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Abstract

Chronic exposure to 4-vinylcycloxene diepoxide (VCD) in rodents accelerates the natural process of ovarian
follicular atresia modelling perimenopause in women. We investigated why estrogen therapy is beneficial for
symptomatic women despite normal or high estrogen levels during perimenopause. Female rats (28 d) were
injected daily with VCD or oil for 15 d; 55-65 d after the first injection, pellets of 17B-estradiol or oil were
inserted subcutaneously. Around 20 d after, the rats were euthanized (control rats on diestrus and estradiol-
treated 21 d after pellets implants). Blood was collected for hormone measurement, the brains were removed
and dorsal raphe nucleus (DRN), hippocampus (HPC), and amygdala (AMY) punched out for serotonin (5-HT),
estrogen receptor B (ERB), and progesterone receptor (PR) mRNA level measurements. Another set of rats
was perfused for tryptophan hydroxylase (TPH) immunohistochemistry in the DRN. Periestropausal rats
exhibited estradiol levels similar to controls and a lower progesterone level, which was restored by estradiol.
The DRN of periestropausal rats exhibited lower expression of PR and ERB mRNA and a lower number of TPH
cells. Estradiol restored the ERB mRNA levels and number of serotonergic cells in the DRN caudal subregion.
The 5-HT levels were lower in the AMY and HPC in peristropausal rats, and estradiol treatment increased the
5-HT levels in the HPC and also increased ERB expression in this area. In conclusion, estradiol may improve
perimenopause symptoms by increasing progesterone and boosting serotonin pathway from the caudal DRN
to the dorsal HPC potentially through an increment in ERB expression in the DRN.
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During the most part of menopausal transition, estradiol fluctuates in a normal range; however, estradiol
therapy is effective in attenuating many of perimenopausal symptoms. We demonstrate in a perimeno-
pause animal model that the expression of estrogen receptor g (ERB) in serotonergic and hippocampal
(HPC) neurons, both related to mood disorders, is reduced. Estradiol therapy reverses this deficiency,
thus recovering the response of these areas to estrogens. There is also a decline in the number of brain
serotonergic neurons and the amount of serotonin in the HPC, which are also reversed by estradiol.
Therefore, estrogens therapies that target only B receptors may be an alternative to obtain the
beneficial effects of estradiol while eliminating the undesirable side effects of estrogens through «

kreceptors. j
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Introduction

At middle age, women progress from the reproductive
(premenopause) to non-reproductive (postmenopause)
life through a transition period named perimenopause
(Harlow et al., 2012). During perimenopause, women may
exhibit numerous symptoms, which include variability
in cycle length, vasomotor symptoms, dysphoric mood
symptoms, insomnia, and somatic symptoms (Mitchell
and Woods, 1996; Diaz Brinton, 2012; Brinton et al.,
2015). Regarding mood disorders, both epidemiological
and clinical studies have consistently demonstrated that
after puberty, the risk for depression is higher in women
than men, and it reaches the maximum during perimeno-
pause (Deecher et al., 2008).

Ovarian steroids, mainly estradiol and progesterone,
affect brain regions involved in the modulation of mood
and behavior (McEwen, 1989), and fluctuations in ovarian
hormone secretion modify brain neurochemistry (Schmidt
et al., 1998; Barth et al., 2015). Moreover, the emotional
vulnerability windows that occur throughout women’s
lives are correlated with reproductive periods marked by
considerable hormonal fluctuations, such as menstrua-
tion, pregnancy, postpartum period and perimenopause,
thus indicating the pivotal role of sex steroids in the
control of affective disorders (Stahl, 2001). The effects of
estradiol and progesterone are predominately mediated
by their nuclear cognate receptors: estrogen receptors
(ERs) and progesterone receptors (PRs; Krege et al.,
1998). These receptors are widely expressed in brain
regions that control reproduction, as well as regions not
typically linked with this function (Shughrue et al., 1997;
Brinton et al., 2008; Weiser et al., 2008).

The hormonal profile of perimenopausal women is dif-
ferent from that observed in postmenopause. In post-
menopausal women, levels of estrogens are extremely
low, whereas in perimenopausal women, during the early
and mid-perimenopause levels of estrogens are normal or
even elevated compared to the premenopausal period
(Reyes et al., 1977; Santoro and Randolph, 2011), and
only at late perimenopause period, there is a significant
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decline on levels of estrogens (Burger et al., 1995; San-
toro and Randolph, 2011).

Progesterone levels are clearly lower during perimeno-
pause, which causes a misbalance in the estradiol/pro-
gesterone ratio (O’Connor et al., 2009). Considering the
high estradiol and low progesterone level scenario, an
intuitive treatment would be to supplement progesterone
to counterbalance the estradiol dominance. However,
there is no consensus about treatment of the symptom-
atic perimenopausal women and oral contraceptive or
estrogen therapies are widely prescribed to relieve peri-
menopausal symptoms. Estradiol therapy improves sev-
eral symptoms, such as vasomotor symptoms, thereby
improving women’s quality-of-life (Grant et al., 2015). In-
terestingly, while no correlation has been found between
depression and estradiol levels during perimenopause,
estrogen therapy is associated with significant improve-
ments in the mood of perimenopausal women with de-
pression symptoms (Schmidt et al., 2000; Soares et al.,
2001). Therefore, considering the normal or high levels of
estradiol during perimenopause, the use of extra doses of
estrogen to ameliorate mood disorders in perimenopausal
women is counterintuitive. Thus, to clarify this question,
we raise three possibilities: (1) estradiol can increase the
expression of PRs (MacLusky and McEwen, 1978; Helena
et al., 2009), thus, it is reasonable to suggest that estro-
gen therapy, by increasing PR expression, compensates
for the low plasma levels of progesterone; (2) as estrogen
effects on mood predominately occur through ERp
(Bansal and Chopra, 2015; Bastos et al., 2015; Benman-
sour et al., 2016), estradiol therapy during perimenopause
may positively modulate ERB expression; and (3) because
estrogens increases the activity of tryptophan hydroxy-
lase (TPH), the rate-limiting enzyme in serotonin synthesis
(Hiroi et al., 2006), it may rectify potential deviations in
serotonin synthesis in the dorsal raphe nucleus (DRN), a
central nucleus for the control of emotions. To test these
hypotheses, we used an animal model of perimenopause
in which the natural follicle depletion is accelerated by the
4-vinylcycloxene diepoxide (VCD) retaining residual ovar-
ian tissue (Lohff et al., 2005). Unlike ovariectomized ani-
mals, in which the concentrations of ovarian hormones fall
abruptly, this ovary-intact animal is suitable to model the
natural women progression to perimenopause (Brooks
et al., 2016). Thus, the aims of this study were evaluated
whether follicular depletion induces alterations on: (1) the
plasma concentrations of progesterone; (2) the ERB and
PR mRNA expression in the DRN, dorsal hippocampus
(HPC) and amygdala (AMY); (3) the number of TPH-
immunoreactive (ir) neurons in the DRN and d) the sero-
tonin content in the dorsal HPC and AMY. Accordingly,
we tested whether estradiol therapy can prevent the al-
terations observed in periestropausal rats.

