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Abstract: Carbohydrate antigen 199 (CA199) is a serum biomarker which has certain value and
significance in the diagnosis, prognosis, treatment, and postoperative monitoring of cancer. In this
study, a lateral flow immunoassay based on europium (III) polystyrene time-resolved fluorescence
microspheres (TRFM-based LFIA), integrated with a portable fluorescence reader, has been success-
fully establish for rapid and quantitative analysis of CA199 in human serum. Briefly, time-resolved
fluorescence microspheres (TRFMs) were conjugated with antibody I (Ab1) against CA199 as detec-
tion probes, and antibody II (Ab2) was coated as capture element, and a “TRFMs-Ab1-CA199-Ab2”
sandwich format would form when CA199 was detected by the TRFM-based LFIA. Under the opti-
mal parameters, the detection limit of the TRFM-based LFIA for visible quantitation with the help
of an ultraviolet light was 4.125 U/mL, which was four times lower than that of LFIA based on
gold nanoparticles. Additionally, the fluorescence ratio is well linearly correlated with the CA199
concentration (0.00–66.0 U/mL) and logarithmic concentration (66.0–264.0 U/mL) for quantitative
detection. Serum samples from 10 healthy people and 10 liver cancer patients were tested to confirm
the performances of the point-of-care application of the TRFM-based LFIA, 20.0 U/mL of CA199
in human serum was defined as the threshold for distinguishing healthy people from liver cancer
patients with an accuracy of about 60%. The establishment of TRFM-based LFIA will provide a
sensitive, convenient, and efficient technical support for rapid screening of CA199 in cancer diagnosis
and prognosis.

Keywords: time-resolved fluorescent microspheres; lateral flow immunoassay; carbohydrate antigen 199;
biomarker; cancer

1. Introduction

Carbohydrate antigen 199 (CA199) is a polysaccharide containing oligosaccharide
sialic acid antigen and a cancer-associated glycoprotein antigen, which was first isolated
from colon and pancreatic cancer by Koprowski and his colleagues in 1979 [1]. The level of
CA199 in serum can be significantly increased because of the arising of epithelial malig-
nancy caused by differentiation of endodermal cells [2]. CA199 in serum has been used
as an indicator of aberrant glycosylation [3] and a biomarker, predictor, and promoter for
the diagnosis, prognosis, and monitoring of pancreatic cancer. Over the past few years,
CA199 has been found to also exhibit certain diagnostic values for gastric cancer, pancre-
atic cancer [4], esophageal cancer [5], liver cancer [6], lung cancer, and ovarian cancer [7]
with high sensitivity. Therefore, the sensitive and rapid detection of CA199 is seen to be
particularly important for patients in early clinical diagnosis, preoperative staging, assess-
ment of resectability, and evaluation of the recovery. Up to date, a variety of analytical
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methods, including enzyme-linked immunosorbent assay (ELISA) [8], chemiluminescence
immunoassay [9], radioimmunoassay [10], electrochemical immunoassay [11], and lateral
flow immunoassay [12], have been developed and applied to detect CA199. Among them,
ELISA has been considered the gold standard for detecting CA199 [13], but it suffers from
having a time-consuming and tedious operation. In resource-limited or emergency situa-
tions, rapid and sensitive detection of CA199 without professional equipment or technical
personnel is urgent and necessary for the point-of-care diagnosis of some related diseases.

