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Abstract

Microbial archaeology is flourishing in the era of high-throughput sequencing, revealing the 

agents behind devastating historical plagues, identifying the cryptic movements of pathogens in 

prehistory, and reconstructing the ancestral microbiota of humans. Here, we introduce the 

fundamental concepts and theoretical framework of the discipline, then discuss applied 

methodologies for pathogen identification and microbiome characterization from archaeological 

samples. We give special attention to the process of identifying, validating, and authenticating 

ancient microbes using high-throughput DNA sequencing data. Finally, we outline standards and 

precautions to guide future research in the field.
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1. INTRODUCTION

In 2011, the first fully reconstructed ancient bacterial genome sequence was published—that 

of Yersinia pestis—which confirmed at least one of the etiological agents of the Black Death 

pandemic (16) and put to rest years of controversy that had dogged polymerase chain 

reaction (PCR)–based attempts to identify the pathogen in archaeological samples (41, 57, 
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58, 154, 155). Other ancient microbial genome sequences quickly followed, including those 

from other plague epidemics (14, 47, 158, 178, 192) and additional pathogens, such as 

Mycobacterium leprae (170), Mycobacterium tuberculosis (13), Tannerella forsythia (196), 

Brucella melitensis (85), and Helicobacter pylori (112). The key turning point was the 

availability of high-throughput sequencing (HTS), a transformative innovation in DNA 

sequencing (114, 115), and sequence capture enrichment methods (16, 20, 62, 75)—two 

techniques that increased both sample throughput and data output by orders of magnitude. 

These advancements revolutionized ancient DNA (aDNA) research and, more broadly, 

ushered in the era of genomics nearly overnight (92, 140).

However, with these technological advances come new challenges. Tools and techniques are 

needed to sort, evaluate, authenticate, and interpret the hundreds of millions of DNA 

sequences that have now become the standard output of genomics and paleogenomics 

laboratories alike. Numerous protocols, scripts, pipelines, and computational environments 

are available, as are a myriad of genetic and genomic databases, but the rapid proliferation of 

these tools has left many uncertain about which ones to use and when to use them. For 

example, the decision to use either alignment-based or alignment-free taxonomic classifiers 

can have a strong impact on microbial community reconstruction (106). Likewise, the choice 

of reference databases can greatly affect taxonomic assignment (149) and, consequently, the 

false positive and false negative rates of pathogen detection. Similar but nonequivalent 

choices in parameter settings can introduce systematic biases, leading to spurious sequence 

alignments and false claims, and failure to statistically account for both biological and 

taphonomic factors in the selection of appropriate analysis pipelines and statistical tests can 

result in inaccurate conclusions.

As the complexity of paleogenomic data analysis increases, standards and guidelines for best 

practices are required to ensure not only high-quality data generation, but also accurate and 

meaningful data interpretation. Numerous challenges face the growing field of microbial 

archaeology— some stemming from the way microbes reproduce and recombine during life, 

others shared with genomics more generally, and still others specific to ancient and degraded 

samples. Concerted effort will be required by the research community to identify and 

address these challenges in order to achieve a robust and established scientific discipline.

In March 2016, the Max Planck Institute for the Science of Human History hosted the first 

Standards, Precautions, and Advances in Ancient Metagenomics conference in order to 

identify and discuss the challenges involved in analyzing ancient microbial metagenomic 

data. Here, we present the outcomes of this meeting and outline a series of precautions and 

best practices for the emerging field of microbial archaeology.

2. RESEARCH DIRECTIONS IN MICROBIAL ARCHAEOLOGY

Research directions within the growing field of microbial archaeology can generally be 

divided into two paths: pathogenomics and microbiome studies. The former focuses on 

understanding pathogen evolution and host-microbe interactions involved in disease states 

(138), whereas the latter focuses on understanding the diversity, structure, and function of 

endogenous microbial communities and their interactions with the host during both health 
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and disease states (78, 79). In general, pathogenomics is concerned primarily with individual 

disease-causing microorganisms, such as those causing plague (Y. pestis), tuberculosis (M. 
tuberculosis), or leprosy (M. leprae), whereas microbiome studies focus more on the 

distribution and diversity of the microbes native to a given host and their role in host 

functions, such as digestion, immune system stimulation, and chronic inflammation.

There is a great deal of overlap between these two disciplines in practice, as pathogenomics 

may include polymicrobial infections (e.g., dental caries) or mixed coinfections (e.g., 

pneumonia and tuberculosis), and microbiome studies may focus on keystone taxa that 

disproportionately drive community behavior (e.g., Streptococcus mutans or Porphyromonas 
gingivalis). Additionally, both disciplines rely heavily on metagenomic sequence data, and 

thus many of their analytical tools are shared or similar.

2.1. The Growth of the Field

Microbial archaeology can trace its origins back several decades, and early research in the 

field focused on targeted PCR amplification of short specific loci, followed by 

electrophoretic characterization or Sanger DNA sequencing. Mycobacterial spoligotyping of 

skeletal lesions (208) and sequencing of amplified 16S ribosomal RNA (rRNA) gene clones 

from paleofeces (23) are characteristic of paleomicrobiology approaches in the pre-HTS era. 

However, these low-throughput techniques, which were adapted from protocols originally 

developed for clinical and ecological applications, have several drawbacks when applied to 

ancient and degraded samples from environmental contexts. First, targeted PCR typically 

requires long (>100 base pairs), well-preserved DNA templates, which are not characteristic 

of the vast majority of authentic aDNA fragments (64, 181); second, ancient samples 

typically require a large number (>35) of PCR cycles for successful target amplification, 

which makes this approach particularly sensitive to background and environmental 

contamination; third, cloning and Sanger sequencing do not allow efficient investigation of 

template damage patterns in order to authenticate aDNA sequences; fourth, targeted PCR is 

particularly susceptible to amplification biases, including both off-target and skewed PCR 

amplification, as well as taxonomic dropout; and finally, the experimental replicability of 

studies using these techniques is generally low, and the results have proven to be difficult to 

independently authenticate or validate (57, 64, 199, 207). Such problems reached a critical 

point in 2005, when a prominent review of aDNA research summed up the field of microbial 

archaeology as “the microbial problem” and largely dismissed it as a discipline (200).

The advent of HTS technologies in the mid-2000s presented a powerful solution to the 

inherent shortcomings of conventional PCR-based approaches, and this new technology has 

dramatically influenced the field of microbial archaeology. Today, nearly all ancient 

microbial research utilizes HTS-based techniques, and multiple sequencing platforms and 

analytical strategies are available. The situation mirrors that of genetic research on ancient 

humans, which at first was hampered by contamination concerns resulting from PCR 

amplification and Sanger sequencing–based approaches but is now flourishing in the post-

HTS era (65, 157, 159).
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2.2. Definition of Terms

This article focuses on the analysis of metagenomic (all available DNA) data obtained from 

HTS shotgun-sequenced (untargeted) or sequence-captured (target-enriched) genes and 

genomes obtained from a microbiota (an assemblage of microorganisms) present within a 

microbiome (a defined microbial ecosystem) (113). Archaeological samples typically 

contain mixtures of endogenous (antemortem) and exogenous (postmortem) microbial DNA 

that may include host-associated commensal taxa (e.g., oral microbes in dental calculus), 

epidemic pathogens (e.g., Y. pestis in the pulp cavity of teeth), and environmental bacteria 

(e.g., soil microbes involved in decomposition). Additionally, contaminating DNA 

sequences from handling (e.g., skin microbes), storage conditions (e.g., bacteria and fungi 

overgrowth), and laboratory sources (e.g., reagents contaminated with enzyme expression 

vectors) may also be present.

This addition of both ancient and modern exogenous microbial DNA in archaeological 

remains makes ancient pathogen and microbiome studies more complicated than 

investigations of fresh samples. For example, in contrast to a freshly cultured clinical 

specimen, which would typically contain a single clonal pathogen and no other major DNA 

sources, analysts of ancient pathogens must grapple with complex host and environmental 

backgrounds, potentially including nonpathogenic, soil-derived relatives of the pathogen of 

interest. Postmortem colonization and contamination also present challenges for microbiome 

analysis by skewing diversity metrics and inflating community membership. It is thus 

important to note the distinction between ancient endogenous microbiota, which are the 

host-associated microbes that were present during life, and exogenous microbiota, which 

include both decomposition-related and recent contaminant taxa.

3. WHAT IS A MICROBIAL SPECIES?

Before endogenous microbiota can be analyzed, it is first important to define what microbes 

are. For the purposes of this review, we define microbes as members of the prokaryotic 

domains Bacteria and Archaea. Microeukaryotes and viruses are thus beyond the scope of 

this review, even though noteworthy achievements have been made in the successful genetic 

characterization of potato late blight evolution (116, 205), barley stripe mosaic virus (176), 

Spanish influenza strains (189), early simian immunodeficiency virus (150), and 

seventeenth- and eighteenth-century smallpox strains (12, 42).

Although species annotations are routinely applied to microbial taxa, there is relatively little 

consensus on what a microbial species actually is (2, 40). Unlike Ernst Mayr’s birds, 

microbes adhere to few, if any, of the tenets of the biological species concept (35, 72, 117), 

and although many microbial species concepts have been proposed, none have been widely 

accepted (2). This is largely because although microbes reproduce asexually by binary 

fission at a cellular level, they also exchange genetic information horizontally—including 

across taxonomically divergent groups. The discovery of such microbial mating systems 

earned the 1958 Nobel Prize in Physiology or Medicine for molecular biologist Joshua 

Lederberg (82), who, incidentally, later went on to popularize the term microbiome in 2001 

(101).
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At the heart of the microbial species problem is a tension between methods-based and 

methods-free species definitions, in part reflecting philosophical differences in the fields of 

microbial systematics and evolutionary biology. At a crude level, methods-based approaches 

are objectively measurable, but they suffer from the fact that methods continuously change 

with new technologies and that the species criteria that have been established are largely 

arbitrary. Methods-free definitions are more grounded in evolutionary theory but are often 

unmeasurable (2). In the genomics era, methods-based definitions currently prevail as 

pragmatic solutions to allow researchers to name and discuss taxonomic groups using 

Linnaean taxonomy, a stopgap measure that is both unsatisfying and at times misleading but 

is also necessary to allow investigations of what are essentially phenotypic and genetic 

clusters (29) of metapopulation lineages (2) that defy easy classification.

