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Abstract
A wide variety of species are distinguished by slight color variations. However, mo-
lecular analyses have repeatedly demonstrated that coloration does not always cor-
respond to distinct evolutionary histories between closely related groups, suggesting 
that this trait is labile and can be misleading for species identification. In the present 
study, we analyze the evolutionary history of sister species of Prionurus surgeon-
fishes in the Tropical Eastern Pacific (TEP), which are distinguished by the presence 
or absence of dark spots on their body. We examined the species limits in this system 
using comparative specimen‐based approaches, a mitochondrial gene (COI), more 
than 800 nuclear loci (Ultraconserved Elements), and abiotic niche comparisons. The 
results indicate there is a complete overlap of meristic counts and morphometric 
measurements between the two species. Further, we detected multiple individuals 
with intermediate spotting patterns suggesting that coloration is not diagnostic. 
Mitochondrial data recovered a single main haplotype shared between the species 
and all locations resulting in a complete lack of structure (ΦST = 0). Genomic analyses 
also suggest low levels of genetic differentiation (FST = 0.013), and no alternatively 
fixed SNPs were detected between the two phenotypes. Furthermore, niche com-
parisons could not reject niche equivalency or similarity between the species. These 
results suggest that these two phenotypes are conspecific and widely distributed in 
the TEP. Here, we recognize Prionurus punctatus Gill 1862 as a junior subjective syno-
nym of P. laticlavius (Valenciennes 1846). The underlying causes of phenotypic varia-
tion in this species are unknown. However, this system gives insight into general 
evolutionary dynamics within the TEP.
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1  | INTRODUC TION

Species are the fundamental unit of biology, and as such their proper 
identification is critical for a variety of disciplines, including phylo-
genetics, biogeography, population genetics, and conservation (De 
Queiroz 2005). Traditionally species are diagnosed by one or more 
morphological differences (either fixed or in combination) between 
groups of organisms. In groups that generally display vibrant color-
ation patterns, such as tropical coral reef fishes, many species have 
been delimited through subtle color differences (Leray et al., 2010; 
Rocha, 2004; Taylor & Hellberg, 2005). For many reef fishes, color 
or squamation patterns have been used to identify genetic breaks 
between major biogeographic provinces (DiBattista et al. 2013; 
Coleman et al. 2016), and to detect areas with high rates of ende-
mism, such as Hawaii (Randall & Rocha, 2009) and the Marquesas 
(Gaither et al. 2015). However, a number of studies have shown that 
differences in color patterns are not always indicative of reduced 
gene flow (Ramon, Lobel, & Sorenson, 2003; Lin, Sanchez‐Ortiz & 
Hastings, 2009; Schultz et al. 2007), and can be discordant with 
patterns of genetic structure (DiBattista et al., 2015; Gaither et al., 
2014; Leray et al., 2010). Taken together, these studies indicate that 
color patterns alone are not well‐suited for defining species limits, 
but should be used in concert with other measurements to ensure 
an accurate reflection of evolutionary history.

The tropical Eastern Pacific (TEP) is a marine biogeographic re-
gion that spans 29° of latitude from Magdalena Bay, Mexico, to the 
Gulf of Guayaquil, Ecuador (Robertson & Cramer, 2009). Numerous 
studies have categorized the TEP into three to five biogeographic 
provinces based on the distribution records of fishes (Briggs, 1974; 
Briggs & Bowen, 2012; Hastings, 2000; Robertson & Cramer, 2009; 
Spalding et al., 2007). This region has been partially isolated from 
the Indo‐Pacific since the Miocene, and completely separated from 
the Atlantic since the closure of the Isthmus of Panama. The bio-
diversity of the TEP pales in comparison to that of its neighboring 
Central/West Pacific region, and it has consequently been discussed 
as having “reduced speciation capacity,” particularly in several iconic 
reef‐fish families (Cowman & Bellwood, 2013). Still, speciation 
within the TEP is facilitated by the limited connectivity between 
the offshore islands and the continental coast (Allen & Robertson, 
1994). Examples include the high rates of fish endemism of the 
Galapagos (~17% endemic species), Clipperton atoll (~7% endemic 
species), Cocos Island (~4%), and the Revillagigedos (~8%; Cortés, 
2012; Robertson & Cramer, 2009). Many of these offshore endem-
ics are distinguished by coloration differences from their continen-
tal congeners, and for some groups, multiple offshore islands have 
their own endemic species. For example, in Holocanthus angelfishes, 
H. clarionensis and H. limbaughi occur on the Revillagigedos and 
Clipperton Islands, respectively, and diverged from their widespread 
mainland sister species, H. passer, ~1.4 mya (Alva‐Campbell, Floeter, 
Robertson, Bellwood, & Bernardi, 2010; Tariel, Longo, & Bernardi, 
2016). Divergence between oceanic and continental species has 
been detected at a variety of time scales, suggesting that no sin-
gle oceanographic event led to the isolation of coastal and oceanic 

populations, and that limited connectivity between these ecosys-
tems repeatedly promotes speciation (Alva‐Campbell et al., 2010; 
Craig, Hastings, Pondella, Ross Robertson, & Rosales‐Casián, 2006; 
Tariel et al., 2016; Wainwright et al., 2018).