Lateral flow immunoassay (LFIA), a point-of-care testing (POCT) technology that
appeared in the 1990s, is based on the specific reactions between antigens and antibodies.
It has been widely used because of its advantages of simplicity, rapidity, convenience, low
cost, and high efficacy. The mature LFIA has become a commonly used POCT technique in
clinical diagnosis of various diseases, such as early-stage cancer [14], sexually transmitted
diseases [15], AIDS [16], COVID-19 [17], and so forth. Our group have successfully devel-
oped LFIAs to rapidly detect SARS-CoV-2 nucleocapsid protein [18], IgG/IgM [19] and
neutralizing antibody [20]. Colloidal gold nanoparticles (AuNPs) are the most commonly
used tags in LFIA for colorimetric detection [21]. However, the traditional AuNPs-based
LFIA has limitations in high-sensitivity quantification. Varied novel nanoparticles, such
as quantum dots [22], fluorescent microspheres [23], magnetic nanoparticles [24], and
up-conversion phosphorescent nanoparticles [25], have been used as reporters in LFIA to
break through the limitation. Among them, fluorescence microspheres suffer from narrow
Stokes shift, strong background signals, and photobleaching, influencing the accuracy
and sensitivity of detection results [26]. After the first introduction of Eu (III) complexes
by Weissman [26], the LFIAs with time-resolved fluorescence microspheres (TRFM-based
LFIAs) as labels were found to be extremely suitable for rapid on-site detection with high
sensitivity. Thus, time-resolved fluorescence microspheres (TRFM), assembled by encapsu-
lating thousands of the lanthanides [27] chelated ions into nano-polystyrene microspheres
or silica nanoparticles, have gained popularity among the labels in LFIAs [28]. With the
development of a portable time-resolved fluorescence reader, TRFM-based LFIAs have been
successfully established and applied in rapid and quantitative detection of antibiotics [29],
pathogenic bacteria [30], various food contaminants [31], and disease markers [32].

“Time-resolved” refers to the detection and quantitative analysis of the signal strength
of the object to be tested through wavelength resolution and time delay detection tech-
niques [33]. As declared by the previous reports, TRFMs employed as the signal label in
LFIAs exhibit good performances, which mostly embody two aspects. On the one hand,
TRFMs have excellent fluorescent properties including high quantum yield, extremely wide
Stokes shift [34] (200–300 nm), long fluorescence life [35], and narrow and sharp emission
spectrum [26], which are benefit to reducing the interference of background fluorescence
signals, achieving more sensitive and specific performances. On the other hand, TRFMs
modified with abundance carboxylic acid groups have good dispersibility and biocom-
patibility, which means protein or antibodies can be covalently conjugated onto TRFMs’
surfaces, enhancing the stability of detection probes. Therefore, the TRFM-based LFIAs
exhibit good sensitivity and reliability. However, a TRFM-based LFIA for detection of
CA199 is rarely reported [2].

In this study, a sandwich format LFIA based on TRFM has been successfully estab-
lished and employed to detect CA199 in human serum, which combines with a portable
reader to provide both qualitative and quantitative results. Overall, the TRFM-based LFIA
CA199 detection platform has been demonstrated to be highly sensitive, rapid, accurate,
and convenient.

2. Results and Discussion
2.1. Principle of CA 199 Detection in Serum Using TRFM-Based LFIA

A sandwich-immunoassay format used in the TRFM-based LFIA is illustrated in
Figure 1. Briefly, when CA199 is present in the sample, it would bind with the TRFM-
Ab1 probes, and the immune-complex is captured by the Ab2 coated on the T line via
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immunoreaction, thus forming a “TRFM-Ab1-CA199-Ab2” sandwich and resulting in a
fluorescent band on the T line. The excess probes migrate on the NC membrane and bind
with the goat anti-mouse IgG coated on the C line, forming another fluorescent band. When
CA199 is absent in the sample, only a visible fluorescent band appears on the C line. The
qualitative result can be observed under an ultraviolet light, a positive result is presented
as two fluorescent lines on the T and C lines, and a negative result is indicated by a single
fluorescent band on the C line (Figure 1B). As for quantitative detection, the fluorescent
intensity of the T (FIt) and C lines (FIc) are obtained and recorded by the portable reader,
the ratio between FIt and FIc (FIt/c) is calculated, which can effectively offset the effects
of the inherent heterogeneity of test strips and the matrix containing the samples. FIt/c is
proportional to the CA199 level in the sample (Figure 1C).
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Figure 1. Schematic of the TRFM-based LFIA (A) for CA199 rapid qualitative (B) and quantitative
(C) detection.