Materials and Methods

Animals

Female Wistar rats at postnatal day (PND)21 were ob-
tained from the animal facilities of the University of Sdo
Paulo; rats were housed four per plastic cage (40 X 33 X
17 cm) and maintained on 12/12 h light/dark cycles (lights
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on at 6:00 A.M.) at a controlled temperature (24 = 0.5°C).
Animals were allowed to acclimate to animal room con-
dition for 7 d before the onset of VCD administration,
which started at PND28, as described by Mayer et al.
(2002). Food and water were provided ad libitum. All
procedures were approved by the Committee for Animal
Care and Use (2013.1.1412.58.7), University of Sdo Paulo.

VCD-induced perimenopausal model

It has been shown that the oocyte number in rodents
increases markedly toward the end of fetal life, but similar
to women, many are lost as they assemble to form pri-
mordial follicles. Additionally, postnatal primordial follicles
decline significantly for up to two weeks after birth fol-
lowed by a period of very slow follicle loss, which lasts for
several months (Kerr et al., 2013).

An ovary-intact rat model of perimenopause using the
chemical, VCD (Mayer et al., 2004; Lohff et al., 2005), has
been developed to accelerate the natural process of slow
follicular loss. Repeated daily dosing with VCD for 15 d
selectively destroys primordial and primary follicles in
ovaries of mice and rats by accelerating atresia processes
(Springer et al., 1996; Hu et al., 2001; Takai et al., 2003),
thus inducing precocious perimenopause/menopause.
The advantage of the VCD model over the surgically
induced menopausal model (OVX), is that in VCD model
ovarian steroids production do not ceases abruptly, as in
OVX model, and the residual ovarian tissue produces
androgens as in women. In addition, the time of OVX
differs substantially among the studies generating con-
flicting results and misleading conclusions. Lastly, repro-
ductive senescence in aging rodents seems to initiate
centrally and not in the ovary as opposed to women (Gore
et al., 2000; Kermath and Gore, 2012) therefore, aging
rodents are not a good model as well.

The optimal VCD dose was determined as 160 mg/kg
during 15 d (Mayer et al., 2004), and the subcutaneous
administration route has been described as less harmful
to the animals (Reis et al., 2014). This VCD dose was
described as toxic only to ovarian follicles when adminis-
trated to juvenile rats (one-month-old), while in older rats
(three-month-old), this same dose induced toxicity to
other organs besides ovaries (Frye et al., 2012). Moreover,
the administration of VCD at PND28 has the advantage to
dissociate the effects of follicular depletion from those of
aging by the time of the experiment when the rats are in
periestropause but still young (around three to four
months of age; Mayer et al., 2005; Van Kempen et al.,
2011). It is important to note that this advantage is at the
same time a limitation of the model. In one hand, the
model allows to isolate the effects of follicular depletion
from aging. In the other hand, the natural process of
follicular depletion progress in parallel with aging, thus the
resultant symptoms experienced during perimenopause
can also result from of the impact of follicular depletion
over aging and vice versa. Therefore, although ovary-
intact model of perimenopause induced by VCD exposure
in juvenile female rats is currently considered the model
that more closely approximates to the natural human
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progression to menopause (Van Kempen et al., 2011), the
interpretation of the results must be carefully addressed.

Experimental design

Peripubertal female rats at PND28 were injected daily
with VCD (Sigma-Aldrich) subcutaneously administered at
a dose of 160 mg/kg (128 mg/ml diluted in corn oil; 1.25
ml/kg body weight) for 15 d. Corn oil (O; 1.25 ml/kg of
body weight) was used in the control rats. Estrous cycle
was monitored from day 65-85 after the onset of VCD
treatment. Since the percentage of irregular cycle in our
colony is around 20% in both O + O and VCD + O
groups, only rats cycling regularly were used in the ex-
periment. Around 55-65 d after the first injection, pellets of
17B-estradiol (E) or O were implanted subcutaneously
(groups O + O; VCD + O; VCD + E). Rats O + O and VCD
+ O were decapitated between 75 and 85 d after the
onset of VCD/Oil treatment between 9:00 and 11:00 A.M.
of diestrus. VCD + E rats were decapitated exactly 21 d
after the onset of E therapy, regardless the phase of the
estrous cycle, at the same time of the day. Following
decapitation, trunk blood was collected for estradiol and
progesterone measurements, the brain was removed, and
the dorsal HPC and AMY were punched out to assess the
5-HT content by HPLC/ED and ERB and PR mRNA levels.
The DRN was dissected to analyze the ERB and PR
mRNA levels. Another set of rats under the same experi-
mental protocol was euthanized via perfusion for the im-
munohistochemical evaluation of TPH-positive cells in the
DRN Fig. 1.

Estrogen therapy

Sillastic capsules filled with 8-ul 17B-estradiol 50
mg/ml (Sigma; group VCD + E) or oil (groups O + O and
VCD + O) were subcutaneously implanted into the dorso-
lateral region of VCD/oil female rats under anesthesia (565
mg/kg ketamine, Agener; and 10 mg/kg xylazine, Coopers
of Brazil; s.c.). Pellets were prepared as described previ-
ously (Kiss et al., 2012). After surgery, the animals re-
ceived prophylactic antibiotic (Pentabiotico Fort Dodge;
0.2 ml/rat, i.m.) and antiinflammatory treatment (Bana-
mine, Schering-Plow; 2.5 mg/kg, s.c.).