Not all speciation in the TEP is between offshore islands and the 
mainland, as sister species are also distributed latitudinally along the 
continental coast (Hastings, 2000; Riginos, 2005). In many cases, 
coastal speciation is observed in fishes with reduced dispersal ca-
pabilities, such as those with demersal eggs or short pelagic lar-
val durations (e.g., blennies; Eytan, Hastings, Holland, & Hellberg, 
2012; Lin & Hastings, 2011; Miller, Lin, & Hastings, 2016). However, 
this is not always the case, as fishes with high dispersal potential 
are hypothesized to have diverged in situ in coastal habitats, such 
as grunts (Bernal et al. 2017; Bernardi, Alva‐Campbell, Gasparini, 
& Floeter, 2008; Rocha, Lindeman, Rocha, & Lessios, 2008; Tavera, 
Acero, Balart, & Bernardi, 2012), wrasses (Wainwright et al., 2018), 
and Prionurus surgeonfishes (Ludt, Rocha, Erdmann, & Chakrabarty, 
2015).

The present study focuses on two species of Prionurus surgeon-
fishes distributed latitudinally throughout the TEP: P. punctatus 
occurs from the Gulf of California to Costa Rica, while P. laticlavius 
extends from Costa Rica to Ecuador, also occupying offshore islands 
of the TEP (Figure 1; Robertson & Allen, 2015). This pattern of dis-
tribution is somewhat unexpected, as surgeonfishes have extremely 
high dispersal potentials (Doherty, Planes, & Mather, 1995), and 
several species lack population structure across entire ocean basins 
(Dibattista, Wilcox, Craig, Rocha, & Bowen, 2011; Eble, Rocha, Craig, 
& Bowen, 2011; Eble, Toonen, & Bowen, 2009). In fact, while seven 
surgeonfish species regularly occur in the TEP (Allen & Robertson, 
1994), the two species of Prionurus are the only surgeonfishes in the 
region that are not also present in the Indo‐Pacific. Furthermore, 
these two species are nearly identical phenotypically. In the descrip-
tion of P. punctatus, Gill notes that “it widely differs from the previ-
ously known [P. laticlavius] by its spotted body; in other respects it 
is most nearly allied to the Prionurus laticlavius from the Galapagos 
Islands” (Gill 1862). The situation is further complicated by a recent 
phylogenetic analysis of the genus, where a multilocus approach did 
not recover these two species as reciprocally monophyletic (Ludt et 
al., 2015). However, that particular study was based on three indi-
viduals of P. punctatus and two of P. laticlavius, and it is possible that 
the loci did not provide the resolution needed to distinguish shallow 
divergences (Ludt et al., 2015). Considering their distribution across 
the continental waters of the TEP, as well as their morphological and 
phylogenetic similarities, it would be interesting to explore poten-
tial differences at the genomic level that could diagnose P. punctatus 
and P. laticlavius. This would clarify the status of these species, while 
providing insight into the patterns of genomic divergence of closely 
related species in the region.

Here, we expand upon the results of Ludt et al. (2015) by in-
cluding individuals from several locations across the TEP and by 
adding genomic analyses between the two species. In addition to 
genetic data, we gathered traditional morphological and meristic 
data for both species across their ranges and compared them to 
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original species descriptions and type material. We then examined if 
ecological factors may be responsible for any divergences between 
these species in order to assess possible speciation drivers along the 
coastal TEP.

2  | MATERIAL S AND METHODS

2.1 | Phenotypic and morphological comparisons

To assess species limits in this system, both molecular and speci-
men‐based approaches were used. An in‐depth morphological com-
parison of these two species has never been conducted and could 
reveal more characters consistent with species diagnoses than just 
squamation patterns. For this purpose, specimens for P. punctatus 
and P. laticlavius were examined from across their distributions for 
phenotypic and morphological variation. Standard measurements 
and meristic counts were taken for each specimen following those 
reported in Randall (2001). This included counting the spines and 
rays of the dorsal, anal, and pectoral fins, and measuring the body 
depth, predorsal length, pelvic‐fin and anal‐fin lengths in proportion 
to standard length. The two species mainly differ in the presence or 
absence of dark spots covering the body; thus, photographs of all 
specimens were taken to determine how consistent spotting pattern 
is as a character across the entire TEP. All measurements were made 
with digital calipers, and averages were calculated for each species.

