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Abstract

Next generation sequencing (NGS) has enabled high throughput discovery of somatic mutations. Detection depends on
experimental design, lab platforms, parameters and analysis algorithms. However, NGS-based somatic mutation detection is
prone to erroneous calls, with reported validation rates near 54% and congruence between algorithms less than 50%. Here,
we developed an algorithm to assign a single statistic, a false discovery rate (FDR), to each somatic mutation identified by
NGS. This FDR confidence value accurately discriminates true mutations from erroneous calls. Using sequencing data
generated from triplicate exome profiling of C57BL/6 mice and B16-F10 melanoma cells, we used the existing algorithms
GATK, SAMtools and SomaticSNiPer to identify somatic mutations. For each identified mutation, our algorithm assigned an
FDR. We selected 139 mutations for validation, including 50 somatic mutations assigned a low FDR (high confidence) and 44
mutations assigned a high FDR (low confidence). All of the high confidence somatic mutations validated (50 of 50), none of
the 44 low confidence somatic mutations validated, and 15 of 45 mutations with an intermediate FDR validated.
Furthermore, the assignment of a single FDR to individual mutations enables statistical comparisons of lab and computation
methodologies, including ROC curves and AUC metrics. Using the HiSeq 2000, single end 50 nt reads from replicates
generate the highest confidence somatic mutation call set.

Citation: Löwer M, Renard BY, de Graaf J, Wagner M, Paret C, et al. (2012) Confidence-based Somatic Mutation Evaluation and Prioritization. PLoS Comput
Biol 8(9): e1002714. doi:10.1371/journal.pcbi.1002714

Editor: Scott Markel, Accelrys, United States of America

Received March 16, 2012; Accepted August 18, 2012; Published September 27, 2012
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Introduction

Next generation sequencing (NGS) has revolutionized our

ability to determine genomes and compare, for example, tumor to

normal cells to identify somatic mutations. However, the platform

is not error free and various experimental and algorithmic factors

contribute to the false positive rate when identifying somatic

mutations [1]. Indeed, recent studies report validation rates of

54% [2]. Error sources include PCR artifacts, biases in priming

[3,4] and targeted enrichment [5], sequence effects [6], base

calling causing sequence errors [7], variations in coverage, and

uncertainties in read alignments [8], such as around insertions and

deletions (indels) [9]. Reflecting the rapid development of bench

and computational methods, algorithms to identify somatic

mutations from NGS data are still evolving rapidly. Remarkably,

the congruence of identified mutations between current algorithms

is less than 50% (below).

Given the large discrepancies, one is left wondering which

mutations to select, such as for clinical decision making or ranking

for follow-up experiments. Ideal would be a statistical value, such

as a p-value, indicating the confidence of each mutation call. Error

sources have been addressed by examining bulk sets of mutations,

such as computational methods to measure the expected amount

of false positive mutation calls utilizing the transition/transversion

ratio of a set of variations [10,11], machine learning [12] and

inheritance errors when working with family genomes [13] or

pooled samples [14,15]. Druley et al. [13] optimized variation calls

using short plasmid sequence fragments for optimization. The

accuracy of calling germline variations, i.e. single nucleotide

polymorphisms (SNPs), has been addressed by validating SNPs

using other techniques such as genotyping microarrays [15]. Thus,

these methods enable a comparison of methods to identify and

characterize error sources, but they do not assign a ranking score

to individual mutation.

Several NGS mutation identification algorithms do output

multiple parameters for each mutation call, such as coverage,

genotype quality and consensus quality. However, it is not clear if

and how to interpret these metrics with regards to whether a

mutation call is correct. Furthermore, multiple parameters are

generated for each mutation call and thus one simply cannot rank

or prioritize mutations using the values. Instead, researchers often

rely on personal experience and arbitrary filtering thresholds to
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select mutations. In summary, a) there is a low level of congruence

between somatic mutations identified by different algorithms and

sequencing platforms and b) no method to assign a single accuracy

estimate to individual mutations.

Here, we develop a methodology to assign a confidence value -

a false discovery rate (FDR) - to individual identified mutations.

This algorithm does not identify mutations but rather estimates the

accuracy of each mutation. The method is applicable both to the

selection and prioritization of mutations and to the development of

algorithms and methods. Using Illumina HiSeq reads and the

algorithms GATK, SAMtools and SomaticSNiPer, we identified

4,078 somatic mutations in B16 melanoma cells. We assigned a

FDR to each mutation and show that 50 of 50 mutations with low

FDR (high confidence) validated while 0 of 44 with high FDR (low

confidence) validated.

Results

Somatic mutation discovery involves the determination and

comparison of two genomes: the ‘‘normal’’ germline genome from

non-cancerous cells and the tumor genome. If one, however,

sequences one sample multiple times, such as the normal genome,

and then compares the replicates, one should identify no

differences. Thus, any mutation detected in this ‘‘same versus

same comparison’’ is a false positive. These can be generated

during sample extraction, sample preparation, amplification and

library construction, NGS sequencing and data analysis.