3.1. Pragmatic Definitions

For historical reasons, the gold standard of pragmatic solutions to the microbial species 

problem is the characterization of genome similarity based on reciprocal, pairwise DNA 

reassociation values under controlled conditions. Microbes whose reassociation values are 

≥70% in DNA hybridization experiments are generally considered to belong to the same 

species, in part because this threshold generally recapitulates classical species distinctions 

based on phenotypic traits (2). Because the method is empirical and requires purified 

genomic DNA from both microbes being tested, it can be applied only to cultivable 

microbes. Given that only a small fraction of microbial taxa can currently be cultivated using 

known techniques (147, 193), this definition is poorly suited to the identification of most 

microbial species. Moreover, because of the highly fragmented nature of aDNA, this method 

cannot be applied to ancient samples.

Alternatively, the 16S rRNA gene can be PCR amplified from a pool of noncultured 

microbes, and the resulting sequence identities can be calculated as a proxy for DNA 

reassociation values. A cutoff of roughly 97–99% sequence identity for the full gene 

generally correlates with species boundaries determined by DNA reassociation (118, 190). 

Taxa defined by their 16S rRNA gene sequence alone are not described as species, but rather 

as operational taxonomic units (OTUs)— convenient measurable proxies for microbes that 

are related by descent. Although the term OTU is generally used to refer to a species-like 

unit, it can theoretically represent microbial biodiversity at any level as long as its definition 

is clear and consistent (77).

Because 16S rRNA gene amplification and sequencing can be performed on mixed 

microbial communities without cultivation, it is a powerful method for the discovery of 

novel taxa; however, this method also has important limitations. Current short-read HTS 

technologies, such as Illumina sequencing by synthesis, do not allow for deep sequencing of 

the full ~1,540-basepair-long 16S rRNA gene; instead, maximum achievable read lengths 

typically limit analysis to one or more of the gene’s nine shorter hypervariable regions. 

However, even these short regions are generally longer than most aDNA fragments (207). 

Taxonomic resolution varies across these regions (207), effectively reducing confident 

taxonomic assignment to the level of genus or family for many groups. This reduction in 

resolution is not consistent across microbial phyla and tends to disproportionately affect 
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certain groups (207). Emerging technologies, such as Pacific Biosciences’ single-molecule 

real-time sequencing, are capable of sequencing full genes and may soon replace 

hypervariable-region short-read sequencing in metataxonomic studies of modern samples 

(167); however, the highly fragmented nature of aDNA strongly limits the benefit of this 

technology for ancient samples. Nevertheless, even with full-length 16S rRNA gene 

sequences, taxonomic assignment can be problematic for some microbial groups (Figure 1). 

For example, gut bacteria belonging to the family Enterobacteriaceae are generally poorly 

resolved by 16S rRNA sequences, with the clinically distinctive genera Escherichia, 
Salmonella, Shigella, and Klebsiella essentially forming one 16S rRNA gene sequence 

cluster (Figure 1a), whereas other groups, such as the oral genera Porphyromonas and 

Tannerella, are monophyletic and can be easily distinguished on the basis of 16S rRNA 

sequences alone (Figure 1b).

Finally, unlike most microbial genes, the number of 16SrRNA gene copies per genome is 

highly variable, ranging from 1 to 5 in archaea and from 1 to 15 or more in bacteria (3, 102). 

Microbial rRNA (rrn) genes are typically colocated into an operon, and operon copy number 

is associated with microbial habitat and lifestyle (102, 180). Operon copy number is only 

weakly correlated with taxonomic ranks of genus and higher, and in some cases copy 

number even varies within species (190). Among archaea, >60% of taxa have a single rrn 
operon, but among bacteria, >60% of taxa have three or more copies, and up to seven copies 

are commonly found (3). Although 16S rRNA gene copies may undergo homogenization 

through gene conversion (68), different sequences are observed within a single species and 

even within a single genome. Fewer than 40% of taxa with multiple 16S rRNA genes have 

identical 16S rRNA sequences in each operon, although sequence divergence between 

copies is typically < 1% (3, 190). 16S rRNA gene reference databases generally do not take 

this into account, and instead contain composite or consensus sequences obtained from 

simultaneous PCR amplification and pooled sequencing of all 16S gene copies on a genome 

(90). The combined effects of multiple rrn operons per genome and different 16S rRNA 

gene sequences per operon result in systematic skewing of relative taxonomic abundance 

and overestimation of microbial diversity in mixed microbial communities (190). The 

Ribosomal RNA Operon Copy Number Database (rrnDB) maintains updated, annotated lists 

of rRNA operon copy numbers (180).

Other widely used methods for defining species boundaries include multilocus sequence 

analysis and multilocus sequence typing, which are similar to the method described above 

but rely on a panel of usually seven to ten core genes rather than focusing on a single gene 

(60, 146), as well as genome-wide average nucleotide identity, which compares the 

sequences of all orthologous genes in the complete genomes of species pairs (87, 160). 

Average nucleotide identity is in some ways simply a methodological update of the DNA 

reassociation approach, in which a 95–96% average nucleotide identity is roughly equivalent 

to a 70% DNA reassociation value (87, 160); however, it therefore also suffers from the 

same problem that complete genomes are required either from cultivated isolates or from 

genomes painstakingly assembled in silico from deep-sequenced shotgun or sequence-

enriched metagenomic data sets, making it difficult to apply in general, but especially in the 

context of microbial archaeology.

Warinner et al. Page 6

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



When assigning taxonomy to metagenomic data, many popular tools use a combination of 

core gene–focused and whole-genome data, and such an approach is favored in emerging 

taxonomic tools such as the Metagenomic Intra-Species Diversity Analysis System 

(MIDAS) pipeline (129), which seeks to characterize strain-level differences in mixed 

microbial communities. Departing from these approaches are those based on k-mer binning, 

such as algorithms implemented by Kraken (201), which differ from a gene-centered focus 

and instead mine taxonomic information from reference databases containing frequency 

distributions of short sequence fragments (k-mers) across a range of known taxa. Because 

both of these tools rely on relatively short DNA sequences for taxonomic classification, they 

are particularly amenable to studies of ancient microbes.

3.2. Complicating Factors

Although microbes reproduce asexually, they do not transmit genetic information in a 

strictly vertical manner. Microbes are capable of—and frequently do—horizontally transfer 

genes, plasmids, transposons, and other genetic elements by a wide range of means, 

including transformation (uptake of DNA from the environment), conjugation (direct 

transfer of DNA between cells via a pilus), and transduction (transfer of DNA by viruses). 

Collectively, these processes are referred to as horizontal gene transfer or lateral gene 

transfer (132, 185), and the transferred DNA can subsequently gain enhanced permanence in 

the cell through homologous recombination or insertion into the host chromosome.

Although most horizontal gene transfer occurs between related taxa, DNA can also be 

transferred across higher taxonomic ranks, and even across domains (63). Horizontal gene 

transfer can also transcend time through the uptake of short, degraded aDNA fragments into 

living cells (136). Within the context of the microbiome, some bacterial members of a 

biofilm are prolific producers of extracellular DNA, which they use as a scaffold to anchor 

themselves in space (61, 67, 198). Given the close proximity and metabolic cooperation of 

diverse taxa within biofilms, such extracellular DNA serves as an important source of 

genetic material for horizontal gene transfer via transformation and is thought to be a major 

factor in the spread of virulence and antibiotic resistance genes within host-associated 

microbiota (144).

The fluidity by which microbes can acquire—and also lose—large portions of their genomes 

has no parallel among macroorganisms. Within a given microbial species, the number of 

genes frequently varies by as much as 20% across strains. For example, genome size among 

17 strains of the periopathogen P. gingivalis ranges from 2.2 to 2.4 Mb, a difference of 8%, 

but the number of genes differs by 22%, ranging from 1,870 genes in strain F0569 to 2,405 

genes in strain JCVI SC001. This is true even though these strains exhibit >99.4% sequence 

identity in the 16S rRNA gene and >98.8% sequence identity across a panel of 11 

housekeeping genes (coa, dnaK, ef-tu, ftsQ, gdpxJ, hagB, mcmA, nah, pga, recA, and pepO) 

(93) [analysis performed on all complete or nearly complete (scaffolded) genomes available 

in GenBank as of November 2016; for details, see Supplemental Appendix 1]. By contrast, 

all members of a eukaryotic species carry a nearly identical gene set, and 75% of human 

genes have homologs in the genome of the puffer fish Takifugu rubripes, which diverged 

from mammals more than 450 Mya (8, 148).
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To account for these vast differences in genome size and gene content among strains, the 

collective genomes of all members of a microbial species-level clade (a monophyletic group 

of related taxa) are conceptualized as having two parts: a core genome and a pan-genome. 

The pan-genome, a term first introduced in 2005, consists of all genes within all strains of a 

species-level clade (184), whereas the core genome represents a subset of genes that are 

generally shared among strains. The core genome is variably defined, but the National 

Center for Biotechnology Information defines it as comprising the genes that are present in 

>80% of all genomes within a species-level clade (183). By contrast, the minimum core 

genome is defined as the number of genes shared by all genomes within a special-level clade 

or equivalent. By either definition, the core genome comprises primarily housekeeping genes 

involved in replication, transcription, translation, and other basic cell functions required for 

life (118). In general, core genes of well-studied clades make up ~70–80% of the pan-

genome (183).