2.2. Optimization of the Parameters

Antibody acts as the key role in the LFIA test strip sensitivity and other performances.
As shown in Figure S1A, Ab1 was used to conjugated with TRFM as detection probes,
and Ab2 was suitable to be coated on the T line as capture element. To obtain better
performances, the amount of Ab1, Ab2, and TRFM-Ab1 probes were optimized. Figure
S1B displays that 20 µg of Ab1 was selected to conjugated with TRFMs, the optimal
concentration of Ab2 coated on the C line was 0.8 mg/mL (Figure S1C), and the volume of
TRFM-Ab1 probes used in a single test strip was 3.0 µL (Figure S1D). The positive samples
used in the section was blank serum spiked with 33 U/mL CA199 control material. Visible
results of the optimized parameters were provided in Figure S2. The selection of optimized
parameters in the study were considered comprehensively including nonspecific reaction,
sensitivity, and costing.

The immunoreaction on the TRFM-based LFIA test strip is an instantaneous and
dynamic process, which is related to the fluorescence intensity and detection result. Because
only a single fluorescence band on the C line appeared when negative sample was detected,
the immunoreaction time was investigated by detecting a positive sample (33 U/mL). FIt/c
was recorded by the portable reader every 60 s within 30 min. Figure S3 illustrates that
FIt/c increased with the reaction time but trended to balance and remained basically the
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same from 15 min to 35 min. It indicated that the detection of CA199 with the developed
TRFM-based LFIA can be completed within 15 min.

2.3. Assessments of the TRFM-Based LFIA Test Strip Performances

Under the optimized parameters, the quantitative detection capability and sensitivity
of TRFM-based LFIA test strip was evaluated by fortifying CA199 control material into
blank human serum with different concentrations (0.00, 2.06, 4.125, 8.25, 16.5 33.0, 66.0,
132.0, 264.0, 528.0 U/mL), which were detected by the TRFM-based LFIA. Results are
shown in Figure 2A: the fluorescent intensity band on the T lines increased with the CA199
control material concentration increasing, and the limit for visible qualitative detection was
4.125 U/mL under an ultraviolet light source with 365 nm wavelength. Then, a calibration
curve was plotted by FIt/c value verse CA199 concentration; Figure 2B displays that the
CA199 is positively correlated with FIt/c value. Furthermore there is a good linear range be-
tween them with correlation coefficient at 0.9922 (the corresponding equation is y = 0.0204x
+ 0.1823), when the concentration of CA199 was from 0.00 U/mL to 66.0 U/mL (Figure 2C).
Additionally, Figure 2D illustrates that the FIt/c value versus logarithm concentration curve
exhibits a certain linear relationship from 66.0 U/mL to 264.0 U/mL, and the correlation
coefficient is 0.9987 with equation y = 0.6215 ln(x) − 1.0989. The results indicated that the
developed TRFM-based LFIA has the capability to quantitatively detect CA199 in human
serum from 0.00 to 264.0 U/mL.
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Figure 2. Qualitative and quantitative detection results of the TRFM-based LFIA for CA199. Visible results
(A) and FIt/c values (B) of TRFM-based LFIA with different concentrations of CA199. The linear ranges for
quantitatively detecting CA199 were constructed by plotting the fluorescence ratio versus the concentration
0.00–66.0 U/mL (C) and the logarithmic concentration 66.0–264.0 U/mL (D), respectively.

The specificity of the developed TRFM-based LFIA was evaluated by analyzing
biomarkers’ carcino-embryonic antigen (CEA) and alpha fetoprotein (AFP). Blank serum
samples were spiked with 33 U/mL of CA199, 1.0 and 100 µg/mL of CEA, and 1.0 and
73 µg/mL of AFP, respectively. The visible result shown in Figure 3A indicated that a clear
fluorescent band appeared on the T line of TRFM-based LFIA test strip when the serum
containing 33 U/mL of CA199 was detected, and others exhibited the same as the blank
serum sample, and the signal intensity were recorded in Table S1. The FIt/c value of CA199
is obviously distinguished from that of AFP and CEA (Figure 3B). The results demonstrated
that the TRFM-based LFIA for CA199 detection displayed good specificity.
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Figure 3. Visible result (A) and FIt/c (B) value of the TRFM-based LFIA for specificity evaluation.

