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Abstract

The difference between the pth quantiles of 2 survival functions can be used to com-

pare patients' survival between 2 therapies. Setting p = 0.5 yields the median survival

time difference. Varying p between 0 and 1 defines the quantile survival time differ-

ence curve which can be straightforwardly estimated by the horizontal differences

between 2 Kaplan‐Meier curves. The estimate's variability can be visualized by adding

either a bundle of resampled bootstrap step functions or, alternatively, approximate

bootstrap confidence bands. The user‐friendly SAS software macro %kmdiff enables

the straightforward application of this exploratory graphical approach. The macro is

described, and its application is exemplified with breast cancer data. The advantages

and limitations of the approach are discussed.
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1 | INTRODUCTION

As consistent estimator of the survival function, the Kaplan‐Meier curve1

is the most commonly used graphical tool in survival analysis. It is exten-

sively used to visually compare censored survival time curves between

groups of patients distinguished by different therapies, biomarker catego-

ries, or demographic features. Estimates for survival probabilities at spe-

cific times (eg, 3‐year survival probability) and specific quantiles of the

survival time distribution (eg, median survival time) can be easily obtained.

The diagonal upper‐left‐to‐lower‐right nature of the plot, how-

ever, hampers the visual assessment of the difference between the

pth quantiles of 2 Kaplan‐Meier curves. To overcome this problem,

the quantile survival time difference curve is defined and straightfor-

wardly estimated by calculating the horizontal differences between

the corresponding Kaplan‐Meier curves. Two bootstrap‐based

approaches are suggested to illustrate the estimate's variability; alter-

natively, the traditional normal approximation method or a smoothed

empirical likelihood approach could have been considered as well.2

The quantile survival time difference curve is not to be confused

with the survival probability difference curve3-6 and approaches

related to it.7-10 Besides that, the term “quantile difference” itself is

not unambiguously defined. It could also refer to the difference
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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between the pth and qth quantiles of a single survival curve11,12, eg,

the interquartile range for p = 0.75 and q = 0.25.

In Section 2, the technical details of the approach are presented.

The SAS macro %kmdiff is described and illustrated in Section 3. A

brief discussion is given in Section 4. The SAS macro code was gener-

ated using Version 9.4 (for Windows) of the SAS software (copyright

© 2002‐2012 SAS Institute Inc.). SAS and all other SAS Institute Inc.

product or service names are registered trademarks or trademarks of

SAS Institute Inc., Cary, NC, USA.

2 | METHODS

Assume that from a large patient population with survival function S(t),

right‐censored survival data have been observed for a sample of n

patients, where x1…xn denote observed survival times and a1…an

denote their corresponding censoring indicators, respectively. The

Kaplan‐Meier estimator of the survival function is defined as

bS tð Þ ¼ ∏
ti≤t

1−
di
ni

� �
; t1≤t≤tK ; (1)

where 0 ≤ t1 < t2 <… < tK are K > 0 different observed failure times, di is

the number of failures, and ni is the size of the risk set at ti, i = 1, …, K. If
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no censored values have been observed before t1, then n1 = n. bS tð Þ is
right continuous, bS tð Þ¼1 for 0≤ t< t1 and 0≤bS tKð Þ≤bS tð Þ≤1 for 0≤ t≤ tK.

Note that bS tKð Þ equals 0 only if all censored observations occur before

tK. If patients are still alive after tK, then either bS tð Þ can be set equal to

bS tKð Þ from tK to the largest censoring time or bS tð Þ can be considered

not defined for t > tK. In the current manuscript, the latter definition is

applied. Consequently, in the case of K = 0, that is no observed failure

times, bS tð Þ equals 1 for t = 0 and is not defined for t > 0.

The pth quantile survival timeQ(p) corresponds to the labelling of the

survival function axis of the Kaplan‐Meier plot and is equivalent to the

common (1 − p)th quantile of a distribution function. For bS tKð Þ≤ p≤1

andK > 0, the estimator for the pth quantile survival time can be defined as

bQ pð Þ ¼ min tj
��bS tj
� �

≤p
� �

: (2)

Now assume that from a second large patient population (inde-

pendent from the first one) with survival function S′(t), right‐censored

survival data have been observed as well for a sample of m patients.