Despite being relatively central to cell function, core genes can undergo homologous 

recombination, a process known as core genome transfer. Core genes involved in 

transcription and translation, such as rRNAs, recombine only rarely (28, 89, 99), but 

recombination rates of other core genes can be high (202). Streptococcus is an important 

host-associated genus known for high levels of genome plasticity and recombination. In one 

study of streptococcal human and agricultural pathogens, core genome recombination was 

detected in all investigated streptococcal lineages, and 18–37% of the core genome was 

estimated to be recombinant (103). Core genome transfer rates vary considerably among 

taxa. H. pylori, Salmonella enterica, Streptococcus pneumoniae, Neisseria meningitidis, and 

Neisseria lactamica are human-associated bacteria with unusually high core genome 

recombination rates, in which nucleotide changes resulting from recombination exceed those 

arising from mutation by more than fivefold; by contrast, recombination rates in 

Staphylococcus aureus, Lactobacillus casei, Bartonella henselae, and Bordetella pertussis 
are fivefold lower than mutation rates (191). Core genome recombination occurs most 

frequently in taxa that are naturally competent (genetically capable of transformation), but it 

has also been documented in noncompetent cells at genetic loci in proximity to mobile 

elements (44, 145, 191).

Noncore genes of the pan-genome include many gene types that may be involved in 

adaptation to various nutrient sources or environmental conditions, and they may or may not 

be carried on mobile elements. Noncore genes that are found within >20% of strains are 

called accessory genes. Those found in 1–20% of strains and in <1% of strains are called 

dispensable and unique genes, respectively, and they are more common than accessory genes 

(122, 183).

The nonvertical transfer of DNA among microbes serves as a mechanism to increase genetic 

diversity beyond that introduced through mutation alone, and it plays a major role in 

microbial evolution (34, 132). This fundamental process, however, complicates attempts to 

define species boundaries and to trace the evolutionary history of microbial lineages, and it 

has led some to argue that no natural classification system can be described for microbes 

because their evolutionary relationships are web-like rather than tree-like (10, 39). However, 

not all taxa freely exchange genetic information (191), and not all genes transfer easily or 
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frequently (202, 203). For example, monomorphic pathogens that reproduce primarily by 

clonal expansion show little evidence of recombination over broad timescales (1, 203), and 

core housekeeping genes that are informational in nature rarely transfer or recombine (99). 

Consequently, the ancient genomes of monomorphic pathogens, such as M. leprae and M. 
tuberculosis, are easier to reconstruct than those of commensal taxa, such as H. pylori or T. 
forsythia (13, 112, 170, 196). Despite the messiness of microbial phylogenies (66), however, 

microbes generally behave as ecologically coherent entities at the levels of species, genus, 

family, and order, as currently defined by 16S rRNA gene sequence cutoffs (148).

4. THE POWER AND PITFALLS OF NAMES

Names are powerful entities that allow microbial taxa to be discussed and analyzed in a 

meaningful way. However, given the heterogeneous phenotypic, genetic, genomic, and 

metagenomic means by which microbial taxa are detected and observed, it is difficult to 

devise a single nomenclature system. Instead, overlapping systems of both formal and 

provisional schemes are currently in use, which both facilitate and limit the study of 

individual microbes and communities, as well as the reconstruction of ancient microbial 

genomes and microbiota.

4.1. Valid Species Names and Microbial Systematics

Despite the difficulty of defining what a microbial species is, methods for granting valid 

microbial species names are outlined by the International Code of Nomenclature of Bacteria 

set forth by the International Committee on Systematics of Prokaryotes (ICSP; http://

www.the-icsp.org) (98, 186). This code governs all microbial taxonomic assignments at and 

below the Linnaean rank of class (141); however, only the rank of species has a formal 

definition: “[A] species is a category that circumscribes a (preferably) genomically coherent 

group of individual isolates/strains sharing a high degree of similarity in (many) independent 

features, comparatively tested under highly standardized conditions” (179, p. 1044; see also 

162). The ICSP requires all new taxa to be published in the International Journal of 
Systematic and Evolutionary Microbiology, and minimal standards for the description of 

new species have been established by ICSP subcommittees (51). These standards include (a) 

isolation of the new species in pure culture, (b) 16S rRNA gene sequencing to establish 

phylogenetic position, (c) morphological description, (d) chemotaxonomic characterization 

to establish genus affiliation, (e) explanation of the genotypic and phenotypic basis for 

species differentiation, and ( f ) deposition of the type strain in at least two permanently 

established culture collections in two different countries (84). Genome sequencing is not 

currently required for the establishment of new microbial species, nor is genome sequencing 

alone sufficient to establish a new species. The List of Prokaryotic Names with Standing in 

Nomenclature (LPSN; http://www.bacterio.net) maintains an updated list of valid taxa (141).

4.2. Naming the Nameless

Given the emphasis placed on structural and functional properties of microbial isolates, taxa 

that cannot be grown in pure culture—either because their growth conditions are unknown 

or because they are parasitic and require the presence of other microbes to grow—are 

typically limited to candidatus (candidate) status. For example, the candidate phylum 
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Saccharibacteria (formerly TM7), which includes at least 12 members in the human oral 

cavity, has proven very difficult to isolate in pure culture (21). The only successfully 

cultivated phylotype to date, provisionally named TM7x, was determined to be an epibiont 

(an organism that lives on the surface of another organism) of the host bacterium 

Actinomyces odontolyticus, suggesting that oral Saccharibacteria may play an important 

role in bacterial predation in the oral cavity (70). However, the apparent parasitic lifestyle of 

such taxa precludes attempts to classify them using conventional systematics criteria. 

Similar challenges face other microbial groups that are resistant to isolation in pure culture, 

making them difficult to discuss and study (21, 50). Additionally, such a standard could 

never be applied to ancient microbes, effectively shutting the door to the possibility of 

discovering and naming extinct species.

As a consequence of the high bar set by the ICSP for obtaining a valid species name, 

comparatively few microbial species have been officially named and validated—15,974 as of 

2014 (141), compared with the >645,000 for which there is currently 16S rRNA gene 

sequence evidence (OTUs clustered at 99% in the SILVA SSU Ref NR 99 database, release 

128; https://www.arbsilva.de) (152, 204). As a result, most microbial taxa are currently 

nameless but not necessarily unknown.

The challenge of how to devise a functioning nomenclature scheme for such a situation is 

clearly illustrated by the taxon table maintained by the Human Oral Microbiome Database 

(HOMD), a public scientific resource that curates an up-to-date list of human oral microbes 

(27). As of November 2016, the HOMD included 687 species-level oral taxa, of which 335 

had both a valid species name and at least one sequenced genome, 36 had a valid species 

name and no sequenced genome, 88 had no valid species name but at least one sequenced 

genome, and 228 had no valid species name and no sequenced genome. The HOMD 

addressed this problem by developing a provisional naming scheme based on binning 16S 

rRNA gene sequences into unique phylotypes that are then assigned a Human Oral Taxon 

number. This number then allows phenotypic, phylogenetic, genomic, clinical, and other 

data types to be linked within the HOMD portal. This scheme, however, is limited to 

microbes of the human oral cavity and is not generalizable to other microbiomes, such as 

those of the human gut, soil, or ocean.

Alternatively, as of March 2017, GenBank (11, 131) contains 14,022 sequenced microbial 

genomes and maintains a taxonomy common tree of 23,653 named and candidatus microbial 

species (993 archaea and 22,660 bacteria) that “does not follow a single taxonomic treatise 

but rather attempts to incorporate phylogenetic and taxonomic knowledge from a variety of 

sources” (127). By taking this pragmatic approach, they are able to utilize a diverse range of 

existing phenotypic, genetic, and genomic microbial data in a common phylogenetic 

framework (165).

4.3. Taxonomy Versus Phylogeny

Although species names are practical entities that allow microbial taxa to be discussed and 

analyzed in a meaningful way, they can also be misleading. Ideally, taxonomy (microbial 

classification) should reflect phylogeny (evolutionary history), and species are periodically 

renamed to reflect improved understanding of phylogenetic relationships. However, there are 
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also many well-known examples of named microbes for which the taxonomy is in congruent 

with phylogeny. In some cases, such discrepancies apply to clinically important taxa that 

differ from nonpathogenic taxa mainly because of horizontally transferred virulence factors 

that result in major phenotypic changes, as in the case of Yersinia pseudotuberculosis and Y. 
pestis (25). In other cases, genera that are clearly polyphyletic or paraphyletic, such as 

Klebsiella (Figure 1a), Clostridium, and Ruminococcus, persist despite repeated attempts at 

taxonomic reorganization (100, 133, 153). The ICSP has procedures for correcting such 

problems (98), and many taxa have been reclassified under this scheme. For example, 

Bacteroides forsythus, a gram-negative anaerobic rod first isolated from periodontal patients 

(182), was reclassified into its own genus as Tannerella forsythensis after major differences 

with other Bacteroides taxa were discovered (163) and was later renamed Tannerella 
forsythia to adhere to ICSP guidelines regarding gender consistency in Latin genus-species 

name combinations (111). Given that microbial classifications frequently change as new 

information becomes available, it is important to be aware of nomenclature history, 

especially when conducting literature searches and comparing results generated using 

different databases.

5. METATAXONOMICS: WHO IS THERE?

The first step in any analysis of metagenomic data, either modern or ancient, is often 

addressing the question “Who is there?” The question is simple and yet surprisingly difficult 

to answer, in part because of our incomplete knowledge about biological diversity in general. 

The number of bacterial species on earth is unknown but is likely massive. The number of 

bacterial cells is estimated at 1030 (108), and microbes are thought to make up half of the 

earth’s total biomass (175). Estimates ranging from millions to a trillion microbial species 

have been proposed (108, 166), in stark contrast with current estimates of just over 8 million 

eukaryotic species (123). Suffice it to say that relatively few of these microbes have been 

characterized, genetically or otherwise.

Rather than providing definitive answers, a variety of techniques have been developed to 

computationally approximate the taxonomic composition of a given microbial community 

from HTS data, an approach known as metataxonomics (113). Establishing reliable methods 

for accurate taxonomic assignment and placement of DNA sequences within a phylogenetic 

tree is a necessary first step in most modern and ancient microbial analyses. For ancient 

pathogenomic studies, it is the basis for identifying the proverbial pathogen needle in a 

haystack of background DNA, and for ancient microbiome studies, it is essential for 

identifying community membership and calculating ecological diversity metrics (77). It is 

also the input data for the Bayesian-based tool SourceTracker (91), which can, for example, 

model the relative contributions of ancient and archaeological microbiota sources in a given 

sample.