To determine the false discovery rate (FDR) for each somatic

mutation detected in a tumor sample relative to a normal sample

(‘‘tumor versus normal comparison’’), we first define and assign a

quality score Q to each identified mutation. Then, we count the

number of ‘‘same versus same’’ mutations (false positives) at the same

or greater quality score (Figure 1a) and convert this number of false

positives into a FDR. In summary, the use of a single quality score

and a ‘‘same versus same’’ mutation profile allow us to determine the

FDR as a function of Q and assign an FDR to each mutation.

Figure 1b shows examples of variations found in sequences

reads from B16F10 (B16) melanoma cells and the reference

C57BL/6 (black6) mice. The variations include a somatic

mutation found only in the tumor cells (left), a SNP found in

both the black6 mice and B16 cells (middle) and probable false

positive (right). We associate each mutation with a single quality

score, the FDR, which defines the likelihood that the mutation call

is inaccurate. Using the FDR, we plot receiver operating

characteristic (ROC) curves and determine the corresponding

area under curve (AUC) metric to compare the performance of

different protocols and algorithms (Figure 1c).

Mutation discovery
To discover mutations, DNA from tail tissue of three black6 mice,

all litter mates, and DNA from three B16 melanoma samples, was

extracted and exon-encoding sequences were captured, resulting in

six samples. RNA was extracted from B16 cells in triplicate. Single

end 50 nt (1650 nt) and paired end 100 nt (26100 nt) reads were

generated on an Illumina HiSeq 2000 (Supplementary Table S1 in

Text S1). Each sample was sequenced on an individual lane,

resulting in an average of 104 million reads per lane. DNA reads

were aligned to the mouse reference genome using the Burrows-

Wheeler Alignment Tool (bwa) [16] and RNA reads were aligned

with bowtie [17]. Using the 1650 nt reads, 97% of the targeted

nucleotides were covered at least once, the mean/median targeted

nucleotide coverage was 386/306 and 70–73% of target nucleo-

tides had 206or higher coverage. Using the 26100 nt reads, 98%

of the targeted nucleotides were covered at least once, the mean/

median targeted nucleotide coverage the was 1656/1336and 97%

of target nucleotides had 206coverage.

Somatic mutations were independently identified using the

software packages SAMtools [18], GATK [11] and SomaticSNi-

Per [19] (Figure 2) by comparing the single nucleotide variations

found in B16 samples to the corresponding loci in the black6

samples (B16 cells were originally derived from a black6 mouse).

The potential mutations were filtered according to recommenda-

tions from the respective software tools (SAMtools and GATK) or

by selecting an appropriate threshold for the somatic score of

SomaticSNiPer (Methods). Considering only those mutations

found in all tumor-normal pairings, the union of B16 somatic

mutations identified by the three algorithms was 4,078 (Figure 3a).

However, substantial differences between the sets of mutations

identified by each program exist, even when considering those

mutations found in all tumor-normal pairings (Figure 3a). While

1,355 mutations are identified by all three programs (33% of

4,078), the agreement between results is low. Of the 2,484

mutations identified by GATK, only 1,661 (67%) are identified by

SAMtools and 1,469 (60%) are identified by SomaticSNiPer. Of

the 3,109 mutations identified by SAMtools, only 53% and 66%

are identified by GATK and SomaticSNiPer, respectively. Of the

2,302 mutation identified by SomaticSNiPer, only 64% and 89%

are identified by GATK and SAMtools, respectively. The number

of 1,355 mutations identified by all three algorithms reflects only

55% (GATK), 44% (SAMtools) and 59% (SomaticSNiPer) of the

mutations found by the individual programs, respectively.

Mutations can be assigned a FDR confidence value
We want to assign each somatic mutation a single quality score

Q that could be used to rank mutations based on confidence.

However, it is not straightforward to assign a single value since

most mutation detection algorithms output multiple scores, each

reflecting a different quality aspect. Thus, we generated a random

forest classifier [20] that combines multiple scores, resulting in a

single quality score Q (Methods). All identified somatic mutations,

whether from the ‘‘same versus same’’ or ‘‘tumor versus normal’’

comparison, thus are assigned a single value predicting accuracy.

Note that the classifier training needs to be performed separately

for each program, due to the differences in the set of scores which

are returned by the individual programs.

After defining a relevant quality score, we sought to re-define the

score into a statistically relevant false discovery rate (FDR). We

Author Summary

Next generation sequencing (NGS) has enabled unbiased,
high throughput discovery of genetic variations and
somatic mutations. However, the NGS platform is still
prone to errors resulting in inaccurate mutation calls. A
statistical measure of the confidence of putative mutation
calls would enable researchers to prioritize and select
mutations in a robust manner. Here we present our
development of a confidence score for mutations calls and
apply the method to the identification of somatic
mutations in B16 melanoma. We use NGS exome
resequencing to profile triplicates of both the reference
C57BL/6 mice and the B16-F10 melanoma cells. These
replicate data allow us to formulate the false discovery rate
of somatic mutations as a statistical quantity. Using this
method, we show that 50 of 50 high confidence mutation
calls are correct while 0 of 44 low confidence mutations
are correct, demonstrating that the method is able to
correctly rank mutation calls.