Hormonal assays

Trunk blood from decapitation was collected into hep-
arinized tubes, and the plasma was stored frozen (-20°C)
for hormone assays. The plasma estradiol concentrations
were determined via an ELISA estradiol kit (EIA 26983;
DRG Instruments GmbH). The progesterone concentra-
tions were determined by radioimmunoassay (RIA) using
specific kits provided by MP Biomedicals. The intraassay
coefficients of variation were 4.7% and 3.6%, and the
lower limits of detection were 8.6 pg/ml and 0.02 ng/ml for
estradiol and progesterone, respectively. All samples
were measured in duplicate. To avoid interassay variation,
all samples from the same experiment were measured in
the same assay.

Brain microdissections
After decapitation, the brains were rapidly removed and
frozen at -70°C. Microdissections were obtained accord-
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Figure 1. Schematic diagram showing the timeline of the experimental protocol.

ing to Palkovits (1973). The HPC and AMY were micro-
dissected to assess the serotonin content, and DRN was
microdissected to analyze the ERB and PR mRNA expres-
sion. Thick coronal brain sections were cut in a cryostat at
-15°C. For the AMY and dorsal HPC, a 1500-um section
was obtained starting at approximately -1.92 mm from
bregma (Paxinos and Watson, 2007) and mounted onto
chilled glass slides for microdissection using the punch
technique (Palkovits, 1973). The AMY and dorsal HPC
were dissected with 1.5- and 1.0-mm diameter needles,
respectively. The DRN was dissected from one section of
1000 wm, from -7.2 mm from bregma (Paxinos and Wat-
son, 2007), in one punch of each side of the brain with a
0.7-mm diameter needle.

Serotonin content measurements (HPLC/ED)

The 5-HT content was determined by HPLC coupled to
an electrochemical detector. Briefly, microdissections of
the dorsal HPC and AMY were individually homogenized
in 100 wl of a solution that contained 0.15 M perchloric
acid, 0.1 mM EDTA and 380 nM isoproterenol (ISOP;
internal standard). Each homogenate was centrifuged at
15,700 X g (for 5 min at 4°C); the supernatants were
filtered through a 0.22 uM membrane (Durapore, Milli-
pore) and subsequently injected into an HPLC system
with an autoinjector (SIL-10ADVP; Shimadzu). The sepa-
ration was performed at 32°C in a reverse phase column
250 X 4 mm (Kinetex EVO C18, 5 um; Phenomenex),
preceded by a 4 X 4 mm precolumn (Kinetex EVO C18, 5
wm; Phenomenex). The mobile phase was composed of
75 mM sodium dihydrogen phosphate, 10 mM sodium
chloride, 25 uM EDTA, 1.7 mM sodium 1-octansulfonic
acid (Sigma-Aldrich), and 4% methanol (Merck Chemical
Inc.). The pH was adjusted to 3.0 with phosphoric acid.
The flow rate of the pump (LC-10ADVP; Shimadzu) was
0.8 ml/min, and the detector potential was 0.65 V (De-
cade; Antec). Each sample produced a chromatogram,
which was recorded and analyzed with the software
Class-VP (Shimadzu). 5-HT and ISOP were identified by
their peak retention time and quantified by an internal
standard method based on their peak height. All samples
of each brain area were processed in the same analysis to
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avoid interassay variation. In the dorsal HPC and AMY,
the intraassay variation was 6.1% and 5.0%, respectively.
For each sample, the 5-HT level was normalized to the
protein content and expressed as picograms per micro-
gram of protein (pg/ug).

Quantitative real-time PCR

Total RNA was isolated from the AMY and dorsal HPC
samples using TRIzol reagent (Invitrogen) according to the
manufacturer’s protocol. The RNA concentrations were
determined using a Nanodrop 2000c UV-Vis Spectropho-
tometer (Thermo Scientific). Quantitative real-time PCR
for ERB and PR were performed using a Step One Plus
real-time PCR system purchased from Applied Biosys-
tems. The TagMan Genes Expression Assay used in this
study was Rn00562610_m1 for ERB (gene symbol: Ers2)
and Rn01448227_m1 for PR (gene symbol: Pgr). Each
PCR reaction was performed in triplicate. Water (instead
of cDNA) was used as a negative control. The housekeep-
ing genes for normalizing ERB and PR expression in-
cluded B-actin (Rn00667869_m1). The determination of
the gene transcript levels in each sample was obtained by
the AACT method. For each sample, the threshold cycle
(Ct) was determined and normalized to the average of the
housekeeping gene (ACt = CtUnknown - CtHousekeeping
gene). The relative mMRNA level in the unknown sample rel-
ative to the calibrator group (O + O group) was calculated as
2°84Ct \where AACt = ACtUnknown - ACtCalibrator (Livak
and Schmittgen, 2001).

Perfusion and immunohistochemistry for TPH

Rats were deeply anesthetized with ketamine (ketamine
hydrochloride, Agner; 106 mg/kg) and xylazine (xilasina,
Coopazine, Coopers; 18.6 mg/kg) and transcardially per-
fused with PBS, followed by ice-cold 4% paraformalde-
hyde. Serial coronal sections of 30 um were cut in four
series that represented the antero-posterior length of the
DRN. The immunolabeling of TPH was performed on
free-floating sections 120 um apart. The sections were
rinsed at room temperature in 0.01 M PBS (pH 7.3, 3 X 10
min), incubated for 10 min in 1% hydrogen peroxide, and
rinsed again in 0.01 M PBS (5 X 10 min). The sections
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Figure 2. Effects of follicular depletion induced by VCD and chronic 17B-estradiol (E) treatment on estradiol (left panel) and
progesterone (right panel) plasma concentrations. Female rats at 28 d of age were subcutaneously injected with corn oil (O) or VCD
for 15 consecutive days. Fifty-five days after the first injection of VCD/oil, rats received a subcutaneous capsule that contained corn
oil (groups O + O and VCD + O) or 17B-estradiol (VCD + E). Rats were decapitated during the diestrous phase (O + O and VCD +
O groups) or 21 d after the onset of E therapy (VCD + E), from 75 to 85 d after the onset of VCD/oil administration, between 9:00 and
11:00 A.M. Data are presented as the mean = SEM. Significance was defined as p < 0.05. Different letters indicate significant

differences (n = 6-9).