2.2 | Molecular sampling and extraction

To have a better understanding of the genetic divergence between 
P. punctatus and P. laticlavius along the mainland TEP, we sampled 

at three localities: Baja California, Mexico; Guanacaste, Costa Rica; 
and Las Perlas Islands, Panama. This sampling scheme targets two 
extreme locations, where only a single species is reported in the 
literature (Mexico for P. punctatus, and Panama for P. laticlavius), as 
well as one location where the two species overlap in their recorded 
distributions (Guanacaste, Costa Rica). Samples were obtained be-
tween 2012 and 2015 using either nets along the shore or pole 
spears while SCUBA diving. Tissue samples were taken from pecto-
ral fins, gills, or muscle tissue and stored in 95% EtOH. Once in the 
laboratory, tissue samples were stored in a −80°C freezer prior to 
sample preparation. When possible, voucher specimens were fixed 
in formalin and deposited at the Louisiana State University Museum 
of Natural Science.

Genomic material was extracted from each sample using the 
Qiagen DNeasy Blood and Tissue extraction kit following manufac-
turers protocols. Extracts were then quantified using a Qubit 2.0 flu-
orometer with a dsDNA BR Assay Kit (Life Technologies). Quality of 
genomic extractions was assessed via gel electrophoresis, with a 1% 
agarose gel using SYBR Safe DNA gel stain (Invitrogen) and 6x blue/
orange loading dye (Promega). All extracts were then kept at −20ºC 
prior to library preparation and amplification.

2.3 | Mitochondrial sequencing and analysis

To determine if our increased sampling effort was enough to resolve 
the relationships of these two species, we amplified all samples for 
the mitochondrial COI barcoding region. Primers and PCR reactions 
protocols were identical those described in Ludt et al. (2015) and can 
be found in the appendix. All samples were purified and sequenced in 
both forward and reverse directions using the Genomic Sequencing 

F I G U R E  1  Distribution of two TEP 
species of surgeonfishes. Prionurus 
punctatus (upper left) is shown in blue, and 
P. laticlavius (lower left) is shown in red. 
Yellow stars show the sampling locations 
for this study. The offshore islands are 
previously only thought to be occupied 
by P. laticlavius. However, two vouchered 
specimens of P. punctatus have been 
verified from the Revillagegedos
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and Analysis Facility at the University of Texas at Austin. Sequencing 
was performed on an Applied Biosystems 3730 sequencer. All se-
quences were edited and aligned using Geneious 6.0.5 (Biomatters), 
and all alignments were checked manually. Haplotype networks 
were created using the TCS networks option in PopART (Clement, 
Posada, & Crandall, 2000). Summary statistics (haplotype and nucle-
otide diversities, ΦST), and Fu's F statistic (Fu, 1997) were calculated 
using Arlequin 3.5 (Excoffier, Laval, & Schneider, 2005). An AMOVA 
was conducted to test for population structuring between the two 
species, as well as between sampling localities, using 50,000 per-
mutations in Arlequin. These summary statistics were calculated for 
both species and for all sampling locations.

2.4 | Genomic library preparation, 
sequencing, and analysis

For each sample, ~0.5–1ug of DNA was sonicated to ~600 bp using 
an Episonic 1000E sonicator with 15‐s pulse intervals. Fragmentation 
was verified on a 1% agarose gel, and the process was repeated as 
necessary. Library preparation was conducted using a KAPA Hyper 
Library Prep Kit (KAPA Biosciences) using 10 bp TruSeq‐style oligo-
nucleotide dual‐indexing barcodes (Faircloth & Glenn, 2012). Library 
preparation followed manufacturers protocols, with the exception 
that reaction sizes were scaled to 0.5×. Pre‐amplification and postli-
brary amplification values were quantified before equimolar pool-
ing of samples in batches of eight. A target capture approach was 
then used to amplify ultraconserved elements (UCEs; Faircloth et 
al., 2012). Pooled libraries were enriched for 1300 UCE loci using a 
custom probe set (Arbor Biosciences) originally designed by McGee 
et al. (2016), following manufacturers’ protocols. Pools were then 
amplified and cleaned using 16–18 PCR cycles following procedures 
outlined in Faircloth, Sorenson, Santini, and Alfaro (2013). These 
pools were then combined in equimolar ratios, and paired‐end frag-
ments of 150 bp were sequenced on a single lane of an Illumina 
HiSeq Sequencer at the University of Oklahoma Medical Research 
Institute.

The sequenced libraries were demultiplexed, and barcodes, low‐
quality base calls, and reads shorter than 40 bp were removed using 
Trimmomatic (Bolger, Lohse, & Usadel, 2014) as part of the program 
Illumiprocessor (Faircloth, 2013). Sequences were then assembled 
into de novo contigs using Trinity 2.0.6 with default parameters 
(Grabherr et al., 2011), and these were mapped to UCE probes using 
the Phyluce 1.5 pipeline (Faircloth, 2015). Sequence data were then 
processed in two ways optimized for phylogenomic or population 
genomic analyses.