Somatic Mutation Evaluation and Prioritization
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determined, at each Q value, the number of mutations with a better

Q score in the ‘‘same versus same’’ and the number of mutations

with a better Q score in the ‘‘tumor versus normal’’ pair. For a given

mutation with quality score Q detected in the ‘‘tumor versus

normal’’ comparison, we estimate the false discovery rate by

computing the ratio of ‘‘same versus same’’ mutations with a score

of Q or better to the overall number of mutations found in the

tumor comparison with a score of Q or better.

A potential bias in comparing methods is differential coverage;

we thus normalize the false discovery rate for the number of bases

covered by NGS reads in each sample:

FDR(Q)~
#Same vs: Same SNVs with score §Q

#Tumor SNVs with score §Q
|

common coverage tumor comparison

common coverage same vs: same comparison

We calculate the common coverage by counting all bases of the

reference genome which are covered by data of the tumor and

normal sample or by both ‘‘same versus same’’ samples,

respectively. After assigning our FDR to each mutation, the

FDR-sorted list of somatic mutations shows a clear preference of

mutations found by three programs in the low FDR region

(Figure 3b; see Supplementary Dataset S1 for a complete list). This

observation fits to the naı̈ve assumption that the consensus of

multiple different algorithms is likely to be correct.

We identified 50 mutations with a low FDR (high confidence)

for validation, including 41 with an FDR less than 0.05 (Figure 3c).

All 50 were validated by a combination of Sanger resequencing

and inspection of the B16 RNA-Seq sequence reads. Table 1 lists

the ten somatic mutations with the best FDRs, all of which

validated.

We selected 44 mutations identified by at least one detection

algorithm, present in only one B16 sample and assigned a high

Figure 1. Schematic overview of FDR calculation method. A Concept of FDR calculation which relies on the availability of a normal tissue
replication experiment. B Examples of single nucleotide variations found: A somatic mutation found in all three B16 samples (left), a non-somatic
mutation found in all B16 and black6 samples (middle) and a mutation found in only one black6 sample (right); this last variation would cause a raise
in the FDR for all somatic mutations with a comparable or worse quality. C Process to generate FDRs for a set of somatic mutations and visualize the
results. The FDR distribution is visualized as an average estimated ROC curve with the grey bars giving the 95% confidence interval for the mean in
both dimensions at uniformly sampled positions. The mean was obtained from the distribution of estimated ROC curves of the FDRs for all possible
18 combinations of reference data sets (see text).
doi:10.1371/journal.pcbi.1002714.g001

Somatic Mutation Evaluation and Prioritization
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FDR (.0.5) by our algorithm (Figure 3c). In contrast to the low-

FDR mutations, none of the 44 high FDR samples validated,

neither by Sanger sequencing nor by inspection of the RNA

alignments. 37 of those mutations were clear false positives (no

mutation by Sanger or RNA-Seq) while the remaining seven loci

neither yielded sequencing reactions nor were covered by RNA-

Seq reads. Figure 4 shows representative mutations together with

the Sanger sequencing traces. In the case of the false positive

mutation, the three used programs identified this in black6 as

sequencing error (and did not output a mutation at this locus), but

failed in the single B16 case (marked with the red box). If a real

experiment would have included only this single sample, it would

have produced a false positive mutation call, despite using the

consensus of three programs.

To test mutations with less extreme FDRs, we selected 45

somatic mutations, which were distributed evenly across the FDR

spectrum from 0.1 to 0.6. Validation using both Sanger

sequencing and inspection of the RNA-Seq reads resulted 15

positive (either Sanger sequencing or RNA-Seq reads), 22 negative

validations (neither Sanger sequencing nor RNA-Seq reads) and 8

non-conclusive (failed sequencing reactions and no RNA-Seq

coverage). See the Supplementary Dataset S2 for a detailed table

showing the results of the validation of those 45 mutations.

We computed a receiver operating characteristic (ROC) curve

for all 131 validated mutations (Figure 5a), resulting in an area

under the curve (AUC) [21] of 0.96. As this analysis might be

biased due to the relatively large set sizes of the high and low FDR

mutations, we randomly sampled 10 mutations each, added the 37

Figure 2. Overview of the process for finding somatic mutations in B16. Numbers for the individual steps are given as an example for one
B16 sample, compared to one black6 sample. ‘‘Exons’’ refers to the exon coordinates defined by all protein coding RefSeq transcripts.
doi:10.1371/journal.pcbi.1002714.g002

Somatic Mutation Evaluation and Prioritization

PLOS Computational Biology | www.ploscompbiol.org 4 September 2012 | Volume 8 | Issue 9 | e1002714



validated mutations with the intermediate FDRs, calculated the

ROC-AUC and repeated this 1000 times in order to get a more

robust performance estimate. The resulting mean AUC is 0.797

(+20.002). A systematic test of FDR thresholds ranging from zero

to one with a step size of 0.05 implies that an optimal threshold for

using the FDR as a binary classifier should be #0.2.