were subsequently incubated for 60 min at room temper-
ature in PBS buffer that contained 1% BSA (Sigma Chem-
ical Co) to block non-specific binding. The sections were
incubated for 40 h at 4°C with sheep anti-TPH polyclonal
antibody (1:2000; Millipore) and then washed in 0.01 M
PBS (5 X 5 min) at room temperature. The sections were
subsequently incubated with the biotinylated rabbit anti-
sheep IgG (1:600; Vector Laboratories) for 1 h at room
temperature. Signal amplification was performed using an
avidin-biotin kit (1:100; Vector Laboratories) for 1 h at
room temperature. A solution of 25 mg/ml nickel sulfate,
0.2 mg/ml 3,3’-diaminobenzidine-HCI (DAB) and 0.03%
H,O, (Ni-DAB) diluted in 0.175 M sodium acetate was
used as the chromogen. The sections were mounted on
slides (Fisherbrand Superfrost Plus; Fisher Scientific)
treated with subbing solution (0.1% gelatin and 0.01%
chromium potassium sulfate), allowed to dry in the dark,
coverslipped with Entellan (Merck).

Microscopy

Brightfield imaging of TPH-ir neurons was performed
using a Zeiss Axioskope 2 plus microscope. The number
of TPH-ir neurons was quantified throughout the rostro-
caudal extent of the DRN from bregma —7.32 to —8.58
mm. The number of TPH-positive cells was analyzed at
three anatomic levels, rostral (—7.32 mm from bregma),
mid (—7.80 mm from bregma) and caudal (—8.5 mm from
bregma), each of which was divided into three subre-
gions, including lateral, dorsal, and ventral regions, as
previously described (Kunimura et al., 2015). Two sec-
tions from each level per animal were analyzed. The sub-
sectional analyses of the DRN were performed on the
basis of neuroanatomical data showing differential pro-
jection from distinct subregions of the DRN to a number of
brain areas (Lowry, 2002; Michelsen et al., 2007). Digital
images were subsequently converted to a tagged image
file format and imported into Adobe Photoshop (Adobe
Photoshop Lightroom, version 5.3; Adobe Systems, Inc.),

January/February 2018, 5(1) e0247-17.2017

in which the color balance was generally adjusted for
presentation.

Statistical analysis

Except for gene expression, all comparisons were per-
formed using one-way ANOVA followed by Newman-—
Keuls post hoc test. For gene expression, the comparison
was performed in relation to the control group (O + O
group) using one-way ANOVA followed by Fisher’s LSD
test. Data are presented as the mean = SEM. Significance
was accepted at p = 0.05. All statistical analyses and
graphs were performed using GraphPad Prism software
(GraphPad Software).

Results

The estradiol levels in the VCD + O group did not vary
compared with the O + O group. As expected, after 21 d
of 17B-estradiol therapy, the estradiol plasma concentra-
tions were significantly higher in the VCD + E animals
than the other groups (Fig. 2, left panel; p < 0.001). In the
VCD + O rats, plasma progesterone concentrations were
significantly lower than in the O + O group (p < 0.001),
and estradiol treatment restored it to the control levels
(Fig. 2, right panel).

In the DRN, the PR mRNA expression in the VCD + O
was lower than the control rats (p = 0.0156), and this
effect was not reversed by estradiol treatment (Fig. 3, left
panel). Similarly, the rats in periestropause also expressed
less mMRNA for ERB (p = 0.0409); however, estradiol
treatment was effective in reversing this effect (Fig. 3, right
panel). As expected, immunoreactive TPH cells were
identified throughout the rostral-caudal length of the DRN
from bregma —7.32 to —8.5 mm (Fig. 4A-C). The overall
effect on TPH-positive cells in the entire DRN showed a
decreased number of TPH-positive cells/section in VCD-
treated animals compared to the control (p = 0.0062) that
was partially restored by estradiol therapy (O + O 119.3 =
12.48; VCD + 0 67.73 = 9.107; VCD + E 90.63 = 11.23;
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Figure 3. Effects of follicular depletion induced by VCD and chronic 17 3-estradiol (E) administration on the relative mRNA expression
of PR (left panel) and ERp (right panel) in the DRN. Female rats at 28 d of age were subcutaneously injected with corn oil (O) or VCD
for 15 consecutive days. Fifty-five days after the first injection of VCD/oil, rats received a subcutaneous capsule that contained corn
oil (groups O + O and VCD + O) or 17B-estradiol (VCD + E). Rats were decapitated during the diestrous phase (O + O and VCD +
O groups) or 21 d after the onset of E therapy (VCD + E), from 75 to 85 d after the onset of VCD/oil administration, between 9:00 and
11:00 A.M. (n = 6-9). Data are presented as the mean = SEM. Significance was accepted at p < 0.05.

Table 1). The number of TPH-positive cells was also
analyzed separately at three anatomic levels, rostral, mid,
and caudal, each of which was divided into three subre-
gions, including the lateral, dorsal, and ventral regions
(Fig. 4A-C). At the rostral part (Fig. 4, top bargraph panel),
the number of TPH-positive cells in the VCD + O group
was lower than in the O + O group in the lateral and
ventral parts of the DRN (p < 0.05). Estradiol therapy
(VCD + E) was able to restore the number of TPH-positive
cells only in the ventral subregion (o < 0.001). On the
other hand, estradiol effect on rostral-ventral subregion
was not sufficient to reestablish the total amount of TPH-
positive cells identified in the O + O group. At the mid-
level (Fig. 4, mid bargraph panel), the number of TPH-
positive cells in the VCD + O group was lower than in the
O + O group in all subregions (p < 0.05) and estradiol
therapy was able to restore the number of TPH-positive
cells only in the lateral subregion (p < 0.05). Overall,
estradiol treatment appeared to be ineffective in restoring
the number of TPH cells at the mid-level of the DRN as
demonstrated by the comparison of the total number of
TPH-positive cells in the VCD + E group versus the VCD
+ O group. At the caudal level (Fig. 4, lower bargraph
panel), the lateral subregion was not affected by VCD and
estradiol therapy. On the other hand, the number of TPH-
positive cells was substantially decreased in the VCD + O
group in the dorsal and ventral subregions (p < 0.05 and
p < 0.001, respectively); estradiol therapy was effective in
reverting this effect in both subregions when analyzed
individually (p < 0.05 for caudal dorsal and p < 0.001 for
caudal-ventral subregions), as well as in the entire caudal
level of the DRN when all subregions were analyzed col-
lectively (total; p < 0.001).