In addition, the precision of the developed TRFM-based LFIA was evaluated based
on intra-assay and inter-assay variations. Three concentrations of CA199 (16.5, 33.0,
66.0 U/mL) were tested three times a day for three consecutive days, and relative stan-
dard deviation (RSD) of measured FIt/c value was calculated. As presented in Table 1, the
intra-assay and inter-assay RSDs for CA199 detection were less than 3.48% and 10.75%,
respectively.

Table 1. The precision of the developed TRFM-based LFIA for CA199 detection (n = 3).

CA199 Con.
(U/mL)

Intra-Assay a Inter-Assay b

Mean Value
of FIt/c

SD RSD% Mean Value
of FIt/c

SD RSD%

16.5 0.632 0.01 1.58 0.620 0.02 3.23
33.0 0.861 0.03 3.48 0.930 0.10 10.75
66.0 1.576 0.01 0.63 1.718 0.17 9.90

a Tested three times a day. b Tested three times per day for three consecutive days.

2.4. Detection of Human Serum Samples

Human serum samples from 10 liver cancer patients and 10 healthy people ob-
tained from hospital were analyzed by our established TRFM-based LFIA. As shown in
Figure 4A,B, CA199 has been detected in human serum of both liver cancer patients and
healthy persons. The FIt/c values were shown in Table S2, and the CA199 concentration in
samples was calculated according to the quantitative equations of TRFM-based LFIA. The
average level of CA199 in liver cancer patients is higher than that in healthy persons. A
CA199 concentration threshold of distinguishing healthy people from liver cancer patients
was determined as 20.00 U/mL, and the sensitivity and specificity for liver cancer diagnosis
were 60% and 90%, respectively (Figure 4C). Although CA199 is not the specific biomarker
for liver cancer, it has certain diagnostic value in the diagnosis and prognosis.

2.5. Methods Comparison

AuNPs were the common signal tracers in LFIA, which had the limitation in high-
sensitivity quantification. In this study, an AuNP-based LFIA has also been developed
with the same antibody pair against CA199 and applied in detecting the human serum
samples with CA199 concentration ranging from 0.00 U/mL to 528.0 U/mL. As displayed
in Figure 5A, the detection limit for colorimetric detection of AuNP-based LFIA was
16.5 U/mL, which was four times higher than that of TRFM-based LFIA. Meanwhile,
the signal intensities of the T and C lines on the AuNP-based LFIA were recorded by
the homemade reader described in our previous study [19], T/C ratio were calculated
and displayed in Figure 5B. Calibration and quantification curves were plotted by ratio
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of signal intensity on T and C lines against the CA199 concentration, the correspond-
ing equations were y = 0.0066x + 0.0278 (4.125–66.00 U/mL) (Figure 5C) and y = 0.2791
ln(x) – 0.706 (66.0–528.0 U/mL) (Figure 5D), and both of their correlation coefficients were
more than 0.99.
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Until now, there were only a few LFIAs developed for the rapid detection of CA199 in
human serum, and some electrochemical immunological methods also have been reported.
The performances of the immunoassays for CA199 detection were comprised and are
summarized in Table 2. This indicated that the developed TRFM-based LFIA has the
potential for CA199 concentration monitoring in clinical settings, which exhibits simple,
fast, convenient, and easy operation.
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Table 2. A summary of immunoassays for detection of CA199.