ROC curves can be used to compare methods
ROC curves and the corresponding AUC are useful for

comparing classifiers and visualizing their performance [21]. We

extended this concept for evaluating the performance of experi-

mental and computational procedures. However, plotting ROC

graphs requires knowledge of all true and false positives (TP and

FP) in a dataset, information which is usually not given and hard

to establish for high throughput data (such as NGS data). Thus, we

used the calculated FDRs to estimate the respective TP and FP

rates and plot a ROC curve and calculate the AUC (Figure 1c).

Figure 5b shows the ROC curve comparing the FDR versus the

percent of 50 validated mutations and percent of total.

Benchmarking of experimental settings
ROC curves and the associated AUC values can be compared

across experiments, lab protocols, and algorithms. For the

following comparisons, we used all somatic mutations found by

any algorithm and in any tumor-normal pairing without applying

Figure 3. Process of selection of mutations for validation. A The Venn diagram shows the numbers of somatic variations in protein coding
exons, found by the individual, two or all three software tools, respectively. The numbers were calculated after the recommended filtering procedures
(see Methods section) and represent the consensus of all three samples. B List of unfiltered somatic mutations found in the consensus of all three
samples, sorted by FDR (low to high from top to bottom). Each row represents a predicted mutation and it is indicated which program did the
prediction. C For each mutation a FDR can be calculated, which is used for prioritization of the validation experiment.
doi:10.1371/journal.pcbi.1002714.g003

Table 1. Ten validated mutations with the lowest FDRs,
selected out of a set of 2396 exonic variations which were
found in duplicate in two B16 samples.

Chromosome Position
Reference
allele

Sample
allele(s) FDR

8 110078987 G A/G 0.006

1 59540714 G G/C 0.007

5 124854313 G G/T 0.007

10 59352802 C A/C 0.007

16 36919828 A A/C 0.007

2 144078227 C C/T 0.007

8 12834637 G G/C 0.007

19 6121411 T C/T 0.007

1 58533360 A A/C 0.007

15 98478052 A A/G 0.007

None of these mutations is present in dbSNP (version 128; genome assembly
mm9).
doi:10.1371/journal.pcbi.1002714.t001

Somatic Mutation Evaluation and Prioritization
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any filter procedure. We considered only those mutations in target

regions (exons).

First, we tested the influence of the reference ‘‘same versus

same’’ data on the calculation of the FDRs. Using the triplicate

black6 and B16 sequencing runs, we created 18 triplets

(combinations of ‘‘black6 versus black6’’ and ‘‘black6 versus

B16’’) to use for calculating the FDR. When comparing the

resulting FDR distributions for the sets of somatic mutations, the

results are consistent when the reference data sets are exchanged

(Figure 1c, Supplementary Figure S2 in Text S1). This suggests

that the method is robust with regards to the choice of the

reference ‘‘same versus same’’ dataset. Thus, a ‘‘same versus

same’’ duplicate profiling needs only be done once for a given lab

platform and the resultant FDR(Q) reference function can be re-

used for future profiling.

Using our definition of a false discovery rate, we have

established a generic framework for evaluating the influence of

numerous experimental and algorithmic parameters on the

resulting set of somatic mutations. We apply this framework to

study the influence of software tools, coverage, paired end

sequencing and the number of technical replicates on somatic

mutation identification.

First, the choice of the software tool has a clear impact on the

identified somatic mutations (Figure 3). On the tested data,

SAMtools produces the highest enrichment of true positive

somatic mutations (Figure 6a). We note that each tool has

different parameters and quality scores for mutation detection; we

used the default settings as specified by the algorithm developers.

The impact of the coverage depth on whole genome SNV

detection has been recently discussed [22]. For the B16 sequencing

experiment, we sequenced each sample in an individual flowcell

lane and achieved a target region mean base coverage of 38 fold

across target nucleotides. In order to study the effect of the

coverage on exon capture data, we down-sampled the number of

aligned sequence reads for every 1650 nt library to generate a

mean coverage of 5, 10 and 20 fold, respectively, and then

reapplied the mutation identification algorithms. As expected, a

higher coverage results in a better (i.e. fewer false positives) somatic

mutation set, although the improvement from the 20 fold coverage

to 38 fold is marginal for the B16 cells (Figure 6b).

Figure 4. Genome browser screen shot for triplicate black6 and B16 samples and associated Sanger sequencing traces for the
black6 and B16 DNA for both a true positive (chr4:155261079) and a false positive (chr4:151534480) mutation call. Both mutations
are predicted by GATK, SomaticSNiPer and SAMtools. The mean coverage is 54 (true positive) and 10 (false positive), respectively. Only four reads are
shown for visual clarity. The red box marks the sample, in which the three mutation callers wrongly detected a SNV.
doi:10.1371/journal.pcbi.1002714.g004

Somatic Mutation Evaluation and Prioritization
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It is straightforward to simulate and rank other experimental

settings using the available data and framework (Figures 6c and d).