In the AMY and dorsal HPC, the levels of PR mRNA
remained unaltered in all groups (Fig. 5A,D, respectively).
The levels of ERB mRNA in the dorsal HPC was higher in
the VCD + E group than the O + O and VCD + O groups
(Fig. 5E; p = 0.0012), while in AMY, the levels of ERf
mRNA remained unaltered in all groups (Fig. 5B). Regard-
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ing 5-HT, the VCD + O rats exhibited decreased 5-HT in
both areas, dorsal HPC (Fig. 5F; p < 0.05) and AMY (Fig.
5C; p < 0.05). However, estradiol therapy was effective in
restoring 5-HT levels only in the dorsal HPC (Fig. 5F; p <
0.05 vs O + O and VCD + O groups). The data are
summarized in Table 1, and the statistical analyses shown
in detail in Table 2.

Discussion

The current clinical practice to ameliorate perimeno-
pausal symptoms relies on the use of estradiol therapy,
although perimenopausal women are not estradiol defi-
cient. The present study contributes to the understanding
of this paradox by providing evidence that estradiol ther-
apy appears to improve perimenopause symptoms, at
least in part, by increasing the biosynthesis of progester-
one and boosting the serotonin pathway from the caudal
DRN to the dorsal HPC potentially through an increment
in ERB expression in the DRN. The ability to upregulate
ERPB expression appears to be the estradiol key function
to rectify the impairments in the serotonergic system
induced by ovarian follicle depletion.

In the perimenopause animal model induced by VCD,
we have recently shown that the ovarian hormones
changes are similar to those exhibited by women in peri-
menopause, i.e., estradiol plasma concentrations remain
unchanged, whereas progesterone plasma concentra-
tions are low (Reis et al., 2014). These data were con-
firmed in the present study, which indicated no changes in
the estradiol levels and low levels of progesterone in
periestropausal rats. The increased levels of estradiol in
the estradiol-treated rats confirm the efficiency of treat-
ment. Thus, since estradiol levels remain normal, many of
the symptoms experienced by women during perimeno-
pause might be ascribed to the low levels of progester-
one. However, if estradiol therapy is initiated before the
establishment of menopause, symptoms, such as hot
flashes and mood disorders, are reduced (Wiklund et al.,
1993; Morgan et al., 2007), which indicates that important
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Figure 4. Effect of follicular depletion induced by VCD and chronic 17 3-estradiol (E) administration on TPH immunoreactivity in the
DRN. Representative photomicrographies (10X) of coronal sections of the DRN immunostained for TPH in rostral (A; -7.32 mm from
bregma), mid (B; -7.80 mm from bregma), and caudal (C; -8.28 mm from bregma) sections of the DRN. Dotted boxes indicate the
lateral (L), dorsal (D), and ventral (V) subregions at each level of the DRN. Ag, aqueduct. Scale bar: 50 um. Bargraphs show the number
of TPH-positive cells per section in the rostral (top panel), mid (mid panel), and caudal (lower panel) sections of the DRN. Female rats

January/February 2018, 5(1) e0247-17.2017 eNeuro.org



eMeuro

New Research 8 of 15

continued

at 28 d of age were subcutaneously injected with corn oil (O) or VCD for 15 consecutive days. Fifty-five days after the first injection
of VCD/oil, rats received a subcutaneous capsule that contained corn oil (groups O + O and VCD + O) or 17g-estradiol (VCD + E).
Rats were perfused during the diestrous phase (O + O and VCD + O groups) or 21 d after the onset of E therapy (VCD + E), from
75 to 85 d after the onset of VCD/oil administration, between 9:00 and 11:00 A.M. These photomicrographies represent sections of
a O + O rat. Data are presented as the mean = SEM. Significance was accepted at p < 0.05. Different letters indicate significant

differences (n = 4-6).

changes in the brain biochemistry may occur as a result of
ovarian senescence and estradiol signaling in the brain is
somehow impaired. In this prism, the neurocircuitry re-
sponsive to estradiol becomes refractory, and exogenous
estradiol would be necessary to reestablish the normal
function.

Because progesterone levels were restored in response to
estradiol therapy in periestropausal rats, it is reasonable to
suppose that some of the estradiol beneficial effects appear
to occur by adjusting progesterone levels. The mechanisms
by which estradiol increases progesterone remain unclear;
however, it has been shown that estradiol can modify ste-
roidogenesis in the ovaries. In female rats, estradiol in-
creases the activity of the enzyme 3-B-hydroxysteroid
dehydrogenase-isomerase (3-BHSD) that catalyzes the con-
version of pregnenolone to progesterone and reduces the
activity of the enzyme 17-hydroxylase (17-OH), which
cleaves progesterone to 17-OH-progesterone (Munabi et al.,
1983). Thus, by increasing synthesis and decreasing catab-
olism of progesterone, estradiol may induce an increase in
the plasma progesterone concentrations. In addition, the
production of progesterone in a hypothalamic astrocyte cul-
ture is also increased by estradiol (Micevych et al., 2008).
Therefore, the peripheral and central progesterone may be
increased in VCD rats treated with estradiol therapy.

Recent studies have established a relationship between
perimenopausal symptoms and neuroprogestins, such as
allopregnanolone (ALLO), a progesterone metabolite,
which exerts anxiolytic effects by acting as an agonist on
the GABA, (Lovick, 2006). Thus, it is possible that the
beneficial effects of estradiol therapy during postmeno-
pause occur through ALLO and progesterone. In accor-
dance, low progesterone levels have been associated
with mood swings that occur not only in perimenopause
but also premenstrual syndrome and postpartum depres-

Table 1. Summary of estradiol therapy effects in the peri-
menopausal rat model

Parameters VCD + O VCD + E
Estradiol plasma concentration, pg/ml
Progesterone plasma concentration, ng/ml
PR mRNA levels in DRN, arbitrary units
ERB mRNA levels in DRN, arbitrary units
Number of TPH-ir cells in total DRN

PR mRNA levels in AMY, arbitrary units
ERB mRNA levels in AMY, arbitrary units
5-HT content in AMY, pg/ug protein

PR mRNA levels in HPC, arbitrary units
ERB mRNA levels in HPC, arbitrary units
5-HT content in HPC, pg/ug protein !