For phylogenomic analyses, contigs were first aligned in the 
Phyluce pipeline using Mafft (Katoh & Standley, 2013) with the no‐
trim option. Internal trimming using gblocks (Castresana, 2000) was 
then conducted on this alignment prior to outputting a final 70% 
complete data matrix. These alignments were then concatenated, 
and a maximum‐likelihood phylogenomic tree was then constructed 
using RAxML v8.1.24 (Stamatakis, 2014) on the CIPRES scientific 
gateway portal (Miller, Pfeiffer, & Schwartz, 2010). Two samples of P. 

biafraensis were included as outgroups for rooting the tree, as a pre-
vious study indicates this is the sister clade to the TEP species (Ludt 
et al., 2015). All analyses were completed using the GTRGAMMA 
model for bootstrapping, with 1,000 bootstrap iterations, and the 
rapid bootstrapping option (−x) selected. All nodes with a bootstrap 
value <50 were then collapsed.

Meanwhile, for the population genomic analyses, a reference 
dictionary was created to assist in SNP alignment using Picard 
(http://broadinstitute.github.io/picard/). This dictionary was created 
using the sample that recovered the most UCE loci. The reference 
was then indexed using SAMtools (Li et al., 2009). All samples were 
then aligned to this reference using BWA (Li & Durbin, 2009), using 
the maximal exact matches (MEM) command, with two threads, and 
the M option for downstream Piccard compatibility. Outputs were 
converted to BAM formats using SAMtools. The software Piccard 
was used for trimming, adding reading groups, and removing dupli-
cated reads. All alignments were then merged, and sequences were 
re‐aligned around indels using the indel realigner function of the ge-
nome analysis toolkit (GATK; McKenna et al., 2010). Indels were then 
called and masked, and SNPs with a quality score above Q30 were 
kept and outputted to a VCF file using the variant filtration function 
in GATK. Low‐frequency alleles were removed from the dataset with 
a minor allele frequency value of 0.02. In order to minimize the influ-
ence of linkage disequilibrium in our statistical estimates, only one 
randomly chosen SNP per UCE locus was kept for all subsequent 
analyses. The resulting file was then converted to various formats 
for downstream analyses using the scripts of the seqcap_pop pipe-
line (https://github.com/mgharvey/seqcap_pop/).

A discriminant analysis of principal components (DAPC) was con-
ducted to identify clusters in the SNP data with the package ade‐
genet in R (Jombart, Devillard, & Balloux, 2010). This was conducted 
both with, and without outgroup samples of P. biafraensis. Since a 
DAPC that supports a single group cannot be graphed, the UCE SNP 
data was also examined with a principal component analysis (PCA) 
using the dudi.PCA command in the R package ade4 (Dray & Dufour, 
2007). The program STRUCTURE v2.3.4 (Pritchard, Stephens, & 
Donnelly, 2000) was used to assign, and assess the fit of individ-
uals to predetermined numbers of populations (K). An admixture 
model was used with correlated allele frequencies and no a priori 
populations information was given. Populations ranging between 
one and five (K = 1–5) were tested using 500,000 MCMC iterations 
after a burn‐in of 25,000. Five replicates were performed for each 
K to ensure convergence. Results were summarized with Structure 
Harvester (Earl, 2012) using the Evanno method (Evanno, Regnaut, 
& Goudet, 2005). Summary statistics of population genomic param-
eters (FST, observed and expected heterozygosity, effective number 
of alleles, and Hardy–Weinberg equilibrium) were calculated using 
GenoDive v2 (Meirmans & Van Tienderen, 2004). An AMOVA was 
performed with 1,000 permutations to test for genetic structure be-
tween the two species, as well as between all sampling locations in 
GenoDive. The package PEGAS (Paradis, 2010) was used to examine 
the distribution of FST values across all loci in the dataset containing 
a single SNP per UCE locus, as well as across all SNPs.

http://broadinstitute.github.io/picard/
https://github.com/mgharvey/seqcap_pop/
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2.5 | Ecological comparisons

Considering the broad geographic range occupied by these sister 
species, it is quite possible that they are occupying ecologically dis-
tinct habitats, which could promote divergence even in the pres-
ence of gene flow (Bernardi, 2013; Rocha & Bowen, 2008; Rocha, 
Robertson, Roman, & Bowen, 2005). To test this, niche equivalency 
and similarity tests were conducted to determine if these two spe-
cies are occupying similar habitats in the TEP (Broennimann et al., 
2012). This approach uses kernel density smoothing to compare the 
density of species occurrence in environmental space using occur-
rence and environmental data. Occurrence data for both species was 
acquired from the Global Biodiversity Information Facility (GBIF) 
using the R package RGBIF (Chamberlain et al., 2017). Locality in-
formation was checked manually for errors, verifying species assign-
ments with vouchered museum specimens or photographs. Eleven 
environmental layers that summarize bathymetry and annual prop-
erties of sea surface salinity (SSS) and sea surface temperature (SST) 
for the TEP were downloaded from the MARSPEC database (Sbrocco 
& Barber, 2013; http://www.marspec.org). These included: distance 
to shore, depth, mean annual range, and annual variance of SSS and 
SST, as well as the SSS of the wettest and driest months, and SST of 
the coldest and warmest month of the year. The comparison tests 
used here are bivariate, thus a principal components analysis was 
conducted using all 11 environmental layers, and the top two axes 
were kept for subsequent analyses. Niche equivalency and similarity 
tests were conducted in the R package ENMTools (Warren, Glor, & 
Turelli, 2010).