5.1. Amplicon Metataxonomics

Many efforts to characterize “who is there” in soils, oceans, and host-associated microbiota 

focus on targeted amplification and deep sequencing of the 16S rRNA gene (56, 79). This 

gene, universally present in all microbes, encodes the 16S small subunit of rRNA and is 
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essential for life. Amplicon-based metataxonomics typically targets this gene because its 

sequence is similar enough across microbial taxa to be amplified using universal PCR 

primers and yet distinct enough among species to be useful for taxonomic classification. 

This approach, which can also be applied to other genetic loci, is also known as phylotyping 

(187) and metabarcoding (7, 46), and it has been widely used in aDNA studies (e.g., 126, 

187).

The ability to rapidly and inexpensively sequence tens or hundreds of thousands of partial 

16S rRNA gene sequences simultaneously using HTS was essential to the success of the 

Human Microbiome Project (79), and bioinformatics tools such as Quantitative Insights into 

Microbial Ecology (QIIME) (24, 128) and mothur (168) were developed specifically to 

analyze the data resulting from large sequencing projects. However, it is now known that this 

amplicon-based approach cannot be straightforwardly applied to ancient microbial studies 

because the targeted hypervariable regions far exceed the average length of aDNA molecules 

and additionally contain length polymorphisms that contribute to biased amplification of 

degraded DNA (207). For this reason, targeted amplification of the 16S rRNA gene is not 

recommended for aDNA samples, although short-read mapping of shotgun-filtered 16S 

rRNA gene sequences can still be performed. Despite its limitations for aDNA research, the 

technique remains important owing to the extensive comparative data from modern 

microbiomes that have been generated using this approach.

5.2. Metagenomics

As an alternative to single-gene amplicon-based approaches, genome-wide information can 

be generated using metagenomics, an approach that is highly amenable to aDNA research. 

When applied in an untargeted manner to all DNA recovered from a given environment, this 

approach is called shotgun metagenomics, and sequences are generated from a random 

subset of DNA from the collective genomes of all of the organisms present in a sample 

(113). This technique is used to characterize microbiota in microbiome studies and as a 

screening tool in pathogenomics.

Alternatively, a targeted subset of the DNA in a sample may be selected before sequencing 

using bait hybridization techniques in order to enrich the HTS library for the genomes of one 

or more organisms of interest, a process known as sequence capture. This technique can be 

performed either on chip (20) or in solution (9, 52), and the goal is to remove unwanted 

DNA from a sample prior to sequencing. Bait sizes are typically less than 120 base pairs and 

are suitable for capturing short aDNA molecules. If this technique is highly efficient, 

analysis of the resulting captured DNA might qualify as genomics (the study of specific 

genomes), but in most cases post-duplicate-removal enrichment success is modest, and many 

unintended off-target sequences are also captured (31). The efficacy of sequence capture is 

nonetheless sufficient to merit its use in ancient pathogenomic studies for genome 

reconstruction (14).

Metagenomic approaches have many advantages. They are better suited to aDNA studies 

than PCR-based approaches because they are not affected by length or sequence variants in 

the underlying genome, and even very short and highly degraded DNA fragments can be 

successfully sequenced using HTS platforms. The resulting sequences allow not only 
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metataxonomic characterization, but functional inferences as well. Finally, if untargeted, all 

four domains of life—bacteria, archaea, eukarya, and viruses—can be investigated 

simultaneously.

When deciding on strategies for the analysis of metagenomic data, the research question is 

the most relevant factor. For the characterization of ancient microbiota, the goal is not only 

to identify the microbes present, but also to reveal the microbial community structure and 

functional potential. For this purpose, a nontargeted, shotgun metagenomics approach is 

often most suitable. Ancient pathogen screening strategies, by contrast, focus on specific 

taxa and can be divided into targeted and nontargeted approaches. Targeted approaches are 

applied with a particular pathogen species in mind, often because skeletal lesions indicate 

the presence of a specific disease, such as leprosy (170) or tuberculosis (13), or because a 

particular burial context suggests the presence of a pathogen, as in the case of Y. pestis and 

medieval mass graves (16, 178). Unfortunately, however, relatively few bacterial pathogens 

cause skeletal lesions, and burials often provide little disease context. In this case, 

nontargeted screening approaches are applied in order to detect any bacterial pathogen that 

might be present in a sample. Shotgun metagenomics is typically used to screen for 

unknown pathogens. However, enrichment techniques are available that can target multiple 

pathogenic species at once (15).

For any of these approaches, the metagenomic context of the sample must be considered 

during the validation of the findings. For this reason, specialized computational tools for 

analyzing metagenomic data are often applied not only to characterize microbiota but also in 

the context of pathogen screening.

6. METATAXONOMIC TOOLS AND DATABASES

Numerous tools and databases are available that can facilitate metataxonomic analyses of 

both modern and ancient samples. Here, we provide an overview of different approaches and 

strategies commonly used in microbial archaeology studies, as well as a selection of 

frequently used software (for a detailed description and systematic comparison, see 106, 

142). Supplemental Appendix 2 provides a list of tools and databases mentioned in this 

article, along with website links and references.

6.1. Tools of the Trade: Factors to Consider

When selecting a tool for a particular research question based on genetic comparison, the 

basic strategies employed by that tool must be considered, including the reference strategy, 

which defines the content and structure of the database to which the input data are 

compared; the query strategy, which is the concept by which this comparison is facilitated; 

and the data type upon which the reference database is built, which is either DNA or protein 

sequences.

6.1.1. The reference strategy—The way a reference database is constructed and queried 

by a software tool has a strong influence on the sensitivity and specificity of the analysis, as 

well as on the potential biases that can occur. Commonly applied reference strategies can be 

divided into three classes: single-locus approaches, which focus on rRNA genes or other 
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genes that show orthologs in all species represented in the database; multilocus approaches, 

which represent an extension of the previous approach applied to multiple genes; and whole-

genome approaches, which use nearly all available genomic information.

6.1.1.1. Single-locus approaches: Tools that focus on single loci, such as the 16S rRNA 

gene, have the advantage that single-locus databases contain more taxonomic entries than 

those covering multiple loci or complete genomes. For investigations of microbial diversity, 

no other gene has been studied as extensively as the 16S rRNA gene. Several large-scale, 

publicly available 16S rRNA gene databases are available, each of which contains more than 

1 million aligned reference sequences: the Ribosomal Database Project (RDP) (3,356,809 

sequences) (30), Greengenes (2013 release, 1,262,986 sequences) (37), and SILVA (SSU 

Ref, 1,922,213 sequences) (152), the last of which contains entries for more than 645,000 

distinct bacterial taxa (as defined by a 99% identity clustering cutoff for OTU assignment; 

the number of database entries is reported as of December 1, 2016).

As a highly conserved gene, however, the 16S rRNA gene generally contains insufficient 

sequence diversity to differentiate between closely related taxa, such as different bacterial 

strains of the same species, and rrn operon copy number variation contributes to skewed 

estimates of taxonomic abundance and diversity (180, 190). Additionally, a relatively large 

number of reads covering the rRNA locus is needed for a reliable taxonomic classification, 

and although this is easily achievable using an amplicon approach, only a small proportion 

(~0.2–0.6%) of shotgun microbial aDNA reads typically map to the 16S rRNA gene, which 

is simply a function of the relatively short length (~1,540 base pairs) of the multicopy (four-

copy average) gene compared with the average size of a microbial genome (1–3 Mb). This 

presents a limitation for the detection of low-abundance taxa. Finally, when working with 

short-read metagenomic data, we have found that minor changes in closed reference OTU 

picking parameters (such as UCLUST - -max_accepts and - -max_rejects values) can 

dramatically alter diversity estimates; consequently, default settings should be adjusted in 

microbial archaeology studies to optimize performance for very short sequences, which are 

typical of aDNA.

Two widely used software pipelines that use 16S rRNA reference databases are QIIME (24) 

and mothur (168). Metagenome Analyzer (MEGAN) (80) can also be used in connection 

with rRNA gene reference data.

6.1.1.2. Multilocus approaches: An alternative technique for metataxonomic assessment 

focuses on multiple loci, usually a small set of (single-copy) housekeeping genes. Here, the 

advantage is that more multilocus sequence analysis and multilocus sequence typing data 

sets are available in comparison with full genomes, and the sequence divergence level can be 

higher in comparison with rRNA genes, potentially allowing for the differentiation of 

bacterial strains. Another advantage is that genes can be selected that occur only as single 

copies in each reference genome sequence.

One widely used software pipeline that uses a variant of a multilocus sequence analysis–

based approach is the Metagenomic Phylogenetic Analysis (MetaPhlAn) pipeline (172). The 

current MetaPhlAn database (version 2) includes ~1 million marker genes identified from 
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~17,000 reference genome sequences obtained from >7,000 species-level taxa; the marker 

genes were selected to define specific microbial clades (mainly bacterial and archaeal, but 

also including viruses and eukaryotes) and are spread across all functional annotation classes 

(188). The latter is essential because the microorganisms present in biological or 

environmental samples may differ in, for example, their metabolic pathways and can be 

detected only if they are represented in the reference database. In contrast to whole-genome 

alignment, read alignment against clade-specific markers is fast, comparing favorably to the 

Basic Local Alignment Search Tool (BLAST) (172), although not quite as fast as Kraken 

(201). Once normalized by the sequence length of each individual marker, the total number 

of high-quality hits offers a simple measure for calculating taxon abundances. Because gene 

elements that are shared among clades do not fulfill the definition of markers, MetaPhlAn 

assignment is robust to horizontal gene transfer. Quasi markers, which are informative only 

in the absence of particular taxa sharing closely related sequences, can also improve 

sensitivity and enable strain detection. Typically, MetaPhlAn analyses achieve high 

specificity, owing to the marker selection procedure, but relatively limited sensitivity, owing 

to the incompleteness of the marker database. Ongoing sequencing efforts aimed at 

characterizing microbial diversity will continue to improve the approach’s sensitivity. In 

addition to being available as a stand-alone package, MetaPhlAn is integrated into the 

metaBIT metagenomic pipeline (110).