Their observed survival times and censoring indicators are denoted

by y1…ym and b1…bm, respectively, and 0 ≤ u1 < u2 < … < uL are the

L different observed failure times. By analogy with formulae (1) and

(2), a corresponding estimator
c
Q′ pð Þ for the pth quantile survival time

Q′(p) is obtained, bS′ uLð Þ≤p≤1. Note that the prime in the notations

refers to the second population and its corresponding sample.

Let

p0 ¼ max bS tKð Þ;bS′ uLð Þ
� �

: (3)

Now, an estimator for the quantile survival time difference curve

D(p) = Q(p) − Q′(p) can be defined as

bD pð Þ ¼ bQ pð Þ−cQ′ pð Þ (4)

for p0 ≤ p ≤ 1. If p0 = 0, then bD 0ð Þ ¼ tK−uL.

It seems obvious now to plot bD pð Þ against p. However, for the

sake of comparability with the Kaplan Meier plot, p has to be plotted

on the vertical axis against bD pð Þ on the horizontal axis, respectively.

In a next step, the variability of the estimator bD pð Þ will be visual-

ized. For this purpose, 2 bootstrap solutions are suggested, both are

based on Efron's classical bootstrap for censored data.13

2.1 | Bootstrap bundle

Draw a sample of size n with replacement from (x1, a1), (x2, a2)…(xn, an)

and a sample of size m with replacement from (y1, b1), (y2, b2)…(ym, bm).

These are the first bootstrap samples, x*11 ; a*11
� �

; x*12 ; a*12
� �

… x*1n ; a*1n
� �

and y*11 ;b*11

� �
; y*12 ; b*12

� �
… y*1m ; b*1m

� �
from where the bootstrapped

quantile survival time difference curve can be computed from the 2

bootstrapped quantile survival time curves, bD*1 pð Þ ¼ bQ*1 pð Þ−cQ′ *1 pð Þ,
p*1 ≤ p ≤ 1. Here, p*1 is defined in analogy to p0 of formula (3).

Repeating the drawing of the bootstrap samples bundle times

eventually yields bundle bootstrapped quantile difference curves,

bD*i pð Þ, p*i ≤ p ≤ 1, i = 1…bundle. Depicting them together with bD pð Þ
enables a visual assessment of the variation of bD pð Þ. In doing so, a sub-

dued colour like light grey should be used for the bootstrapped quantile
difference curves, and a vibrant colour like green should be used for

bD pð Þ, respectively. Setting bundle to a value between 40 and 200 seems

reasonable when using the bootstrap bundle approach.

2.2 | Bootstrap confidence bands

The generation of a confidence band also requires bootstrapped

quantile difference curves, bD*i pð Þ, 0 ≤ p*i ≤ p ≤ 1, i = 1…boot. Here,

the value of boot should depend on the chosen confidence level

100(1 − α)%. As rule of thumb, we recommend boot ≥ 100/α, that is

boot ≥ 2000 for a 2‐sided 95% confidence band and boot ≥ 10000

for a 2‐sided 99% confidence band, respectively.

A confidence band for the quantile difference curve can be con-

structed from a series of pointwise confidence intervals for quantile

differences. For a given survival probability p, the corresponding con-

fidence interval is determined as the (α/2)th and the 1 − (α/2)th

quantile of the empirical distribution of bD*1 pð Þ, bD*2 pð Þ… bD*boot pð Þ,
where p*max ≤ p ≤ 1 and p*max = max (p*1, p*2…p*boot). Note that

p*max is the smallest probability for which the quantile difference can

be computed for all bootstrap replications, and so, the confidence

band is available for the interval [p*max, 1].

The length of this interval can become rather short as it depends

on the bootstrapped Kaplan‐Meier curve (out of 2 × boot such curves)

that drops least. By applying a conservative approach, the confidence

band can now be extended for p*1 − α ≤ p < p*max as well, where p*1 − α

is a specifically defined (1 − α) quantile of p*1, p*2…p*boot. According to

the usual definition of quantiles, the (1 − α) quantile is either one of

the values p*1, p*2…p*boot or it can be any chosen value from an inter-

val, say [p*j, p*k]. In the former case, set p*1−α equal to that value; in the

latter case, set p*1 − α = p*k, respectively.