3  | RESULTS

3.1 | Phenotypic and morphological data

In total 169 vouchered museum specimens (103 P. punctatus speci-
mens, 66 P. laticlavius specimens) were examined from the Scripps 
Institute of Oceanography, Natural History Museum of Los Angeles 

County, California Academy of Sciences, and Louisiana State 
University Museum of Natural Sciences. This included specimens 
distributed from across the entire TEP, including offshore islands 
(Supporting information Appendix S1: Table S1).

Overall, type specimens exhibited spotting patterns that were in 
agreement with the literature records of “pure” individuals (i.e., those 
without intermediate phenotypic traits). However, eight of the mea-
sured specimens had an intermediate phenotype of faint dark spots, 
suggesting a possible lack of reproductive isolation between the two 
groups or variation in squamation patterns (Supporting information 
Appendix S1: Figures S1, S2). These specimens mainly came from 
Costa Rica where the two species overlap. However, intermediate 
phenotypes were also found in Panama. Further, our morphological 
observations suggest all meristic counts and measurements over-
lapped for the two species. Dorsal‐fin rays were VII–VIII, 24–28, 
anal‐fin rays II–III, 22–24, and pectoral‐fin rays were 15–17 for both 
species. Body depth ranged from 1.6–2.1, pre‐dorsal‐fin length was 
2.4–4.3, pre‐pelvic‐fin length was 2.2–3.6, and pre‐anal‐fin length 
was 1.3–3 in standard length for both species. The only perceivable 
difference was the modal number of pectoral‐fin (16 in P. punctatus 
and 17 in P. laticlavius) and dorsal‐fin rays (27 in P. punctatus, and 26 
in P. laticlavius), but the ranges of these counts overlapped between 
the two species (Table 1).

3.2 | Mitochondrial COI and sampling

In total, 53 individuals were collected, including 25 P. punctatus, 23 P. 
laticlavius, and 5 individuals with intermediate phenotypes that had 
faint spots restricted to certain regions of their bodies. The analyses 
reported here used all collected individuals, including fishes with in-
termediate phenotypes (the presence or absence of intermediates 
did not change the observed results).

A portion of the mitochondrial COI gene (546 bp) was success-
fully amplified for all individuals. Regardless of how the data were 
analyzed, all results revealed low haplotype and nucleotide diversity. 
In total, nine haplotypes were recovered: one main haplotype shared 
between 45 individuals and eight singleton haplotypes (Figure 2). 
There was no genetic structure between either species or between 
any of the localities (ΦST = 0, for all comparisons). Furthermore, Fu's 
F statistic was negative in all comparisons (F = −9.1, p < 0.001 for all 
samples; F = −4, p = 0.001 for P. punctatus; F = −2.5, p = 0.006 for P. 
laticlavius). Overall, haplotype diversity was 0.282 for all samples and 
was 0.342 for P. punctatus and 0.222 for P. laticlavius, while nucleo-
tide diversity was 0.001 for all comparisons. All COI summary statis-
tics can be found in Table 2, and all sequences have been uploaded 
to GenBank under the accession numbers MK512611–MK512663.

3.3 | UCE phylogenomics and population genomics

UCEs were successfully sequenced for 49 individuals: 23 P. puncta‐
tus, 24 P. laticlavius, as well as two individuals of P. biafraensis used 
as outgroups. The average number of sequencing reads per individ-
ual was 2.8 million and ranged from ~941,000–4.7 million. A data 

TA B L E  1  Averages and ranges of meristic and morphological 
measurements of the two species

P. punctatus P. laticlavius

Dorsal‐fin spines VIII (VII–VIII) VIII (VII–VIII)

Dorsal‐fin rays 27 (25–28) 26 (24–28)

Pectoral‐fin rays 16 (15–17) 17 (15–17)

Anal‐fin spines III (II–III) III (II–III)

Anal‐fin rays 23 (22–24) 23 (22–24)

Predorsal length 3.2 (2.4–4.3) 3.3 (2.5–4.2)

Prepelvic length 2.9 (2.4–3.6) 3 (2.2–3.7)

Pre‐anal length 2 (1.8–2.7) 2 (1.3–3)

Body depth 1.8 (1.6–2.1) 1.9 (1.6–2.1)

Notes. All morphological measurements are in comparison with standard 
length. Modes are reported for meristic counts, and means are reported 
for measurement comparisons.

http://www.marspec.org
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matrix with a completeness of 70% was assembled for phylogenomic 
analyses, which contained 866 UCE loci, with an average UCE locus 
length of 963 bp. The resulting phylogenomic hypothesis failed to 
recover the two species as reciprocally monophyletic, with overall 
low support throughout the tree (Figure 3a).