6.1.1.3. Whole-genome approaches: The third reference strategy is to use complete 

genomes as a target database. Using whole genomes has the advantage that known taxa 

present in low abundances can potentially be identified because any sequenced DNA 

fragment that originates from a species contained in the target database can be (theoretically) 

assigned. Therefore, this strategy can be beneficial in ancient pathogen detection studies, 

where only traces of DNA from a pathogenic organism are expected to be present. 

Additionally, because variation across the entire genome is considered, this method 

maximizes the power to make fine-scale distinctions among species and strains.

Challenges, however, can arise from horizontal gene transfer, bacterial recombination, or 

mobile elements, which can influence the precision of assignments. Additionally, genome 

sizes of free-living taxa vary by nearly an order of magnitude, ranging from the tiny 0.16-

Mb genome of Candidatus Carsonella ruddii to the massive 10-Mb genome of Solibacter 
usitatus (118); as a result, taxa with larger genomes contribute proportionally more fragment 

reads per cell to a metagenome, potentially making them appear more abundant if genome 

size differences are not taken into account. Whole-genome databases are also far less 

complete in comparison with rRNA databases, and thus, for a given sample, far fewer taxa 

may have a close representative in the reference database. This may lead to a larger number 

of false negative (unidentified) or false positive (identified as the closest representative in the 

database) assignments, a phenomenon often referred to as database bias.

Whole-genome databases are rapidly growing, however. Since the publication of the first 

genome sequence of a free-living bacterium, Haemophilus influenzae, in 1995 (49), the 

number of sequenced microbial genomes has increased exponentially (137), with 129,346 

sequencing projects at various stages of completion registered in the Genomes Online 

Database (GOLD) as of March 2017 (125). Currently, microbial genomes are available 
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through multiple—often overlapping and cross-referenced—databases that have been 

customized for different purposes, ranging from those that aim to encompass all microbes, 

such as GOLD and the National Center for Biotechnology Information’s RefSeq database 

(131) to those that focus on specific groups of bacteria, such as EnteroBase (http://

enterobase.warwick.ac.uk) and the HOMD (27). Pipelines that utilize whole-genome data 

for taxonomic assignments include the MEGAN Alignment Tool (MALT) (71) and MIDAS 

(129).

6.1.2. The query strategy—Metagenomic tools differ not only in the way that their 

reference databases are constructed but also in the way those databases are queried, which 

depends on whether read alignment is performed. As such, query strategies can be divided 

into alignment-based and alignment-free approaches.

6.1.2.1. Alignment-based approaches: One important strategy for the assignment of query 

sequences to large reference databases is based on classical sequence alignments. The 

algorithms applied are usually modifications of the Needleman-Wunsch (130) or Smith-

Waterman (177) algorithms designed to perform semiglobal or local alignments, 

respectively. However, the calculation of precise alignments is time consuming, even for 

more efficient variants of these algorithms. For this reason, most software tools use so-called 

seed-and-extend approaches. Here, candidate matches are first determined in a time-effective 

but imprecise manner, and precise alignments are then calculated only for these candidates. 

Well-known examples of this algorithm type include BLAST (5) and its faster variant 

MEGABLAST (124), as well as UBLAST and USEARCH (43). Novel tools such as MALT 

(71) and lambda (69) also belong in this category, as do read mappers such as the Burrows-

Wheeler Alignment (BWA) tool (104) and Bowtie 2 (97). Additionally, read mappers that 

are able to account for high nucleotide misincorporation rates, such as the Burrows-Wheeler 

Alignment–Position-Specific Scoring Matrix (BWA-PSSM) tool (86), may improve method 

sensitivity for aDNA.

The calculation of precise alignments has multiple advantages. It allows, for example, for a 

sophisticated evaluation of every match and a statistical assessment of all matches for a 

given taxon. This enables the calculation of aDNA damage patterns in order to authenticate 

the aligned matches as representing aDNA fragments (17, 83). Furthermore, edit distance or 

percent identity distributions can be assessed in order to verify the assignment of query 

sequences. The distribution of query sequences across the reference sequence can also be 

inspected in detail, and spurious taxa can be detected by their uneven genome coverage. The 

primary disadvantage of alignment-based methods is that they are time consuming, even 

when using time-saving seed-and-extend approaches.

6.1.2.2. Alignment-free approaches: Not all methods for metagenomic analysis rely on 

calculating precise alignments. Rather than taxonomically assigning sequencing reads or 

other sequences, alignment-free methods determine the relative abundances of taxa based on 

other features. Kraken (201), for example, uses an approach that is based on exactly 

matching k-mers. Both the sequences present in the reference database and the query 

sequences are split into overlapping subsequences of length k. This allows fast matching of 

queries to the database by hashing algorithms, a concept that is often applied in the seeding 
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step of seed-and-extend alignment-based methods. Other methods are based on similarities 

and dissimilarities of nucleotide composition (74), comparison of Burrows-Wheeler 

transformed sequence information (6), or machine learning approaches (156).

An advantage of many alignment-free methods is their speed. However, a precise evaluation 

of taxonomic assignments is more difficult compared with alignment-based methods. 

Particularly in the context of ancient metagenomic analyses, this poses challenges because it 

does not allow for detailed authentication unless further alignment steps are taken in order to 

evaluate DNA damage patterns or other alignment-based features.

6.1.3. Data type—The input data type for metagenomic analysis is DNA sequencing reads 

or assembled DNA sequences, such as contigs. The data type for the reference database can 

be either DNA or amino acid sequences. In the case of a protein database, the DNA input 

sequences must be translated from all six possible reading frames, which is analogous to 

BLASTX (5).

An advantage of using a protein database is its higher level of sequence conservation, which 

allows the exploration of deeper evolutionary relationships. Furthermore, tools such as 

DIAMOND (19), lambda (69), and RapSearch2 (206) provide extremely fast algorithms for 

performing DNA-to-protein alignments. However, protein alignments can be challenging to 

use for ancient metagenomic data because they are incompatible with DNA alignment–based 

authentication procedures. Furthermore, short aDNA reads translate into even shorter 

peptide sequences, and DNA damage can lead to in silico errors during translation and 

therefore to misassignments.

6.2. Algorithms, Pipelines, and Environments

A versatile selection of software is available for metagenomic analysis. In the context of 

aDNA, these software packages are often not directly comparable; some of them represent 

specific algorithms that perform specific steps of an analysis, whereas others combine 

algorithms into analysis pipelines that perform multiple steps of the metagenomic analysis.

Algorithms can be divided into different categories according to the analytical step they are 

performing. If they apply an alignment-based concept, then the first step is alignment, or 

mapping. In principle, any DNA or protein alignment tool can be used, including sequence 

similarity search tools such as BLAST (5), as well as read mappers. The next step is to 

classify the alignments using a taxonomy in order to assign the query sequences to specific 

taxa, a process known as binning. Examples of binning algorithms include UCLUST (43), 

RDP Classifier (194), naive lowest common ancestor (LCA), and weighted LCA (80).

MALT (71) is a tool that combines alignment and binning. It is based on a seed-and-extend 

approach and uses spaced seeds for higher sensitivity. Seeds are matched to a DNA sequence 

database that can contain single or multiple loci or whole genomes. MALT calculates precise 

local or semiglobal alignments and uses (weighted) LCA for binning. It integrates well with 

the MEGAN environment, which does not contain alignment functionality on its own.
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MetaPhlAn (172) is an example of a metagenomic analysis pipeline. It uses a selection of 

multiple loci as a target database. The selection of loci varies for different taxa, thus 

ensuring specificity on different taxonomic levels and for different parts of the taxonomy. 

For its alignment algorithms, MetaPhlAn integrates MEGABLAST or Bowtie 2; however, 

other alignment algorithms could be integrated as well. The taxonomic assignment 

algorithm is specific to MetaPhlAn owing to its unique database structure. Another example 

of a metagenomic pipeline is MIDAS (129), which combines multiple databases, aligners, 

and binning algorithms into an integrated pipeline.

In some cases, single algorithms and more complex analytical procedures are made 

accessible in interactive environments that also provide an integrated visualization of the 

results. MEGAN (80) is an example of such an environment. In other cases, multiple 

pipelines are made accessible through an environment, as is the case with QIIME (96) and 

metaBIT (110). MetaBIT, for example, implements MetaPhlAn-based microbial profiling 

and provides built-in modules for (a) visualizing profiles, including Krona plots (134); (b) 

calculating diversity indices (e.g., alpha and beta diversity); and (c) performing a range of 

statistical analyses. These analyses include principal coordinate analysis, hierarchical 

clustering, and linear discriminant analysis, the latter of which is used to identify microbes 

that drive differentiation among user-defined groups, such as archaeological sites, samples, 

and/or DNA libraries (171). MetaBIT also provides preprocessed microbial profiles from the 

Human Microbiome Project (78, 79) and cross-biome soil communities (48), allowing users 

to place their (ancient) microbial communities within the known diversity of human and soil 

microbiomes.

Because each software strategy operates differently and makes different assumptions based 

on the algorithms and databases incorporated into the pipeline, the results generated by 

different software are not identical. Figure 2 illustrates the oral microbial community 

reconstructed from an ancient dental calculus sample as performed by five common 

metataxonomics pipelines: QIIME, metaBIT, MIDAS, and MALT. Although the five 

pipelines generally return profiles containing similar taxa, systematic differences in taxon 

relative abundance and phylum dropout are apparent owing to differences in pipeline 

parameters, algorithms, databases, and other factors.