Now, for a given survival probability p with p*1 − α ≤ p < p*max and

all i with p*i ≤ p, bD*i pð Þ is defined and a weight of 1/boot can be

assigned; furthermore, M is set to an arbitrary value larger than the

maximum of the absolute values of these bD*i pð Þ. For all i with p*i > p,bD*i pð Þ is undefined and will be replaced with 2 values, −M and M, with

weights 0.5/boot. Hence, the sum of all weights will be 1 and the con-

fidence interval can be determined as the (α/2)th and the 1 − (α/2)th

quantile of the now‐weighted empirical distribution.
3 | RESULTS

3.1 | SAS macro

The SAS macro %kmdiff allows the straightforward application of the

method to survival data sets and is freely available at https://cemsiis.

meduniwien.ac.at/en/kb/science‐research/software/statistical‐software/.

The macro produces the standard Kaplan‐Meier plot of SAS, and

plots of the quantile differences with (i) a bootstrap bundle, (ii) bootstrap

confidence bands, and (iii) both a bootstrap bundle and bootstrap confi-

dence bands. The macro parameters are described inTable 1.
3.2 | Example

Patients with primary node positive breast cancer have been recruited

by the German Breast Cancer Study Group (GBSG) from July 1984 to

https://cemsiis.meduniwien.ac.at/en/kb/science-research/software/statistical-software
https://cemsiis.meduniwien.ac.at/en/kb/science-research/software/statistical-software


TABLE 1 Parameters of the SAS macro %kmdiff

Parameter Description

data Input SAS data set (required); its name must not start with two underscores, and it must not contain
variables whose names start with two underscores (in particular, “__g”, “__t”, and “__status”)

time Survival time variable (required)

timeunit Time units of the survival time variable; default is “years”

status Survival status variable (required)

censval Censoring status value(s) to be used in PROC LIFETEST; default is “0”; use the %str() function to specify more than 1 value

group Covariate which distinguishes the two groups of interest (required)

gvalue1 Numerical value of first group of interest (required)

gvalue2 Numerical value of second group of interest (required)

grouplbl Label of group variable (optional)

gvallbl1 Label of first group value (optional)

gvallbl2 Label of second group value (optional)

alpha 100‐alpha % is the pointwise two‐sided confidence level; default for alpha is “5”

boot Number of bootstrap replications for computing confidence bands; default is “2000”, minimum is “100”

bundle Number of bootstrap replications shown in figures; default is “200”

seedval Bootstrap random number seed; default is “0”

FIGURE 2 RFS probabilities are plotted against quantile RFS time
differences between postmenopausal and premenopausal women
with primary node positive breast cancer (green solid line). The
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December 198914; the GBSG data set can be either obtained

from http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets or from

http://biom131.imbi.uni‐freiburg.de/biom/Royston‐Sauerbrei‐book/.

It will be used in the following for illustration purpose. The data set

contains several clinical variables and the recurrence free survival

(RFS) time of 686 female patients of whom 299 suffered an event

(cancer recurrence or death).

In Figure 1, the Kaplan‐Meier curves (product‐limit survival

estimates) for 290 premenopausal and 396 postmenopausal women

are shown. The curves lie close to each other and intersect right

before 6 months and then again right before 3 years; albeit the first

intersection is hard to see. Before the first and after the second inter-

section, the premenopausal women show better RFS, in the time

between the postmenopausal women are better off.

The estimated quantile RFS time difference curve is shown as

green solid line in Figures 2–4; thereby, 3 distinct ways to visualize

its variability have been applied. A bundle of 200 bootstrap
FIGURE 1 Kaplan‐Meier curves showing recurrence‐free survival
(RFS) of postmenopausal and premenopausal women with primary
node positive breast cancer

variability of the estimated curve is illustrated by a bundle of 200
bootstrap replications (grey solid lines)
replications of the quantile RFS time difference curve are added as grey

solid lines to Figure 2. A 95% confidence band is shown as green trans-

parent area in Figure 3; it has been derived from 2000 bootstrap replica-

tions of the quantile RFS time difference curve. In Figure 4, key features

of Figures 2 and 3 have been combined; however, the 95% confidence

band is depicted with 2 black solid lines now. To allow independent

replications of Figures 2–4, the seedval parameter (bootstrap random

number seed) was set to a value larger than 0, concretely 44181.