Method Nanomaterials Quantitative Linear Range Time (min) Cut-Off Value LOD Reference

Lateral flow Time-resolved
fluorescent mi-crosphere Yes 12.5–800 U/mL 15 / 6.32 U/mL Wang et al. [2]

Lateral flow Gold nanoparticle Yes 5.0–100 U/mL 20 37 U/mL 5 U/mL Baryeh et al. [12]

Lateral flow Magnetized carbon
nanotubes Yes 2.0–200 U/mL 35 37 U/mL 30 U/mL Huang et al. [36]

Electrochemical sensor
Multiwalled carbon

nanotube and magnetite
nanoparticle

Yes 0.001–100 ng/mL 30 / 0.163 pg/ mL Kalyani et al. [37]

UCNP-linked
immunosorbent assay

Lanthanide-doped
upconversion
nanoparticles

No 5.0–2000 U/mL 120 / / Zhou et al. [38]

Electrochemiluminescence
immunoassay Quantum dots Yes 0.005–100 pg/mL 30 / 0.002 pg/mL Gan et al. [39]

Electrochemical
immunosensor CeO2/FeOx@mC500 Yes 0.1 mU/mL–10 U/mL / / 10 µU/mL Wang et al. [40]

Photothermal
immunoassay

Prussian blue
nanoparticles Yes 1.0–100 U/mL 6 / 0.83 U/mL Han et al. [41]

TRFM-based LFIA TRFM Yes 0.0–264.0 U/mL 15 20 U/mL 4.125 U/mL This work
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3. Materials and Methods
3.1. Chemicals and Reagents

A total of 200 nm of TRFM (excitation: 360 nm, emission: 615 nm) with 1% solid content
(w/v), and 2-(N-morpholino) ethanesulfonic acid (MES) were purchased from Suzhou Vdo
Biotech Co., Ltd. (Suzhou, China). Mouse monoclonal antibodies I (Ab1) and II (Ab2)
against CA199 were purchased from Nanjing Okay Biotechnology Co., Ltd. (Nanjing,
China). Goat anti-mouse IgG was purchased from Beijing Easybio Company (Beijing,
China). CA199 control material was purchased from Beijing Ambition Biotechnology Co.,
Ltd. (Beijing, China). 1-ethyl-3-(3-dimethy laminopropyl) carbodiimide hydrochloride
(EDC), N-hydroxysuccinimide (NHS), and Tween-20 were purchased from Aladdin Reagent
Co., Ltd. (Shanghai, China). Proclin-300, bovine serum albumin (BSA), D-(+)-Trehalose
dihydrate, Sucrose, Polyvinylpyrrolidone (PVP) and Tetronic1307 (S9) were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Sample pad (SB08), glass-fiber membrane, PVC
pad, and absorbent pad (CH27) were obtained from Kinbio Tech Co., Ltd. (Shanghai,
China). Nitrocellulose (NC) membrane (CN95) was purchased from Sartorius (Gottingen,
Germany). All solvents and other chemicals were of analytical reagent grade.

3.2. Equipments

The XYZ 3D film spraying instrument, CNC cutting machine (CTS300), and micro-
computer automatic cutting machine (ZQ2402) were supplied by Kinbio Tech Co., Ltd.
(Shanghai, China). Ultrapure water was purified with Milli-Q system from Millipore Corp.
(Bedford, MA, USA). The time-resolved fluorescence quantitative analysis reader was
purchased from Henan Guanyu Instrument Co., Ltd. (Zhengzhou, China).

3.3. Ethics

This study was approved by the Independent Ethics Committee of National GCP
Center for Anticancer Drugs (NCC2020C-209) and was conducted from April 2020.

3.4. Preparation of the TRFM-Ab1 Detection Probes

Detection probes were prepared by conjugating TRFM with Ab1 via covalent bonds.
Briefly, 5 µL TRFM solution (1%, w/v) was dispersed in 1.0 mL of MES buffer (0.05 M,
pH 6.0), and supplemented with 10 µL of EDC and NHS solution (0.5 mg/mL) to activate
the carboxyl groups on the TRFM surface. After being fully mixed and shaken for 20 min at
room temperature in the dark, it was followed by centrifugation at 9600× g for 15 min, and
the supernatant was discarded. The precipitate was resuspended in 1.0 mL of phosphate
buffer (PB, 0.01 M, pH 7.4). Then, 100 µL of 0.2 mg/mL Ab1 against CA199 dilution was
mixed with the activated TRFM and constantly agitated for 2 h at room temperature in
the dark. Subsequently, 100 µL of blocking solution (20% BSA) were added to block the
unbound sites for 1 h. After centrifugated at 8000× g rpm for 15 min, the supernatant was
discarded and the precipitate was re-dissolved in 200 µL of dispersant (0.02 M Tris-HCl
containing, 0.5% (w/v) trehalose, 10% (w/v) sucrose, 0.5% PVP, 0.1% S9, 0.05% Proclin-300,
1% BSA, and 0.1% Tween-20) and stored at 4 ◦C until use.