Meanwhile, after filtering, the population genomic approach iden-
tified a total of 8,757 SNPs in the data, which was reduced to 864 SNP‐
loci after randomly selecting a single SNP per UCE locus. These SNPs 
had an average sequence depth of 30x coverage. The AMOVA found 
significant, albeit low, structuring between the two species (FST = 0.013, 
p < 0.001). If genetic variation is examined by sampling location, sig-
nificant structuring is found between Mexico and all other locations 
(FST = 0.014, p < 0.001 for Costa Rica comparison, and FST = 0.018, 
p < 0.001 for Panama comparison). However, no significant structure 
was found between Costa Rica and Panama (FST = 0.003, p = 0.198). All 
pairwise comparisons can be found in Table 3.

DAPC analyses that included P. biafraensis suggested the most 
likely number of clusters to be two, with the sister‐species pair P. 
punctatus and P. laticlavius together in a single group. This pattern 
could be driven by large genetic divergence between P. biafraensis and 
both TEP species, which could mask any subtle differences between 
the two TEP species. However, when the outgroup P. biafraensis is 
removed, the most likely number of clusters recovered is one, with 

both TEP species clustering together. This result can also be seen in a 
PCA of the SNP dataset, which reveals both species completely over-
lapping in 95% confidence intervals (Figure 3b). These results are mir-
rored by our STRUCTURE analyses. When testing between K = 1–5, 
a comparison of model outputs with the Evanno method recovered 
K = 2 as the most likely result, with K = 1 the second most likely 
number of clusters (Supporting information Appendix S1: Table S2). 
However, the two clusters recovered do not correspond to the two 
TEP species, but rather differences in allele frequencies for particular 
sets of loci (Figure 3c). Examining the distribution of individual locus 
FST values further reveals little to no divergence between the species. 
Most comparisons resulted in FST = 0, with the highest divergence for 
a locus being FST = 0.24 (Figure 3d). Even when the analyses were ex-
panded to include all 8,757 SNPs, no single locus was found to be al-
ternatively fixed between the two species. Furthermore, while results 
slightly vary when repeating all analyses with different sets of ran-
domly selected SNPs for each UCE locus, the overall conclusions re-
main consistent. Raw reads and assembled UCE loci for all individuals 
are deposited on GenBank under the project number PRJNA516931.

3.4 | Ecological Niche models

After accounting for duplicates and filtering questionable locality 
points, we recovered 86 occurrence points for P. punctatus and 50 
occurrence points for P. laticlavius. The PCA of the 11 environmental 
layers found that PC1 encompasses 48% of the environmental vari-
ation in these layers, and that PC2 encompasses 23% of remaining 
variation, together totaling ~71% of all variation in the environmen-
tal layers. Comparisons of niche equivalency and similarity both are 
concurrent with the null hypothesis that these species are occupy-
ing equivalent habitats (all p values >0.05; Supporting information 
Appendix S1: Figure S3)

3.5 | Systematic status of Prionurus punctatus 
Gill 1862

Morphological features distinguishing Prionurus punctatus from P. lat‐
iclavius are inconsistent and not related to any genetic relationships 

F I G U R E  2  Mitochondrial COI haplotype network for both 
species of Prionurus across all sampling sites. Each circle represents 
a unique haplotype, and the size of the circle corresponds to the 
number of individuals that have that haplotype. Perpendicular 
dashes on connecting lines represent missing haplotypes

P. punctatus Mexico
P. punctatus Costa Rica

P. laticlavius Costa Rica
P. laticlavius Panama

Grouping N Nh h π Fu's F

By species

P. punctatus 27 6 0.342 ± 0.117 0.001 ± 0.001 −3.965* 

P. laticlavius 26 4 0.222 ± 0.106 0.001 ± 0.001 −2.451* 

By locality

Mexico 20 3 0.195 ± 0.15 0.001 ± 0.001 −0.626

Costa Rica 21 7 0.5 ± 0.133 0.001 ± 0.001 −5.074* 

Panama 12 1 0 0 NA

Total 53 9 0.282 ± 0.082 0.001 ± 0.001 −9.099* 

Note. Number of individuals (N), number of haplotypes (Nh), haplotype diversity (h), nucleotide diver-
sity (π), and Fu's F are given for each type of group.
*Significant p‐values (p < 0.02; Fu, 1997). 