=1l I «—<—<—< 1
<=1 —

=1 <1l

All parameters were evaluated in the VCD + O and VCD + E groups in rela-
tion to the control (O + O).
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sion (Angst et al., 2001; Lovick, 2012; Lovick et al., 2017).
Animal data have shown that progesterone reduces both
anxiety and depressive behaviors in rodents (Mora et al.,
1996; Walf et al., 2004; Frye, 2011), and as luteal proges-
terone drops during diestrus, rats exhibit anxiety-like be-
haviors, which are enhanced during periestropause (Reis
et al.,, 2014). Altogether, these data suggest that low
progesterone or increased estradiol to progesterone ratio
might be involved in the development of some psycho-
logical symptoms in perimenopausal women.

As one of the major actions of estradiol is to induce PR
expression in many regions of the CNS, including seroto-
nergic neurons (MacLusky and McEwen, 1978; Bethea,
1994; Alves et al., 2000; Helena et al., 2009; Furuta et al.,
2010) we hypothesized that estradiol could increase PR
expression in the DRN because the effects of estradiol on
the regulation of affective disorders appear to be, in part,
through the serotonergic system. However, we have not
found an increase on PR mRNA levels in any of the brain
area evaluated in the present study. There are some
important differences in our study in relation to previous
works that might be generating conflicting results. Our
results from periestropausal rats may be different from
those of ovariectomized animals since their hormonal
profile are different (Frye et al., 2012). Moreover, VCD-
treated rats are still cycling, and it is known that PR
regulation changes according to the phase of estrous
cycle (Guerra-Araiza et al., 2000; Sa and Fonseca, 2017).
In addition, PR regulation by estradiol changes with the
reproductive status, region of the brain and age (Quadros
and Wagner, 2008; Grieb et al., 2017). Finally, since it was
shown that PR expression in response to estradiol is
attenuated in old female rats compared to young rats
(Furuta et al., 2010), we may hypothesize that the low PR
expression in the periestropausal rats even with normal
levels of estradiol represent a decrease on serotonergic
neurons sensitivity to positive estradiol action, consistent
with reproductive aging.

It has been postulated that ERa signaling is closely
related to reproductive function, whereas ERB signaling is
relevant for non-reproductive functions, such as learning,
memory and affective behavior (Rissman et al., 2002;
Walf, 2010). In the DRN, ERpB is the predominant ER
isoform, wherein 90% of the ERB-ir neurons co-express
TPH (Mitra et al., 2003; Nomura et al., 2005; Suzuki et al.,
2013). Therefore, we investigated the expression of ERB
mRNA in the DRN of periestropausal rats. Our data
showed that these rats exhibit lower expression of ERB
mRNA in the DRN compared with the control rats. Al-
though there are no data regarding ERB in perimeno-
pause, it has been shown in mice and rats that there is a
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Figure 5. Effects of follicular depletion induced by VCD and chronic 17-estradiol (E) administration on PR and ERB mRNA levels and
5-HT content in the AMY (A-C) and dorsal HPC (D-F). Female rats at 28 d of age were subcutaneously injected with corn oil (O) or
VCD for 15 consecutive days. Fifty-five days after the first injection of VCD/oil, rats received a subcutaneous capsule that contained
corn oil (groups O + O and VCD + O) or 17B-estradiol (VCD + E). Rats were decapitated during the diestrous phase (O + O and VCD
+ O groups) or 21 d after the onset of E therapy (VCD + E), from 75 to 85 d after the onset of VCD/oil administration, between 9:00
and 11:00 A.M. Data are presented as the mean = SEM. Significance was accepted at p < 0.05. Different letters indicate significant

differences (n = 6-9).

generalized age-related decrease in the ERp levels in the
cerebral cortex, HPC, olfactory bulb, AMY, and raphe
nucleus, as well as other areas (Mehra et al., 2005;
Sharma and Thakur, 2006; Yamaguchi-Shima and Yuri,
2007). However, in these studies, the comparison was
made between young and middle-aged or old females,
which makes it difficult to distinguish whether this de-
crease in ERB is a result of aging or ovarian senescence.
In contrast, in the present study, all rats were around four
months old; thus, the aging factor can be excluded. More-
over, it has been shown that ovariectomy induces a de-