7. THE CHALLENGE OF RELATED TAXA

Although numerous tools and growing databases are available for taxonomic identification, 

care must be taken to avoid taxonomic misassignment, especially for the short, damaged 

sequences typical of aDNA. Accurate taxonomic assignment can be particularly challenging 

if closely related environmental contaminants are also present. Additionally, clades of 

closely related species within endogenous microbiota can be difficult to resolve if database 

coverage is poor or sequencing effort is insufficient. Validation efforts focusing on the 

evenness of genome mapping coverage, sequence identity distributions, and sequence 

monomorphism (haploidy) are powerful approaches for identifying and eliminating false 

positive assignments in microbial archaeology studies.
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7.1. All in the Family: The Rise of Pathogens

Many pathogens have close relatives in soil. Y. pestis, for example, is a close relative (if not 

subspecies) of Y. pseudotuberculosis (25), a soil bacterium that has also been found in the 

gastrointestinal tracts of nematodes and insects (55, 209) and those of birds and mammals 

(53, 109) as well as on improperly washed vegetables (81). Likewise, a majority of the 

nearly 200 named Mycobacterium species (and thousands of unnamed ribosomal 

phylotypes) are soil inhabitants (22, 45, 76), with the pathogenic M. tuberculosis complex, 

M. leprae, and to some degree M. avium making up a minority of species that regularly 

infect humans. During analysis, sequences from these environmental relatives can misalign 

to the pathogen genome, producing false positives (Supplemental Table 1). Other pathogens 

with close, nonpathogenic environmental relatives include B. pertussis, S. enterica, Bacillus 
anthracis, Clostridium botulinum, Shigella dysenteriae, and Vibrio cholerae (see 

Supplemental Appendix 3). Figure 3 shows the extent of closely related cultured and 

uncultured relatives for each of these eight pathogens based on a 16S rRNA gene sequence 

identity of >97% in the RDP database of more than 3 million sequences.

When working with very large data sets, as is typical for HTS, it is important to be aware of

—and have a plan for handling—false positives. In pathogen studies, shotgun metagenomic 

sequence data generated from bone lesions or dental pulp (typically a few million sequence 

reads) are often initially mapped against a panel of pathogen genomes using standard 

mapping tools in order to screen for putative taxa of interest. Although an important first 

step, this approach yields many false positives, and in fact, nearly any large metagenomic 

data set is expected to yield false positives under such an approach. For example, mapping 

metagenomic data from three sources—soil, ocean, and healthy human saliva—against a 

panel of 14 pathogen reference genome sequences resulted in numerous false positive hits to 

all 14 pathogens, ranging from a low of 2 Treponema pallidum hits per million soil reads to 

a high of 173 B. anthracis hits per million saliva reads (Supplemental Figure 1). Overall, 

healthy saliva yielded the highest number of false positives, with a mean of 67 false positive 

hits per million metagenomic sequences. None of these reads were true positives; rather, 

they resulted from mismapping at highly conserved regions and in regions of low 

complexity, mapping of mobile elements and other horizontal gene transfer sites, and 

mapping at orthologous sites in related taxa because of database bias. Any alignment-based 

screening study requires further validation in order to identify true positives against a 

background of spurious hits.

7.2. Close but Not Close Enough

In addition to mistaking environmental contaminants for ancient pathogens, it is possible to 

mistake one endogenous taxon for another, especially in ancient microbiome samples. 

Within the oral cavity, for example, many genera include multiple closely related members, 

and the number of named species and known phylotypes for the five largest genera in the 

HOMD are as follows: Prevotella, 50; Treponema, 49, Streptococcus, 36; Actinomyces, 30; 

and Lactobacillus, 26. The oral cavity contains numerous pathobionts, or endogenous 

potential pathogens, such as S. pneumoniae, N. meningitidis, and H. influenzae, and it may 

also become colonized with obligate pathogens, such as M. tuberculosis, during respiratory 

infections (195). Additionally, nearby skin pathobionts, such as S. aureus and 
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Propionibacterium acnes, and food microbes, such as Propionibacterium freudenreichii and 

Lactobacillus rhamnosus, may also be present. Correctly assigning sequences within these 

genera is therefore important for understanding the dietary and potential health implications 

of past microbial communities. Database bias, however, can be a major challenge because of 

the limited number of species with sequenced genomes, and it can result in both the 

underestimation of important taxa in ancient microbiota and sequence misassignment to the 

closest sequenced genome (Figure 4).

7.3. Validation Is Essential

If the number of reads supporting a species identification is low and robust phylogenetic 

confirmation is not possible, further validation steps should be taken. There are multiple 

measures that can reduce the number of false positive hits, including evaluating coverage 

evenness, sequence identity, and haploidy (Figure 5, Supplemental Figure 2).

7.3.1. Evenness of coverage—One measure that can validate species assignments is the 

evenness of coverage across the reference sequence. If all reads that are assigned to a species 

represent DNA fragments originating from the same source, they should be distributed 

randomly across the reference sequence (Figure 5a). An accumulation of reads in distinct 

regions, by contrast, suggests that they do not stem from the species they have been assigned 

to, but originate from one or more related species and map to regions that are conserved 

among this group of species (Figure 5b). Regions that commonly attract read assignments 

from other taxa include rRNA and tRNA loci, mobile elements, repetitive regions, and any 

highly conserved protein-coding sequences.

7.3.2. Percent identity distributions—Another measure for the evaluation of read 

assignments is their similarity to the reference. Of course, the percent identity values of 

assigned reads will vary, but a large amount of information can be gained by investigating 

the distribution of values across all read alignments for a given taxon. It can be assumed that, 

with the exception of damaged sites, most reads will map to the reference genome sequence 

with zero mismatches if the species assignment is correct, and the number of reads with an 

increasing number of mismatches will decrease progressively. However, the expected 

diversity of strains varies depending on the species, which should be taken into account. For 

example, H. pylori, the causative agent of gastritis and some forms of gastric cancer, exhibits 

an extremely high level of strain diversity, with nearly every unrelated isolate possessing a 

distinct genome sequence (107). Ancient strains of H. pylori are thus expected to differ from 

modern strains but should still fall within expected models of variation (112). By contrast, 

other microbes fall at the other end of the scale, exhibiting little or no sequence variation 

across hundreds or thousands of isolates. These genetically monomorphic microbes include 

many well-known epidemic pathogens, such as B. anthracis, Burkholderia mallei, 
Escherichia coli O157:H7, M. leprae, the M. tuberculosis complex, S. enterica serovar 

Typhi, Shigella sonnei, Chlamydia pneumoniae, T. pallidum, and Y. pestis (1). In these taxa, 

sequence differences between ancient and modern strains are expected to be minimal and 

limited to a small number of sites (16).
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Overall, a high similarity between most assigned reads and the reference supports a true 

positive assignment (Figure 5c). Conversely, if most reads are dissimilar to the reference, the 

species assignment is likely incorrect (Figure 5d), although it may be accurate at the genus 

level. A clear distinction between these two cases is not always possible because correct and 

incorrect assignments can be present at the same time, resulting in multimodal distributions 

in which the background and foreground cannot be clearly distinguished (Figure 5e). In 

some cases, edit distances (number of mismatches) are used instead of percent identity 

values because they are more suitable for distinguishing very closely related taxa, such as Y. 
pestis and Y. pseudotuberculosis (158).

7.3.3. Haploidy—Haploidy is another measure that provides an indication of whether 

reads from multiple taxa have been misassigned to a single species. This approach can be 

applied to haploid bacterial and archaeal genomes as well as eukaryotic organelle genomes. 

In haploid genomes, nearly all variable sites should be monoallelic (Figure 5f), so a large 

number of multiallelic sites suggests that the aligned reads originate from multiple taxa. In 

the case of two taxa present in equal abundance, all multiallelic sites will show a frequency 

of the two alleles at ~50% (Figure 5g). This does not necessarily mean that the species 

assignment is wrong. It could, for example, indicate the presence of two different strains of 

the same bacterium, as has been observed in cases of multiple M. tuberculosis infections 

(26). Reads that originate from two or more sources in unequal abundance result in a 

multimodal distribution (13) (Figure 5h). Even if the vast majority of the reads originate 

from a single species, a small number of damaged or misassigned reads may still produce a 

few low-frequency single-nucleotide polymorphism (SNP) calls of the derived allele (Figure 

5i). Note that this analysis is possible only with sufficient coverage for reliable SNP calls.

8. DNA PRESERVATION AND CONTAMINATION

After the validation of taxonomic assignments, it is important to test whether the DNA 

sequences of interest could be explained by exogenous contamination. Authentic aDNA 

undergoes predictable forms of damage and decay, which can result in nucleotide 

misincorporation during library repair and amplification. Such damage can be estimated by 

analyzing nucleotide substitution patterns as well as strand breakage as a function of lambda 

(λ, a proxy for DNA fragmentation; see Section 8.2). Additionally, with respect to ancient 

microbiota, Bayesian source estimation tools can test for potential mixing of endogenous 

microbiota with exogenous sources. Finally, rigorous standards set forth to prevent 

laboratory contamination and instrument sequence bleed-through should be followed in 

order to ensure that the findings are not the result of poor laboratory or data hygiene.

8.1. Damage Patterns

Early studies of HTS data from Late Pleistocene animals revealed that molecular damage 

accumulating after death is a common feature of aDNA molecules (17, 18). In particular, 

depurination, nick formation, and cytosine deamination are the most important DNA decay 

reactions in subfossil material (32). Although such reactions limit the amount of aDNA 

material amenable to sequencing, they also provide important molecular signatures for data 

authentication (94, 151, 181). For instance, nucleotide misincorporation profiles, in which 

Warinner et al. Page 21

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the probability of sequence mismatches between reads and the reference genome used in 

sequence alignment is traced from read starts to read ends, provide a visual way to assess 

levels of inferred cytosine deamination within a given data set. Statistical DNA damage 

models, such as the one implemented in mapDamage (59, 83), exploit such features to 

quantify DNA damage patterns. Here, the preferential accumulation of deaminated cytosine 

(uracil), a chemical analog of thymine, within the overhanging ends of aDNA templates 

typically results in increasing C→T misincorporation rates toward read starts 

(complementary G→A misincorporation rates are expected to increase in an almost 

symmetric fashion toward read ends in standard double-stranded library preparations) (17). 

