrometry detection of sources other than irradiation,

the change in citrulline was not detected in radiation-exposed

mice,101 rats,102 and monkeys.103 This may be due to the non-

targeted approach used. It can be concluded from the above

researches that the level of citrulline in body fluid can directly

represent neither the change of citrulline concentration in

plasma nor the loss of small intestinal epithelial cells.

Conclusions

There are different types of radiation in various scenarios, and

they affect different groups of people (classified based on pro-

tection level, gender, type of radiation exposure, age, education

level, etc.). In the case of a certain group size, appropriate

measures should be taken. This calls for a targeted approach,

which can combine clinical symptoms and biomarkers to

achieve the current optimal solution. The currently used meth-

ods aim to find a marker that meets all conditions. However,

the reality is that in different biological processes, biomole-

cules that can play a role in marking are often different. Thus

different biomarkers should be used in different biological and

clinical symptom stages, and radiation-induced tissue damage

cannot be expressed or quantified by a single functional or

morphological parameter.104

In addition, as blood citrulline is being increasingly

accepted for its high-dose external radiation, clinicians are

hopeful that the concentration of citrulline can be consistent

with the current clinical toxicity classification system. If clin-

ical toxicity classification and radiation biomarkers can be

mapped with clear biological processes and clinical symptoms,

it will be greatly beneficial to the decision-making process.
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