January/February 2018, 5(1) e0247-17.2017

crease in ERB-positive cells in the DRN, which is reversed
by an ERB agonist (Suzuki et al., 2013). Our data indicated
that the decrease of ERB mRNA in the DRN of periestro-
pausal rats was reversed by estradiol. This upregulation of
ERp induced by estradiol appears to be exerted through
ERp activation, because it has been shown that the se-
lective ERB agonist LY3201 increases ERB expression in
the DRN (Suzuki et al., 2013). It is well established that
estradiol activation of ERB signaling exerts antidepressant
effects as a result of its excitatory actions on serotonergic
neurons, which include increasing serotonin synthesis in
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Table 2. Statistical analyses performed in all experiments
Figure Data structure Type of test Statistical results
2, left panel Normal distribution Ordinary one-way ANOVA Fo,18 = 10.06 /p = 0.0012
Newman-Keuls post hoc test
0+0 vs VCD+0O p > 0.05
O+0 vs VCD+E p < 0.001
VCD+O vs VCD+E p < 0.001
2, right panel Normal distribution Ordinary one-way ANOVA Fio04y = 7.237 /p = 0.0035
Newman-Keuls post hoc test
0+0 vs VCD+0O p < 0.05
O+0 vs VCD+E p > 0.05
VCD+O vs VCD+E p < 0.001
3, left panel Normal distribution Ordinary one-way ANOVA Fo15 = 6.742 /p = 0.0082
Fisher’s LSD 95.00% ClI
post hoc test
O+0 vs VCD+O 0.0873 to 0.712 /p = 0.0156
O+0 vs VCD+E 0.1827 to 0.757 /p = 0.0033
3, right panel Normal distribution Ordinary one-way ANOVA Fo16) = 4.921 /p = 0.0216
Fisher’s LSD 95.00% ClI
post hoc test
O+0 vs VCD+O 0.0179 to 0.751 /p = 0.0409
O+0 vs VCD+E -0.485 to0 0.184 /p = 0.3540
4A Normal distribution Ordinary one-way ANOVA
Newman-Keuls post hoc test
Rostral-lateral DRN F14) = 4.363 /p = 0.0337
0+0 vs VCD+0O p < 0.05
O+0 vs VCD+E p > 0.05
VCD+O vs VCD+E p > 0.05
Rostral-dorsal DRN Fo13 = 1.445 /p = 0.2712
O+0 vs VCD+O p > 0.05
0+0 vs VCD+E p > 0.05
VCD+O vs VCD+E p > 0.05
Rostral-Ventral DRN Fo1s = 7.104 /p = 0.0068
O+0 vs VCD+0O p < 0.05
O+0 vs VCD+E p > 0.05
VCD+O vs VCD+E p < 0.001
Rostral-Total DRN F15 = 6.304 /p = 0.0103
0+0 vs VCD+0O p < 0.001
O+0 vs VCD+E p < 0.05
VCD+O vs VCD+E p > 0.05
4B Normal distribution Ordinary one-way ANOVA
Newman-Keuls post hoc test
Mid-lateral DRN F213 = 5.039 /p = 0.0240
0+0 vs VCD+0O p < 0.05
O+0 vs VCD+E p > 0.05
VCD+0 vs VCD+E p < 0.05
Mid-dorsal DRN Fo1s = 4.992 /p = 0.0218
0+0 vs VCD+0O p < 0.05
O+0 vs VCD+E p < 0.05
VCD+O vs VCD+E p > 0.05
MidI-Ventral DRN Flo14) = 7.030 /p = 0.0077
O+0 vs VCD+O p < 0.001
0+0 vs VCD+E p < 0.05
VCD+O vs VCD+E p > 0.05
Mid-Total DRN Fo14 = 13.30 /p = 0.0006
0+0 vs VCD+0O p < 0.0001
O+0 vs VCD+E p < 0.001
VCD+O0 vs VCD+E p > 0.05

(Continued)

the DRN (Lu et al., 1999; Bethea et al., 2000; Gundlah
et al., 2005; Hiroi et al., 2006) and decreasing serotonin
degradation by inhibiting monoamino-oxidase activity,
thus increasing serotonin availability in the synaptic clefts
(Luine and Rhodes, 1983; Ortega-Corona et al., 1994;
Smith et al., 2004; Gundlah et al., 2005; Osterlund, 2010).

January/February 2018, 5(1) e0247-17.2017

These actions and the increase in the firing rate of DRN
neurons (Robichaud and Debonnel, 2005) induced by
estradiol appear to be, at least in part, a result of the up
regulation of ERB. Thus, in addition to the low progester-
one levels, the decrease in estradiol signaling through
ERB in the DRN may account for the development of
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Table 2. Continued
Figure Data structure Type of test Statistical results
4C Normal distribution Ordinary one-way ANOVA
Newman-Keuls post hoc test
Caudal-lateral DRN F,11) = 0.994 p = 0.4009
O+0 vs VCD+0O p > 0.05
O0+0O vs VCD+E p > 0.05
VCD+0 vs VCD+E p > 0.05
Caudal-dorsal DRN F.10) = 3.956 /p = 0.05
0+0 vs VCD+0O p < 0.05
O+0 vs VCD+E p > 0.05
VCD+0 vs VCD+E p < 0.05
Caudal-Ventral DRN Fo11) = 12.61 /p = 0.0014
O+0 vs VCD+O p < 0.001
0+0 vs VCD+E p > 0.05
VCD+0 vs VCD+E p < 0.001
Caudal-Total DRN Fo.9 = 9.990 /p = 0.0052
O0+0 vs VCD+0O p < 0.001
O0+0 vs VCD+E p > 0.05
VCD+0 vs VCD+E p < 0.05
5A Normal distribution Ordinary one-way ANOVA Foog = 1.172 /p = 0.3276
Fisher’s LSD post hoc test 95.00% Cl
O+0 vs VCD+0O -0.164 to 0.5585 /p = 0.3476
O+0 vs VCD+E -0.1589 to 0.5858 /p = 0.3157
5B Normal distribution Ordinary one-way ANOVA F21) = 0.8078 /p = 0.4592
Fisher’s LSD post hoc test 95.00% Cl
O0+0vs VCD+O -1.125 to 0.4039 /p = 0.4415
O+0 vs VCD+E -0.7755 to 0.7531 /p = 0.9991
5C Normal distribution Ordinary one-way ANOVA Flo.00) = 9.697 /p = 0.0011
Newman-Keuls post hoc test
O+0 vs VCD+O p < 0.001
O+0 vs VCD+E p < 0.0001
VCD+O0 vs VCD+E p > 0.05
5D Normal distribution Ordinary one-way ANOVA Fo01) = 0.2073 /p = 0.8144
Fisher’s LSD post hoc test 95.00% Cl
O+0 vs VCD+0O -0.4267 to 0.3285 /p = 0.9333
O+0 vs VCD+E -0.3241 to 0.431 /p = 0.9216
5E Normal distribution Ordinary one-way ANOVA Fo16 = 10.95 /p = 0.0010
Fisher’s LSD post hoc test 95.00% Cl
O+0 vs VCD+O -0.6103 to 0.3933 /p = 0.8228
O+0 vs VCD+E -1.433 to -0.3916 /p = 0.0012
5F Normal distribution Ordinary one-way ANOVA Fio1e = 4.797 /p = 0.0233
Newman-Keuls post hoc test
0+0 vs VCD+0O p < 0.05
O+0 vs VCD+E p > 0.05
VCD+0 vs VCD+E p < 0.05

some perimenopausal symptoms. The DRN is composed
of distinct subregions that project to different sites of the
brain to control in an independent, yet integrative manner
different physiologic and behavioral processes (Graeff
et al., 1996). In the present study, most subregions in the
rostral, mid, and caudal DRN of periestropausal rats ex-
hibited a reduced number of TPH-ir neurons associated
with the decrease in the ERB mRNA levels in this nucleus.
Nevertheless, estradiol therapy was able to selectively in-
crease the number of TPH-ir neurons only in a few subre-
gions of the DRN related to the control of stress-related
brain areas and emotional behaviors, such as the rostral-
ventral DRN, the mid-lateral DRN and caudal dorsal-ventral
DRN. It is not possible to correlate with certainty functional
properties based only in the topographical distribution of
serotonergic neurons within the nucleus. However, electro-
physiological studies in behaving animals have provided
important findings that indicate functional specialization of
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topographically organized subpopulations of serotonergic
neurons (for review, see Lowry, 2002). The physiologic rele-
vance of the increase of TPH-ir cells induced by estradiol in
the mid-lateral DRN is unclear. However, it has been shown
that the lateral wings of the mid DRN send projections to the
arcuate and ventromedial nuclei of the hypothalamus and
the lateral and ventral posterior nuclei of the thalamus and
may be involved in the regulation of many physiologic pro-
cesses (Monti, 2010).