As we profiled each sample in triplicate, including three separate

exon captures, we wanted to identify the impact of these replicates.

Comparing duplicates to triplicates, triplicates do not offer a

benefit compared to the duplicates (Figure 6c), while duplicates

offer a clear improvement compared to a study without any

replicates (indicated by the higher AUC). In terms of the ratio of

somatic mutations at a FDR of 0.05 or less, we see enrichment

from 24% for a run without replicates to 71% for duplicates and

86% for triplicates. These percentages correspond to 1441, 1549

and 1524 mutations, respectively. Using the intersection of

triplicates removes more mutations with low FDRs than mutations

with a high FDR, as indicated by the lower ROC AUC and the

shift of the curve to the right (Supplementary Figure S7 in Text S1,

Figure 6c): the specificity is slightly increased at the cost of a lower

sensitivity, when assuming that removed low FDR mutations are

true positives and the removed high FDR mutations are true

negatives. This assumption is supported by our validation

experiments, as true negative mutations are likely to get a high

FDR (Figure 5a).

The 26100 nt library was used to create 6 libraries: a 26100 nt

library; a 16100 nt library; a 1650 nt library using the 50

nucleotides at the 59 end of the first read; a 1650 nt library using

the nucleotides 51 to 100 at the 39 end of the first read; a 2650 nt

read using nucleotides 1 to 50 of both reads; and a 2650 nt library

using nucleotides 51 to 100 of both reads. These libraries were

compared using the calculated FDRs of predicted mutations

(Figure 6d). The 1650 39 library performed worst, as expected due

to the increasing error rate at the 39 end of sequence reads.

Despite the much higher median coverage (63–65 vs. 32), the

somatic mutations found using the 2650 59 and 16100 nt libraries

have a smaller AUC than the 1650 nt library. This surprising

effect is a result of high FDR mutations in regions with low

coverage (Supplementary Text S1). Indeed, the sets of low FDR

mutations are highly similar. Thus, while the different read lengths

and types identify non-identical mutations, the assigned FDR is

nevertheless able to segregate true and false positives (Supplemen-

tary Figure S3 in Text S1).

Discussion

NGS is a revolutionary platform for detecting somatic

mutations. However, the error rates are not insignificant, with

different detection algorithms identifying mutations with less than

50% congruence. Other high throughput genomic profiling

platforms have developed methods to assign confidence values to

each call, such as p-values associated with differential expression

calls from oligonucleotide microarray data. Similarly, we devel-

oped here a method to assign a confidence value (FDR) to each

identified mutation.

From the set of mutations identified by the different algorithms,

the FDR accurately ranks mutations based on likelihood of being

correct. Indeed, we selected 50 high confidence mutations and all

50 validated; we selected 45 intermediate confidence mutations

and 15 validated, 22 were not present and 8 inconclusive; we

selected 44 low confidence mutations and none validated. Again,

all 139 mutations were identified by at least one of the detection

algorithms. Unlike a consensus or majority voting approach, the

assigned FDR not only effectively segregates true and false

positives but also provides both the likelihood that the mutation is

true and a statistically ranking. Also, our method allows the

adjustment for a desired sensitivity or specificity which enables the

detection of more true mutations than a consensus or majority

vote, which report only 50 or 52 of all 65 validated mutations.

We applied the method to a set of B16 melanoma cell

experiments. However, the method is not restricted to these data.

The only requirement is the availability of a ‘‘same versus same’’

reference dataset, meaning at least a single replicate of a non-

tumorous sample should be performed for each new protocol. Our

experiments indicate that the method is robust with regard to the

choice of the replicate, so that a replicate is not necessarily

Figure 5. Results of mutation validation experiments. A ROC curve for all 131 mutations with a successful validation (either positive or
negative). 1-FDR was used as the probability of a mutation being a true call. B Relative amount of variations found for a given FDR cutoff in a set of
2396 exonic variations which were found in duplicate in two B16 samples (see also Table 1), plotted separately for all variants in the dataset and the
50 validated high confidence mutations. For visual clarity only values of 0 to 0.1 FDR are shown.
doi:10.1371/journal.pcbi.1002714.g005

Somatic Mutation Evaluation and Prioritization
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required in every single experiment. Once done, the derived

FDR(Q) function can be reused when the Q scores are

comparable (i.e. when the same program for mutation discovery

was used). Here, we profiled all samples in triplicate; nevertheless,

the method produces FDRs for each mutation from single-run

tumor and normal profiles (non-replicates) using the FDR(Q)

function. We do show, however, that duplicates improve data

quality.

Furthermore, the framework enables one to define best practice

procedures for the discovery of somatic mutations. For cell lines, at

least 20-fold coverage and a replicate achieve close to the optimum

results. A 1650 nt library resulting in approximately 100 million

reads is a pragmatic choice to achieve this coverage.