3.5. Fabrication of the TRFM-Based LFIA Test Strips

The TRFM-based LFIA was assembled by five parts including the sample pad, con-
jugated pad, NC membrane, absorbent pad, and PVC backing pad. The sample pad was
treated with 0.01 M of PBS buffer (containing 0.25% PVP, 0.1% S9, 0.4% Tween-20 and 0.05%
ProClin300) for 30 min, and the conjugated pad was immersed in the solution of 0.01 M
Tris-HCl buffer containing 4% sucrose, 1% trehalose, and 0.02% ProClin300 for 30 min,
both of which were naturally dried for 20 h. Ab2 against CA199 and goat anti-mouse IgG
were diluted to 0.8 mg/mL and 0.4 mg/mL with PBS buffer (0.01 M, pH = 7.4), and then
sprayed on the NC membrane at a rate of 0.8 µL/cm as test line (T) and control line (C), the
distance between T and C lines was 5 mm. Then the NC membrane was dried at 37 ◦C for
12–16 h and stored in a cool dry place. Subsequently, the treated sample pad, conjugated
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pad, NC membrane, and absorbent pad were pasted on the PVC backing pad (Figure 1A).
Additionally, the fabricated LFIA plate was cut into 3.0 mm-wide test strips, stored at room
temperature and kept dry.

3.6. Assay Procedure

In total, 10 µL of sample solution were added onto the sample well of the LFIA test
strip with 2.0 µL of TRFM-Ab1 probes coated on the conjugated pad, and then 70 µL of
0.01 M PBS buffer (containing 3% NaCl, 1% Tween-20, and 1% BSA) was added to push
the probes to migrate on the strip. After 15 min incubation, the qualitative results were
observed under an ultraviolet light with a 365 nm filter, the fluorescence intensity of the T
and C lines were obtained and recorded by a portable reader (λex = 360 nm, λem = 630 nm).

3.7. Optimization of the Parameters

The roles of Ab1 and Ab2 against CA199 in the TRFM-based LFIA have been pre-
liminarily investigated. Different amounts of Ab1 (2.5, 5, 10, 20, 40, 80 µg) were used to
conjugate with TRFMs and prepare TRFM-Ab1 detection probes. Ab2 against CA199 was
diluted to 0.6 mg/mL, 0.8 mg/mL and 1.0 mg/mL with PBS buffer, and then sprayed on
the NC membrane as the test lines. Subsequently, the amount of TRFM-Ab1 detection
probes (1.0, 2.0, 3.0 and 4.0 µL) loaded on the conjugated pad was optimized. The optimal
parameters were selected by analyzing negative and positive (or spiked) samples.

4. Conclusions

In this study, a rapid, sensitive TRFM-based LFIA combined with a portable fluo-
rescence reader has been successfully established for screening CA199 in human serum.
The detection limit of the TRFM-based LFIA for visible quantitation under an ultraviolet
light was 4.125 U/mL, which was four times lower than that of AuNP-based LFIA. Under
the help of the portable reader, it has the capability for specific and quantitative detection
within 15 min. According to the results of serum samples from liver cancer patients and
healthy persons, 20.00 U/mL of CA199 in human serum was defined as the threshold
for distinguishing healthy people from liver cancer patients with an accuracy of about
60%. The proposed TRFM-based LFIA has the advantages of rapid quantification, high
sensitivity, and simple operation, pointing to it being potentially useful for point-of-care
clinical analysis for biomarkers.
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