The HPC and the AMY are the main limbic structures
targeted by DRN efferent projections. The mid-dorsal
DRN sends out collaterals to the basolateral and central
AMY (Lowry, 2002), potentially to regulate anxiety-related
behavior. The subregion analyses of the DRN revealed
genuine topographical differences on serotonergic re-
sponse to estradiol. It has been shown previously that
distinct subregions of the DRN projects to different target
areas in the brain (Michelsen et al., 2007). Together, the
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differential projections and responsiveness to estradiol
may explain many of the paradoxical effects of estradiol in
the brain. The sole analysis of estradiol effect in total DRN
seems to cover estradiol selective modulation of DRN
serotonergic neurons. The mechanism by which estradiol
selectively upregulates the number of serotonergic neu-
rons in DRN subregions is unknown. However, the exis-
tence of subpopulations of serotonergic neurons that
differ in morphology, phenotype and receptor type war-
rants further investigation.

In periestropausal rats, TPH-ir neurons were reduced in
the mid-dorsal DRN in association with a reduction in the
serotonin content in the AMY. Estradiol therapy was un-
able to restore the number of TPH-ir neurons in the mid-
dorsal DRN or the serotonin content in the AMY. Because
no changes were identified in the expression of PR and
ERB, the mid-dorsal DRN/AMY serotonergic circuit ap-
pears to be regulated by a factor other than directly by the
ovarian steroids.

The serotonergic fibers that originate from the caudal
DRN, close to the midline, innervate the HPC (Michelsen
et al., 2007). In periestropausal rats, the decreased num-
ber of TPH-ir neurons in the dorsal and ventral subregions
of the caudal DRN may explain the lower content of
serotonin in the HPC. In accordance, estradiol treatment
restored the number of TPH-ir neurons in the caudal DRN
in association with the recovery of the serotonin content in
the HPC. The HPC is more closely related to depression,
whereas the AMY is related to anxiety (Graeff et al., 1996);
suggesting a possible pathway by which estradiol therapy
to perimenopausal women could be beneficial to treat
depression. Accordingly, it has been shown that the ad-
ministration of ER antagonists to the HPC, but not the
AMY, increase anxiety and depression-like behaviors in
rodents, which suggests that ERs in the HPC are a critical
site for estradiol antianxiety and antidepressant-like ef-
fects (for review, see Walf and Frye, 2007). Furthermore,
the antidepressant effects of estradiol on serotonergic
neurotransmission and depressive behavior appear to be
mediated preferentially via ERB. For example, selective
agonists for ERB, but not ER«, produced antidepressant
effects, such as decreased immobility and increased
struggling and swimming in the forced swim test in rats
(Walf et al., 2004; Rocha et al., 2005; Clark et al., 2012;
Bansal and Chopra, 2015; Bastos et al., 2015; Benman-
sour et al., 2016). In addition, the antidepressant activity
of estradiol has been shown to be absent in knockout
mice for ERB (Rocha et al., 2005). Moreover, recent re-
ports have demonstrated that female mice lacking ERB
leads to dysregulation of brain-derived neurotrophic fac-
tor and serotonin signaling and decrease synaptic plas-
ticity in the HPC, which could predispose the brain to a
state of depression (Chhibber et al., 2017). Likewise, ERB-
selective ligand reduces depressive-like behavior in ovari-
ectomized mice (Sasayama et al., 2017).

In the present study, the PR and ERB mRNA levels in
the HPC of periestropausal rats are identical to the control
rats; nevertheless, estradiol therapy increased the levels
of ERB but not PR mRNA. The upregulation of ERB ex-
pression in the DRN and HPC appears to be the mecha-
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nism by which estradiol therapy improves psychological
symptoms in perimenopausal women that are not estra-
diol deficient. For example, it has been shown that estra-
diol therapy increases the serotonin turnover rate in the
HPC of adult female rats (Kiss et al.,, 2012), and the
administration of DPN, a selective agonist for ERB, into
this area decreases anxiety and depressive behaviors of
ovariectomized rats (Walf and Frye, 2007). Interestingly,
the intracellular effects of DPN in rat HPC neurons are
similar to those obtained following treatment with sertra-
line, a widely used inhibitor of serotonin reuptake (Ben-
mansour et al., 2016). Finally, it has also been shown that
local application of DPN into the HPC induces slowing of
5-HT clearance, whereas an ERa agonist blocks the flu-
voxamine inhibitory effect on 5-HT clearance (Benman-
sour et al., 2012); these findings suggest that estradiol
may operate as an antidepressive through the activation
of ERB within the DRN to increase the serotonergic output
to the HPC and/or directly via the activation of ERB within
the HPC.

In conclusion, our data provide novel neuroendocrine
insights into the understanding of the positive effect of
estradiol therapy on perimenopausal symptoms in nor-
moestrogenic perimenopausal women. We have shown
that periestropausal rats display low progesterone plasma
levels and a reduced number of serotonin neurons and
ERB mRNA levels in the DRN, as well as a reduced
serotonin content in the AMY and HPC. The positive
effects of estradiol therapy during perimenopause appear
to result, at least in part, from the increase in peripheral
progesterone biosynthesis in association with an upregu-
lation of ERpB in the DRN and dorsal HPC that appears to
potentiate the DRN/dorsal HPC serotonergic circuit.
Therefore, the development of new therapies to target
ERB may be an alternative to obtain the positive effects of
estradiol action while eliminating the side effects of estra-
diol therapies that typically result from ER« activation.
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