The possibility of using a reference data set to rank the results of

another experiment can also be exploited to e.g. score somatic

mutations found in different normal tissues by similar methods.

Here, one would expect relatively few true mutations, so an

independent set of reference data will improve the resolution of the

FDR calculations.

While we define the optimum as the lowest number of false

positive mutation calls, this definition might not suffice for other

experiments, such as for genome wide association studies.

However, our method allows the evaluation of the sensitivity

and specificity of a given mutation set and we show application of

the framework to four specific questions. The method is by no

means limited to these parameters, but can be applied to study the

Figure 6. Comparison of different experimental settings and analysis procedures. A Estimated ROC curves for the comparison of the three
different software tools (duplicates, 386coverage). B Estimated ROC curves for the comparison of different average sequencing depths (SAMtools,
no replication). 386 denotes the coverage obtained by the experiment, while other coverages were down sampled starting with this data. C
Estimated ROC curves visualizing the effect of experiment replication (386 coverage, SAMtools). D Estimated ROC curves for different sequencing
protocols (SAMtools, no replication). The curves were calculated using the results of the 26100 nt library (Note: A complete display of the results can
be found in Supplementary Figures S2 and S3 in Text S1. Also, unscaled versions of the plots are shown in Supplementary Figure S8 in Text S1, giving
an impression of the individual set sizes).
doi:10.1371/journal.pcbi.1002714.g006

Somatic Mutation Evaluation and Prioritization
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influence of all experimental or algorithmic parameters, e.g. the

influence of the alignment software, the choice of a mutation

metric or the choice of vendor for exome selection.

In summary, we have pioneered a statistical framework for the

assignment of a false-discovery-rate to the detection of somatic

mutations. This framework allows for a generic comparison of

experimental and computational protocol steps on generated quasi

ground truth data. Furthermore, it is applicable for the diagnostic

or therapeutic target selection as it is able to distinguish true

mutations from false positives.

Methods

Library capture and sequencing
Next-generation sequencing, DNA sequencing: Exome capture

for DNA resequencing was performed using the Agilent Sure-

Select solution-based capture assay [23], in this case designed to

capture all known mouse exons.

3 mg purified genomic DNA was fragmented to 150–200 nt

using a Covaris S2 ultrasound device. gDNA fragments were end

repaired using T4 DNA polymerase, Klenow DNA polymerase

and 59 phosphorylated using T4 polynucleotide kinase. Blunt

ended gDNA fragments were 39 adenylated using Klenow

fragment (39 to 59 exo minus). 39 single T-overhang Illumina

paired end adapters were ligated to the gDNA fragments using a

10:1 molar ratio of adapter to genomic DNA insert using T4 DNA

ligase. Adapter ligated gDNA fragments were enriched pre capture

and flow cell specific sequences were added using Illumina PE

PCR primers 1.0 and 2.0 and Herculase II polymerase (Agilent)

using 4 PCR cycles.

500 ng of adapter ligated, PCR enriched gDNA fragments were

hybridized to Agilent’s SureSelect biotinylated mouse whole

exome RNA library baits for 24 hrs at 65uC. Hybridized

gDNA/RNA bait complexes where removed using streptavidin

coated magnetic beads. gDNA/RNA bait complexes were washed

and the RNA baits cleaved off during elution in SureSelect elution

buffer leaving the captured adapter ligated, PCR enriched gDNA

fragments. gDNA fragments were PCR amplified post capture

using Herculase II DNA polymerase (Agilent) and SureSelect GA

PCR Primers for 10 cycles. Cleanups were performed using 1.86
volume of AMPure XP magnetic beads (Agencourt). For quality

controls we used Invitrogen’s Qubit HS assay and fragment size

was determined using Agilent’s 2100 Bioanalyzer HS DNA assay.

Exome enriched gDNA libraries were clustered on the cBot using

Truseq SR cluster kit v2.5 using 7 pM and sequenced on the

Illumina HiSeq2000 using Truseq SBS kit.

Exome data analysis
Sequence reads were aligned using bwa (version 0.5.8c) [16]

using default options to the reference mouse genome assembly

mm9 [24]. Ambiguous reads – those reads mapping to multiple

locations of the genome as provided by the bwa output - were

removed (see Supplementary Dataset S3 for the alignment

statistics). The remaining alignments were sorted, indexed and

converted to a binary and compressed format (BAM) and the read

quality scores converted from the Illumina standard phred+64 to

standard Sanger quality scores using shell scripts.