In addition, the amount of nucleotide misincorporations displayed by DNA from a sample 

correlates with the age and depositional environment (4, 164). Demonstrating such 

signatures in ancient HTS data sets has thus been considered key to data authentication 

(151), especially because such signatures have been found in all sample types tested to date, 

including skeletal remains, dental calculus, plant remains, and even DNA retrieved from 

permafrost (135, 143, 207).

However, when sequence data are scanned for such deamination footprints, the expected 

nucleotide misincorporation profiles can vary depending on the molecular tools used during 

library construction, especially according to the endonuclease (161) and exonuclease (33, 

54, 95) activities of the end repair enzymes, the type of DNA ligase used during adapter 

ligation (121, 174), and the polymerase employed for library amplification (33, 73, 173). In 

particular, amplification using AccuPrime Pfx DNA polymerase results in typical 

misincorporation profiles following 454-like DNA library types (120) but removes the 

elevated C→T pattern toward read starts on TruSeq DNA library constructs (173). 

Differences in HTS-library preparation protocols also contribute to the characteristically 

different damage patterns observed in double-stranded (120) and single-stranded (54) aDNA 

libraries (Supplemental Figure 3). Additionally, minimal sequencing efforts are necessary in 

order to assess the presence of cytosine deamination, and only a few thousand sequences 

from the genome of interest are typically needed to recover reliable estimates of cytosine 

deamination (Supplemental Figure 4). For smaller data sets from very-low-abundance taxa 

containing on the order of hundreds of reads, alternative strategies can be used to assess 

terminal damage patterns (197).

Finally, note that the presence of genuine nucleotide misincorporation profiles is not 

sufficient to rule out environmental contamination and authenticate the aDNA data as 

endogenous. First, the data produced will likely comprise a mixture of both ancient and 

modern DNA contaminants in varying proportions. Second, body decomposition occurs 

rapidly after death, and microbes that invade skeletal tissues during early decomposition 

(119) will also accumulate significant DNA damage levels. This can be critical for studies of 

pathogens with closely related soil members. Conversely, authentic pathogens with reduced 

kinetics of DNA decay—e.g., owing to the presence of particular chemical components in 

their bacterial wall, as proposed for M. leprae (170)—may show less damage than other 

ancient taxa. Lastly, even small conserved regions within the genomes of different bacterial 

species can result in sufficient read alignment to show what looks like genuine damage 

profiles; in the case illustrated in Supplemental Figure 5, for example, 0.07–0.11% of 

simulated aDNA reads from the environmental Mycobacterium smegmatis reference 
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genome sequence can be successfully aligned on the M. leprae and M. tuberculosis genome 

sequences while still showing the expected damage profiles. Therefore, unidentified or 

misidentified bacterial sources for the aDNA data can drive expected DNA damage profiles 

when using another bacterial genome for read alignment, which therefore cannot be used as 

the sole criterion for data authentication. Correct phylogenetic placement and/or edit 

distance distributions compatible with the levels of variation observed within the group of 

candidate bacteria are thus mandatory. The simulated data in Supplemental Figure 4 show 

basal G→A (C→T) levels at read starts (ends) below 1% only when aligned against the 

genome of the correct species.

8.2. DNA Fragmentation

aDNA is highly fragmented through a process that is driven by depurination followed by 

hydrolysis of the DNA backbone (105). This process, initially described in vitro, is easily 

identifiable using HTS by looking at DNA breakpoints, which in aDNA are enriched in 

purines (both A and G) (17). Fragmentation patterns can be visually inspected and are 

produced by default in software such as mapDamage (83).

The length distribution of aDNA can be approximated by a lognormal distribution (4) and 

shows an exponential decline in the tail, which results from random fragmentation of DNA 

(36). Upon logarithmic transformation of fragment length frequencies, the decline can be 

characterized by a linear function with slope λ. The fragmentation constant λ therefore 

represents the fraction of bonds broken in the DNA backbone (4, 36) and is a summary 

statistic of the magnitude of DNA fragmentation. If multiple samples are available, it is 

possible to assess whether DNA from different organisms retrieved from the same samples is 

fragmented in a correlated way, e.g., sequencing reads originating from host and pathogen, 

or different taxa in a given microbiome.

This analysis is possible only if all samples were prepared (DNA extraction and library 

preparation) and sequenced (sequencing platform) in the same way. The correlation in the 

magnitude of DNA fragmentation among different organisms from the same samples has 

been proposed as an additional way to authenticate aDNA findings (158) because DNA 

stored in the same tissue should generally fragment in a correlated way at similar (Figure 6a) 

or different (Figure 6b, c) magnitudes. The interpretation of the results should take into 

account the peculiarities of the DNA sources and tissues analyzed, because there are cases 

where the correlation is not expected—e.g., when DNA from a given organism is 

differentially exposed to antemortem processes that fragment DNA (Figure 6d).

8.3. Estimating Source Contribution

In addition to profiling DNA damage and decay patterns, source modeling is a powerful tool 

for authenticating well-preserved microbiome samples. Originally developed to detect 

contamination in metagenomic studies, the software tool Source Tracker (91) models the 

composition of a metagenome sink (i.e., sample) as the product of different contributing 

metagenome sources using Bayesian inference. For example, the microbial composition of a 

given sample, such as archaeological dental calculus, can be modeled as a mixture of DNA 

originating from dental plaque, skin bacteria, soil, and other sources. Using reference 
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metagenomic data sets selected for each of these sources, the algorithm then estimates the 

proportion of the dental calculus sample originating from each source (Figure 7). 

SourceTracker is a useful screening tool and has been used to estimate the microbiome 

preservation of both paleofeces (187) and dental calculus (196, 207) before further analysis 

of microbiome structure and function. Archaeological samples that produce poor 

SourceTracker profiles are likely altered by decomposition processes or contamination and 

are thus not suitable for inferring ancient microbial ecology; however, they may still contain 

traces of endogenous microbial, dietary, and host DNA that can be studied individually. 

SourceTracker is implemented in the QIIME pipeline and is most often applied to 16S rRNA 

gene sequence data, but it can be used with any data set organized as a frequency table.

8.4. Sample and Data Hygiene

Standards and precautions for preventing and managing modern DNA contamination are 

now well established in most aDNA laboratories. These include isolated and dedicated 

aDNA facilities with high-efficiency particulate arrestance (HEPA) air filtration, regular UV 

irradiation, and NaOCl sterilization of workspaces; consistent use of personal protection 

(such as full-body suits, double gloving, and eye shields); continuous contamination 

monitoring using reagent blanks and nontemplate negative controls in all experiments; and 

unidirectional workflows. Although these best practices were initially developed for 

applications related to ancient human genome research, they are equally—if not more—

important in ancient microbial research.

Microbial DNA is everywhere, and it is the dominant source of nonendogenous genetic 

material in all aDNA data sets. Ancient microbial research should never be carried out in a 

laboratory that cultures, amplifies, or processes samples of living microorganisms. Full 

laboratory separation with independent ventilation is critical to prevent cross-contamination, 

and simply providing an isolated workspace within a microbiology laboratory is insufficient 

to prevent contamination of ancient samples during extraction and library preparation steps. 

In addition, many common molecular biology reagents, such as DNA polymerases and other 

enzymes, deoxynucleotide triphosphates (dNTPs), oligonucleotides, and some buffers, are 

contaminated with microbial DNA, often deriving from expression vectors (169). Levels of 

contamination are often batch and brand specific and result from different manufacturing 

procedures. Rigorous testing of all reagents should be performed prior to their use on ancient 

samples.

Finally, cross-contamination is a serious but preventable challenge for highly multiplexed 

HTS. So-called barcode bleeding is a phenomenon where by a portion of sample-specific 

index sequences (barcodes) appear to switch between samples, forming chimeras, likely as a 

result of jumping PCR. Samples are at most risk for barcode bleeding during pooled 

amplification steps (e.g., during pooled sequence capture or during reamplification of a final 

library pool) and during clustering steps prior to Illumina sequencing. Empirical studies 

have found that up to 1% of HTS reads may be affected by barcode bleeding on early-

generation Illumina sequencing platforms, such as the GAIIx (88). By that estimate, if two 

single-indexed samples are pooled and sequenced together to a depth of 200 million reads, 

thousands to millions of chimeric sequences can be generated and assigned to the wrong 
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sample. Fortunately, this problem can be overcome by using a multiple-indexing strategy, 

which allows the rapid identification and removal of sequences with chimeric index pairs 

(88, 161).

9. CONCLUSIONS

Microbial archaeology is a rapidly growing, multidisciplinary field that has the potential to 

reveal the complex evolutionary history of humans and their microbes. Over the past five 

years, great advances have been made in revealing the agents behind devastating historical 

plagues, tracing the cryptic movements of pathogens in prehistory, and reconstructing the 

ancestral microbiota of humans. However, many challenges remain. Here we have discussed 

the foundational concepts of the discipline and suggest standards and precautions to support 

future research. In the sidebar titled Recommended Authenticity Guidelines, we present 

seven guiding principles aimed at establishing a common research standard and framework 

for the genetic investigation of ancient microbes.

Through this framework, we seek to provide a robust empirical and theoretical foundation to 

support the growing field of microbial archaeology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RECOMMENDED AUTHENTICITY GUIDELINES

To guide future research in microbial archaeology, we propose the following standards 

and precautions:

1. Dedicated aDNA laboratories are necessary to minimize and manage 

contamination.

2. Metataxonomic approaches differ in their assumptions and biases, and the 

results of these analyses should be interpreted with these factors in mind. 

Parameters, protocols, and databases should be kept as consistent as possible 

to minimize technical variation. Approaches that have been demonstrated to 

produce taxonomically biased results for degraded DNA, such as 16S rRNA 

gene amplicon sequencing, are not recommended for quantitative analyses.

3. Mapping to a reference genome sequence alone is not sufficient for species-

level identification. Mapping should be competitive (to more than one 

candidate reference) and must take the metagenomic nature of the sample into 

account. Some genomic loci are more phylogenetically informative than 

others. In general, mobile elements are not recommended for taxonomic 

identification and should be used only with caution on a case-by-case basis.