TA B L E  2  Mitochondrial DNA (COI) 
summary statistics for phenotypic groups 
and collection sites
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F I G U R E  3  Summary of nuclear UCE results. Maximum‐likelihood phylogeny inferred from 866 concatenated loci, with nodes collapsed 
that have a bootstrap support <50 (a). Principal components plot with ellipses representing 95% confidence intervals (b). The most 
likely STRUCTURE clustering result (c). Distribution of locus‐by‐locus FST analyses (d). For A and B, blue represents P. punctatus, and red 
represents P. laticlavius
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of distinct populations. Without any basis for recognizing these taxa 
as distinct, we formally recognize Prionurus punctatus Gill, 1862 as a 
junior subjective synonym of P. laticlavius (Valenciennes 1846).

4  | DISCUSSION

Slight differences in color patterns between populations can sug-
gest that such groups are following distinct evolutionary trajecto-
ries. However, even consistent differences in color patterns can 
sometimes be misleading, as contrasting phenotypes do not always 
correspond to distinct genetic clusters. The results from our study 
suggest that highly vagile Prionurus surgeonfishes in the TEP are a 
clear example of this paradox: two taxa that have been recognized 
as distinct species for over 150 years by the presence or absence of 
dark spots show no consistent morphological or genomic divergence.

This study represents the most comprehensive morphological 
analysis for P. laticlavius (including the former P. punctatus), as it in-
cludes historical specimens of both phenotypes, as well as individuals 
collected from offshore islands (Galapagos and the Revillagigedos). 
Overall, our results are very clear in showing complete overlap of all 
meristic counts and measurements between the two phenotypes. 
Perhaps the most unique observation is that the spotting pattern 
is not discrete, as suggested by the type specimens of these spe-
cies. Several individuals display faint spots on parts of their bodies 
(Supporting information Appendix S1: Figure S1), and while these 
phenotypic traits could be interpreted as evidence of hybridization 
without any other information, the lack of any genetic structuring 
between the species suggests that this is merely an intermediate 
phenotype between two populations.

Mitochondrial analyses revealed a single main haplotype dis-
tributed across the entire coastline of the TEP, resulting in low 
haplotype and nucleotide diversities. This genetic signature is typ-
ically observed in groups that have recently experienced a popula-
tion bottleneck, or recent founder events (Grant & Bowen, 1998). 
A founder event seems unlikely given that the TEP Prionurus are 
the sister group to P. biafraensis from the eastern Atlantic and must 
have had a common ancestor in the Central American Seaway 
prior to the closure of the Isthmus of Panama (Ludt et al., 2015). 
However, it is reasonable to expect that this group recently un-
derwent a population bottleneck. Using fossil calibrations, Ludt et 
al. (2015) estimated a crown age for the TEP Prionurus in the late 

Pleistocene, ~490,000 years before present (95% HPD intervals 
ranging from 70,000 years ago–1.2 million years ago). This diver-
gence estimate is contemporary with the climatic shifts promoted 
by the Pleistocene glaciations, which impacted many other marine 
organisms in a similar way (Ludt & Rocha, 2015). These climatic 
shifts also correspond with the appearance of upwelling areas and 
ENSO oscillations in the TEP (Cortes, 1997; Cortés, 2003). All of 
these changes contributed to a period of rapid community turn-
over in the reef structure of the TEP from a community composed 
of Atlantic‐related corals, to a community of sparsely distributed 
Pacific corals (Leigh, O'Dea, & Vermeij, 2014; López‐Pérez, 2017). 
This turnover could easily result in population fluctuations and po-
tential population bottlenecks.

In our comparison of nuclear loci, which are gathered from SNPs 
distributed throughout the entire genome, a similar pattern of little 
to no differentiation between the phenotypes was recovered. This 
dataset failed to reveal any alternatively fixed alleles between the 
two phenotypes. However, a low, but significant, FST was found be-
tween spotted and nonspotted individuals. This value was compa-
rable to FST estimates of different collection sites (e.g., Mexico vs. 
Central American localities), and these results suggest a possible sig-
nature of isolation by distance, which has been previously reported 
for other fishes of the TEP (Bernal, Gaither, Simison, & Rocha, 2017; 
Lessios & Baums, 2017). It would be tempting to suggest that SNPs 
gathered from UCEs lack sufficient signal to detect differentiation 
at this time scale given the conserved nature of these genomic 
regions. However, only the cores of these loci are conserved, and 
variation increases in the regions flanking this core (Faircloth et al., 
2012; Gilbert et al., 2015). In fact, SNPs gathered from UCEs have 
been proven informative in detecting population structure at shal-
low timescales for various taxa (e.g., in birds: Harvey, Aleixo, Ribas, 
& Brumfield, 2017; Oswald et al., 2016; Smith, Harvey, Faircloth, 
Glenn, & Brumfield, 2013, and fishes: Burress et al., 2018). Thus, it 
is likely that the similarities between the mitochondrial and UCE loci 
reflect an actual shared history, and that this situation echoes one in 
which a single species displays color variation across its range.