For each sequencing lane, mutations were identified using three

software programs: SAMtools pileup (version 0.1.8) [18], GATK

(version 1.0.4418) [11] and SomaticSNiPer [19]. For SAMtools,

the author-recommend options and filter criteria were used

(http://sourceforge.net/apps/mediawiki/SAMtools/index.

php?title = SAM_FAQ; accessed September 2011), including first

round filtering, maximum coverage 200. For SAMtools second

round filtering, the point mutation minimum quality was 30. For

GATK mutation calling, we followed the author-designed best

practice guidelines presented on the GATK user manual (http://

www.broadinstitute.org/gsa/wiki/index.php?title = Best_Practice_

Variant_Detection_with_the_GATK_v2&oldid = 5207; accessed

October 2010). For each sample a local realignment around indel

sites followed by a base quality recalibration was performed. The

Unified Genotyper module was applied to the resultant alignment

data files. When needed, the known polymorphisms of the dbSNP

[25] (version 128 for mm9) were supplied to the individual steps.

The variant score recalibration step was omitted and replaced by

the hard-filtering option. For both SAMtools and GATK, potential

indels were filtered out of the results before further processing and a

mutation was accepted as somatic if it is present in the data for B16

but not in the black6 sample. Additionally, as a post filter, for each

potentially mutated locus we required non-zero coverage in the

normal tissue. This is intended to sort out mutations which only look

to be somatic because of a not covered locus in the black6 samples.

For SomaticSNiPer mutation calling, the default options were used

and only predicted mutations with a ‘‘somatic score’’ of 30 or more

were considered further (see Supplementary Text S1 for a

description of the cutoff selection). For all three programs, we

removed all mutations located in repetitive sequences as defined by

the RepeatMasker track of the UCSC Genome Browser [26] for the

mouse genome assembly mm9.

RNA-Seq
Barcoded mRNA-seq cDNA libraries were prepared from 5 ug

of total RNA using a modified version of the Illumina mRNA-seq

protocol. mRNA was isolated using SeramagOligo(dT) magnetic

beads (Thermo Scientific). Isolated mRNA was fragmented using

divalent cations and heat resulting in fragments ranging from 160–

200 bp. Fragmented mRNA was converted to cDNA using

random primers and SuperScriptII (Invitrogen) followed by

second strand synthesis using DNA polymerase I and RNaseH.

cDNA was end repaired using T4 DNA polymerase, Klenow

DNA polymerase and 59 phosphorylated using T4 polynucleotide

kinase. Blunt ended cDNA fragments were 39 adenylated using

Klenow fragment (39 to 59 exo minus). 39 single T-overhang

Illumina multiplex specific adapters were ligated on the cDNA

fragments using T4 DNA ligase. cDNA libraries were purified and

size selected at 300 bp using the E-Gel 2% SizeSelect gel

(Invitrogen). Enrichment, adding of Illumina six base index and

flow cell specific sequences was done by PCR using Phusion DNA

polymerase (Finnzymes). All cleanups were performed using 1.86
volume of Agencourt AMPure XP magnetic beads.

Barcoded RNA-seq libraries were clustered on the cBot using

Truseq SR cluster kit v2.5 using 7 pM and sequenced on the

Illumina HiSeq2000 using Truseq SBS kit.

The raw output data of the HiSeq was processed according to

the Illumina standard protocol, including removal of low quality

reads and demultiplexing. Sequence reads were then aligned to

the reference genome sequence [24] using bowtie [17]. The

alignment coordinates were compared to the exon coordinates of

the RefSeq transcripts [27] and for each transcript the counts of

overlapping alignments were recorded. Sequence reads not

aligning to the genomic sequence were aligned to a database of

all possible exon-exon junction sequences of the RefSeq

transcripts [27]. The alignment coordinates were compared to

RefSeq exon and junction coordinates, reads counted and

normalized to RPKM (number of reads which map per

nucleotide kilobase of transcript per million mapped reads [28])

for each transcript.
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Validation of SNVs
We selected SNVs for validation by Sanger re-sequencing and

RNA. SNVs were identified which were predicted by all three

programs, non-synonymous and found in transcripts having a

minimum of 10 RPKM. Of these, we selected the 50 with the

highest SNP quality scores as provided by the programs. As a

negative control, 44 SNVs were selected which have a FDR of 0.5

or more, are present in only one cell line sample and are predicted

by only one mutation calling program. 45 mutations with

intermediate FDR levels were selected. Using DNA, the selected

variants were validated by PCR amplification of the regions using

50 ng of DNA (see Supplementary Dataset S4 for the primer

sequences and targeted loci), followed by Sanger sequencing

(Eurofins MWG Operon, Ebersberg, Germany). The reactions

were successful for 50, 32 and 37 loci of positive, negative and

intermediate controls, respectively. Validation was also done by

examination of the tumor RNA-Seq reads.

Calculation of FDRs and machine learning
Random Forest Quality Score Computation: Commonly-used

mutation calling algorithms ([11], [18], [19]) output multiple

scores, which all are potentially influential for the quality of the

mutation call. These include - but are not limited to - the quality of

the base of interest as assigned by the instrument, the alignment

quality and number of reads covering this position or a score for

the difference between the two genomes compared at this position.

For the computation of the false discovery rate we require an

ordering of mutations, however this is not directly feasible for all

mutations since we might have contradicting information from the

various quality scores.