The quantile RFS time differences curve vividly shows the extent

of the horizontal gaps between the 2 Kaplan‐Meier curves. In particu-

lar, the 2 intersections of the Kaplan‐Meier curves can be easily distin-

guished in the quantile RFS time difference curve.

Both the bundle of bootstrap replications and the 95% confidence

band reveal the increasing variability of the observed quantile differ-

ence with decreasing survival probability (ie, decreasing size of the risk

set). Simple random fluctuations can provide a plausible explanation

http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets
http://biom131.imbi.uni-freiburg.de/biom/Royston-Sauerbrei-book/


FIGURE 3 RFS probabilities are plotted against quantile RFS time
differences between postmenopausal and premenopausal women
with primary node positive breast cancer (green solid line). The
variability of the estimated curve is illustrated by a bootstrap‐based
95% confidence band (2000 replications, green transparent area)

FIGURE 4 RFS probabilities are plotted against quantile RFS time
differences between postmenopausal and premenopausal women
with primary node positive breast cancer (green solid line). The
variability of the estimated curve is illustrated by both a bundle of 200
bootstrap replications (grey solid lines) and a bootstrap‐based 95%
confidence band (2000 replications, black solid lines)
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for the observed differences in quantile RFS times between premeno-

pausal and postmenopausal women over nearly the whole observed

probability range. The only exception is observed for survival probabil-

ities around 94%.
4 | DISCUSSION

The SAS macro %kmdiff provides an easy‐to‐use computational tool

to visually assess the estimated quantile survival time difference curve

and its sample variability. The curve is intended as useful complement

but not as replacement of the survival probability difference curve and

all the refined approaches based thereon.3-10

The motivation to plot a quantile survival time difference curve

may be threefold. Firstly, patients as well as health professionals

may find time differences more intuitive and easier to interpret than
probabilities and probability differences. Secondly, the curve shows

an overall picture unlike the isolated snippet provided by the com-

monly reported median survival time difference. And thirdly, it can

become rather difficult to assess horizontal (and also vertical) differ-

ences between 2 Kaplan‐Meier curves; the visual perception is often

affected by the shortest (Euclidean) distance between the 2 curves.

The main purpose of the SAS macro %kmdiff is to support the

exploration of (possibly time‐dependent) group effects in the presence

of right censoring. Using the macro for confirmatory purposes would

require the prespecification of statistical hypotheses and the proper

adjustment for any multiple testing; it should also be taken into

account that the macro produces a pointwise confidence band.

There is a potential limitation of bootstrap‐based confidence inter-

vals for quantile differences: in particular in very small samples and risk

sets, the actual coverage probability may considerably deviate from

the nominal one.15,16 Naturally, this limitation also affects the bootstrap

bundle approach; that is, the graphically shown bootstrap replications

might only provide a distorted picture of the variability of the estimated

quantile differences in very small samples and risk sets.

Confidence intervals could also be obtained by normal approxima-

tion or a smoothed empirical likelihood method.2 However, the former

will need moderate to large sample sizes to work properly, whereas

the latter requires the selection of a kernel bandwidth by cross‐valida-

tion which is computationally burdensome.2 Besides that, due to the

close relationship between the bootstrap and the empirical likelihood,

it seems reasonable to assume that the empirical likelihood will face

similar problems as the bootstrap in very small samples and risk sets.

The presented SAS macro %kmdiff only uses Base SAS and SAS/

STAT procedures for statistical computations; graphical representa-

tions are based on the ODS Graphics procedure SGPLOT. Note that

the user can easily modify the SGPLOT code or replace it with

purpose‐built SAS code to obtain specially tailored graphical output.

In conclusion, the SAS macro %kmdiff provides a useful explor-

atory tool for medical researchers as it brings in an additional dimen-

sion to the assessment and communication of group differences in

patient survival.
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