4. Microbial species identification requires multiple lines of validation, which 

may include, but are not limited to, demonstrations of coverage evenness, 

genetic similarity, and haploidy.

5. DNA damage must be assessed. Microbial aDNA should exhibit patterns of 

DNA damage and fragmentation; however, the magnitude of damage may 

vary depending on the source context and species, and the damage pattern 

itself depends on the workflow and enzymes used during library preparation.

6. For ancient microbiome samples, such as dental calculus and paleofeces, 

microbiome community composition must be assessed and tested for 

biological plausibility before analysis. Diversity analyses and community 

comparisons should be undertaken with caution and performed only on well-

preserved samples; otherwise, the results will be more informative about the 

process of decomposition than about the original microbiome of the 

individual.

7. Finally, research questions and hypotheses involving ancient microbes should 

be biologically informed. Microbial archaeology is an emerging field drawing 

on the expertise of researchers who have been trained in multiple disciplines, 

including archaeology, anthropology, microbiology, evolutionary biology, 

computational biology, population genetics, and medicine, to name a few. 

Cross-disciplinary communication and collaboration are critical to develop a 

robust framework for microbial archaeology research.
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Figure 1. 
Evolutionary relationships of taxa within the bacterial families (a) Enterobacteriaceae and 

(b) Porphyromonadaceae based on full-length 16S rRNA gene sequences. Taxonomy and 

phylogeny are incongruent for the gut-associated genera Klebsiella, Salmonella, Escherichia, 

and Shigella, which are not monophyletic, but rather exhibit polyphyletic and paraphyletic 

clade structure. By contrast, taxonomy and phylogeny are congruent for the oral-associated 

genera Tannerella and Porphyromonas, which form distinct monophyletic clades with high 

bootstrap support (38). Trees are shown relative to outgroup taxa within the same bacterial 

family. Note the difference in scales between the two trees. Supplemental Appendix 1 

provides the specific parameters used in tree construction.
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Figure 2. 
Reconstructed taxonomic profile for archaeological dental calculus using the QIIME, 

metaBIT, MIDAS, and MALT pipelines. Analysis was performed on 1,967,941 shotgun 

metagenomic DNA sequences obtained from a previously described dental calculus sample 

from the Spanish Chalcolithic site of Camino del Molino (approximately 2340–2920 BCE) 

(207). Although all four pipelines generally identify the same phyla, predictable biases are 

also readily apparent. For example, QIIME estimates the largest proportion to be Firmicutes, 

a phylum known to have a high rrn operon copy number (190). Euryarchaeota is absent in 

the MIDAS analysis because there are no reference genome sequences for this phylum in the 

database. MIDAS and metaBIT, which rely on genome-scale databases, also fail to detect 

the largely uncultivated phyla Saccharibacteria (TM7), Chloroflexi, and SR1. Explanations 

for other differences in phylum frequency abundance, such as the high proportion of 

Actinobacteria estimated by MALT and the absence of Fusobacterium detected by MIDAS, 

are not as clear. Supplemental Appendix 1 provides the specific parameters used for each 

analysis. Abbreviations: MALT, MEGAN Alignment Tool; MIDAS, Metagenomic Intra-

Species Diversity Analysis System; QIIME, Quantitative Insights into Microbial Ecology.
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Figure 3. 
Pathogens and their close environmental relatives. Many obligate pathogens share close 16S 

rRNA gene sequences with environmental microbes. Bacillus anthracis, Bordetella pertussis, 
Clostridium botulinum, and Mycobacterium tuberculosis have close relatives in soil, sewage, 

and extreme environments, whereas Salmonella enterica, Shigella dysenteriae, and Vibrio 
cholerae have close relatives in vertebrate gut and feces. V. cholerae relatives are also 

abundant in water sources, and B. anthracis and B. pertussis share close relatives found in 

association with nematodes and arthropods. By contrast, few environmental relatives outside 

of the Yersinia pseudotuberculosis complex were observed for Yersinia pestis; however, Y. 
pestis shows strong similarity to 16S rRNA sequences obtained from a study of global 

diversity in human saliva, indicating that human saliva in some parts of the world may 

harbor a previously undetected Yersinia relative. The total number of RDP database matches 

for targets other than the respective pathogen is shown in parentheses. Of all the obligate 

pathogens investigated, B. anthracis and S. dysenteriae had the highest number of hits to 

environmental sources. A subset of sources are highlighted (along with the number of RDP 
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database matches for these targets, shown in parentheses) to illustrate the diversity of 

environments from which close matches were observed. Supplemental Appendix 3 provides 

a detailed list of taxa and sources. Abbreviation: RDP, Ribosomal Database Project.
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Figure 4. 
Lack of signal for highly abundant endogenous bacteria resulting from database bias. A 

medieval dental calculus sample (G12) (196) was screened using MALT (71) and visualized 

in MEGAN6 (80) using two databases, one without the genome sequence of the oral 

bacterium Pseudopropionibacterium propionicum (database 1, red) and another with that 

genome sequence included (database 2, blue). The tree visualizes the results of both 

analyses, and nodes are scaled based on the summed number of hits to a log scale. The 

inclusion of P. propionicum results in hits being shifted away from related dietary 

(Propionibacterium freudenreichii ), skin (Propionibacterium acnes), and other species, as 

well previously nonaligned hits, toward the oral bacterial genome, revealing the presence of 

a previously unseen, highly abundant species. This highly abundant species, with more than 

1 million assigned reads, would not have been detected in metagenomic screening methods 

before 2012, when the genome sequence was published. Supplemental Appendix 1 provides 

additional details. Abbreviations: MALT, MEGAN Alignment Tool; MEGAN, Metagenome 

Analyzer.
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Figure 5. 
Schematic overview of different measures for the validation of species assignments in 

metagenomic data analysis. (a, b) Evenness of coverage. Correctly assigned reads are 

expected to distribute randomly across the reference (panel a); accumulation of reads in 

regions of high sequence conservation indicates misassigned reads originating from different 

closely related species (panel b). (c–e) Percent identity distributions. In panel c, most reads 

show a high similarity to the reference, which indicates a correct assignment. In panel d, 

most reads are highly dissimilar to the reference, which suggests that they originate from 

different related species. In some cases, as in panel e, a mixture of correctly assigned and 

misassigned reads can be observed. (f–i ) Haploidy. Because bacteria are haploid organisms, 

only one allele is expected for each genomic position. Only a small number of multiallelic 

sites are expected, which can result from a few misassigned or incorrectly aligned reads 

(panel f). A large number of multiallelic sites indicates that the assigned reads originate from 

more than one species or strain, which can result in symmetric allele frequency distributions 

(e.g., if two species or strains are present in equal abundance) (panel g) or asymmetric 

distributions (e.g., if two species or strains are present in unequal abundance) (panel h). A 

large number of misassigned reads from closely related species can result in a large number 

of multiallelic sites with low frequencies of the derived allele (panel i). Supplemental Figure 

2 provides examples with empirical data from microbial archaeology studies.

Warinner et al. Page 42

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
DNA fragmentation from pairs of organisms retrieved from the same historic and prehistoric 

samples. The x and y axes show the fragmentation constant lambda (λ), which describes the 

fraction of broken bonds in the DNA backbone. The value of this constant can be assessed 

directly from the length distribution of high-throughput sequencing reads. The dashed red 

line indicates the linear regression. (a) DNA fragmentation of host and pathogen in DNA 

fragments retrieved from Solanum tuberosum herbarium samples infected with Phytophthora 
infestans (205). DNA from both organisms is fragmented in a correlated way and at a similar 

magnitude. (b) DNA fragmentation of host and pathogen in DNA fragments retrieved from 

Homo sapiens teeth samples infected with Yersinia pestis (158). DNA from both organisms 

is fragmented in a correlated way, but the Y. pestis DNA shows a higher magnitude of 

fragmentation than the H. sapiens DNA. (c) Fragmentation of oral archaeal 

(Methanobrevibacter sp.) and bacterial (Streptococcus sp.) DNA retrieved from Chalcolithic-

era (approximately 2340–2920 BCE) human dental calculus (207). DNA from both 

organisms fragments in a correlated way but at different magnitudes: The 
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Methanobrevibacter sp. DNA is less fragmented than the Streptococcus sp. DNA, which 

may be related to the more robust ether linkages in archaeal cell membranes and the 

protective action of histones in archaeal genomes. (d) DNA fragmentation of 

Methanobrevibacter sp. and H. sapiens retrieved from dental calculus (the same samples as 

in panel c). The fragmentation of H. sapiens DNA is not correlated with either that of 

Methanobrevibacter sp. (data shown here) or that of Streptococcus sp. (data not shown here). 

Human DNA often exhibits a higher magnitude of fragmentation in dental calculus 

compared with microbial DNA, a pattern consistent with an inflammation-driven entry of 

acellular human DNA into dental plaque biofilms that are rich in extracellular nucleases 

(139).
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Figure 7. 
Bayesian source estimation of the microbial composition of dental calculus and laboratory 

samples. Using SourceTracker (91) with a panel of modern dental plaque, skin, and soil 

reference sources indicates that the modern dental calculus (GU30C) contains a large 

proportion of microbial DNA (>60%) originating from human dental plaque. Likewise, 

>70% of microbial DNA in an ancient calculus sample from a high-altitude tomb in Nepal 

(37.UM2010.9, dating from approximately 400–650 CE) originates from dental plaque. By 

contrast, microbial DNA from nineteenth-century dental calculus from the West African 

island of St. Helena (STH16) derives nearly entirely from soil (80%) and human skin (3%). 

Microbial DNA collected from the surfaces of an osteological laboratory originates from 

human skin and unknown sources. Consistent with these results, the modern and Nepalese 

dental calculus samples are dominated by phylotypes belonging to known oral-associated 

genera (77–80%); by contrast, only 2% of phylotypes in the St. Helena calculus are 

consistent with oral genera, and 64% are classified as environmental Mycobacteria spp. Data 

are from Reference 207.
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