We use the following strategy to achieve a complete ordering. In

a first step, we apply a very rigorous definition of superiority by

assuming that a mutation has better quality than another if and

only if it is superior in all categories. So a set of quality properties

S = (s1,…,sn) is preferable to T = (t1,…,tn), denoted by S.T, if

si.ti for all i = 1,…,n. We define an intermediate FDR (IFDR) as

follows

IFDR(T)~
#Same vs: Same SNVs with score SwT

#Tumor SNVs with score SwT
|

common coverage tumor comparison

common coverage same vs: same comparison

However, we regard the IFDR only as an intermediate step

since in many closely related cases, no comparison is feasible and

we are thus not benefitting from the vast amount of data available.

Thus, we take advantage of the good generalization property of

random forest regression [20] and train a random forest as

implemented in R ([29], [30]).

For m input mutations with n quality properties each, the value

range for each property was determined and up to p values were

sampled with uniform spacing out of this range; when the set of

values for a quality property was smaller than p, this set was used

instead of the sampled set. Then each possible combination of

sampled or selected quality values was created, which resulted in a

maximum of pn data points in the n-dimensional quality space. A

random sample of 1% of these points and the corresponding IFDR

values were used as predictor and response, respectively, for the

random forest training.

The resulting regression score is our generalized quality score

Q; it can be regarded as a locally weighted combination of the

individual quality scores. It allows direct, single value comparison

of any two mutations and the computation of the actual false

discovery rate:

FDR(Q)~
#Same vs: Same SNVs with score §Q

#Tumor SNVs with score §Q
|

common coverage tumor comparison

common coverage same vs: same comparison

For the training of the random forest models used to create the

results for this study, we calculate the sample IFDR on the somatic

mutations of all samples before selecting the random 1% subset.

This ensures the mapping of the whole available quality space to

FDR values. We used the quality properties ‘‘SNP quality’’,

‘‘coverage depth’’, ‘‘consensus quality’’ and ‘‘RMS mapping

quality’’ (SAMtools, p = 20); ‘‘SNP quality’’, ‘‘coverage depth’’,

‘‘Variant confidence/unfiltered depth’’ and ‘‘RMS mapping

quality’’ (GATK, p = 20); or SNP quality’’, ‘‘coverage depth’’,

‘‘consensus quality’’, ‘‘RMS mapping quality’’ and ‘‘somatic

score’’ (SomaticSNiPer, p = 12), respectively. The different values

of p ensure a set size of comparable magnitude.

To acquire the ‘‘same vs. same’’ and ‘‘same vs. different’’ data

when calculating the FDRs for a given set of mutations, we use all

variants generated by the different programs without any

additional filtering.

Common coverage computation: The number of possible

mutation calls can introduce a major bias in the definition of a

false discovery rate. Only if we have the same number of possible

locations for mutations to occur for our tumor comparison and for

our ‘‘same vs. same’’ comparison, the number of called mutations

is comparable and can serve as a basis for a false discovery rate

computation. To correct for this potential bias, we use the

common coverage ratio. As common coverage we define the

number of bases with coverage of at least one in both samples

which are used for the mutation calling. We compute the common

coverage individually for the tumor comparison as well as for the

‘‘same vs. same’’ comparison.

ROC estimation
The estimation of the ROC curves should satisfy the following

criteria:

1. When all calculated FDRs are 0.5, one cannot use these rates

to select true positive mutations. This should be reflected by a

diagonal line from (0,0) to (1,1) in the ROC plot resulting in a

ROC AUC of 0.5, which indicates a completely random

prediction.

2. The normal calculation of ROC curves involves summing up

the TP counts and FP counts, respectively, up to a given score

threshold. Here, an individual mutation does not add one to

the TP or FP count, but a fraction depending on the given

FDR to both sums, respectively. Both fractions should add to

one, then.

We start with two conditions; Eq. [1] is the definition of the

FDR and Eq. [2] is needed to satisfy the criteria given above.

FDR~
FPR

FPRzTPR
ð1Þ

FPRzTPR~1 ð2Þ

Somatic Mutation Evaluation and Prioritization

PLOS Computational Biology | www.ploscompbiol.org 10 September 2012 | Volume 8 | Issue 9 | e1002714



FPR and TPR are the needed false positive true positive ratios,

respectively, for the given mutation, defining the corresponding

point in ROC space. Eq. [1] and Eq. [2] can be rearranged to Eq.

[3] and Eq. [4].

TPR~1{FPR ð3Þ

FPR~FDR ð4Þ

To obtain an estimated ROC curve, the mutations in the

dataset are sorted by FDR and for each mutation a point is plotted

at the cumulative TPR and FPR values up to this mutation,

divided by the sum of all TPR and FPR values, respectively. The

AUC is calculated by summing up the areas of all consecutive

trapezoids between the curve and the x-axis.

The program is implemented in R and is available from http://

tron-mainz.de/tron-facilities/computational-medicine/. The

package allows convenient import and processing of variation

calls in VCF files.
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