We compared the abiotic habitats that these phenotypic vari-
ants occupy to test whether ecology could be a driving factor in 
the divergence of these two groups. Using locality data from across 
the entire range of this species, we failed to detect any significant 
differences in the abiotic habitats that the two phenotypes occupy. 
However, these data are all associated with the abiotic habitat of 

TA B L E  3  Pairwise comparisons between species and locations for mtDNA COI (ΦST values reported below diagonal) and UCE SNPs (FST 
values reported above diagonal)

By species By locality

P. punctatus P. laticlavius Mexico Costa Rica Panama

P. punctatus – 0.013*  Mexico – 0.014*  0.018* 

P. laticlavius 0 – Costa Rica 0 – 0.003

Panama 0 0 –

*Significant AMOVA p‐values (p ≤ 0.05). 
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the region (e.g., temperature, salinity), and they do not take into 
account any biotic factors (e.g., coral cover, species interactions, 
productivity), which could differ throughout the range of the focal 
species. Despite this limitation, Prionurus appears to traverse mul-
tiple ecotypes of the region. This is well illustrated by the Central 
American faunal gap, an ~1000km stretch of coastal habitat lacking 
coral reef ecosystems that has been suggested as a barrier between 
the Mexican and Panamic provinces of the TEP, influencing the con-
nectivity and distribution of multiple species (Briggs, 1974; Hastings, 
2000; Robertson & Cramer, 2009; Springer, 1959). The two pheno-
types of P. laticlavius are roughly separated by this gap, however, the 
spotted phenotype does occur further south, suggesting this habitat 
discontinuity is not sufficient for restricting gene flow along the con-
tinental coast.

This study adds to the growing list of examples where differences 
in phenotype are not accompanied by genetic structure. Examples of 
this in reef fishes can be found in angelfishes (DiBattista et al., 2012; 
Schultz, Pyle, DeMartini, & Bowen, 2007), butterflyfishes (DiBattista 
et al., 2015), damselfishes (Leray et al. 2010), groupers (Craig et al., 
2006), and Caribbean hamlets (McCartney et al. 2003; Ramon et 
al., 2003; Garcia‐Machado, Monteagudo, & Solignac, 2004) among 
others. The latter is perhaps the most well‐studied example for reef 
fishes, where 11 distinct color phenotypes exist in a genetically 
homogeneous species complex (Puebla, Bermingham, & Guichard, 
2008). Genome scans have thus far only detected a single outlier 
locus, which corresponds to a Hox gene that could be associated with 
differences in coloration (Puebla, Bermingham, & McMillan, 2014). 
Something similar could be taking place in Prionurus, where slight 
differences in squamation patterns could be controlled by a small 
number of alternatively fixed loci. However, since these genomic re-
gions were not detected with our targeted capture approach, this 
hypothesis remains elusive.

While this study found a lack of divergence among two TEP 
surgeonfishes, it does give insight into the evolutionary processes 
that can take place in the region. Pleistocene glaciations resulted 
in the whole‐scale community turnover of corals in the TEP, which 
may have adversely impacted all reef‐dwelling species (López‐
Pérez, 2017). This study shows that a prominent, large‐bodied, 
schooling herbivore underwent a dramatic population bottleneck 
recently, possibly as a result of TEP environmental fluctuations 
during and after the closure of the Isthmus of Panama. A scenario 
where a severe population bottleneck results in several distant, 
small populations could lead to fixing of alternative spotting pat-
terns in this surgeonfish, which can be rapidly fixed through ge-
netic drift. In this case, incomplete dominance at a single locus 
could explain the prevalence of intermediate phenotypes, and 
this scenario could also explain the modal differences observed 
in the pectoral‐fin and dorsal‐fin ray counts between the two 
phenotypes.

In species that are more dispersal limited, or that have more rapid 
turnover rates with shorter generation times, these environmental 
fluctuations and corresponding population bottlenecks could result 
in isolated populations that ultimately form new species, suggesting 

a mechanism in which TEP in situ speciation can occur in allopatry 
(Hastings, 2000). However, this study also highlights why in situ spe-
ciation along the TEP coastline may be uncommon in large‐bodied 
fishes, as these surgeonfishes are perhaps some of the best dispers-
ers among reef fishes, and have long generations times (~45 years 
for other species of this genus; Choat & Axe, 1996) allowing pop-
ulations to regain connectivity after population bottleneck events. 
Additionally, such severe population crashes could also easily result 
in high extinction rates, contributing to the reduced diversification 
rates previously observed for this region (Cowman & Bellwood 
2013). Ultimately, an extended genomic approach that targets whole 
genomes, including samples from oceanic islands, could reveal the 
molecular underpinnings of the squamation patterns of P. laticlavius. 
Further studies including a diverse set of endemic taxa in the TEP 
are needed to shed light on how speciation occurs in one of the most 
distinctive tropical marine regions of the world.
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