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This short review provides an overview of the interactions of human immunodeficiency

virus type 1 (HIV), immune and inflammatory reactions, and CNS injury over the course of

infection. Systemic infection is the overall driver of disease and serves as the “platform” for

eventual CNS injury, setting the level of immune dysfunction and providing both the HIV

seeding and immune-inflammatory responses to the CNS. These systemic processes

determine the timing of and vulnerability to HIV-related neuronal injury which occurs

in a separate “compartment” with features that parallel their systemic counterparts but

also evolve independently. Direct CNS HIV infection, along with opportunistic infections,

can have profound neurological consequences for the infected individual. HIV-related

CNS morbidities are of worldwide importance but are enhanced by the particular

epidemiological, socioeconomic and environmental factors that heighten the impact of

HIV infection in Africa.
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INTRODUCTION

HIV is a retrovirus taxonomically grouped in the genus Lentivirus (1) that entered the human
population through multiple zoonotic infections from simian immunodeficiency virus–infected
nonhuman primates (2). Its double-stranded RNA genome is more complex than many other
retroviruses, and in addition to structural genes it contains several regulatory and accessory genes
that contribute to its detailed life cycle, protracted course and pathological consequences. While
all viral proteins presumably play a role in the character of infection, some have been singled
out as particularly important in determining the character of CNS infection and its consequences.
These include, for example, the env (envelope) gene that determines T-cell or macrophage tropism
(T- or M-tropism) that dominate in different phases of CNS infection (3); Likewise, the accessory
genes, including tat, may contribute to neurotoxicity (4). HIV is also subdivided into four groups
with several subtypes or clades (5). The importance of group and clade variations for neurological
complications, particularly those related to direct CNS infection, remains incompletely defined (6).
This review focuses on emerging concepts in the neurobiology of more “direct” CNS complications
of HIV-1 infection, particularly HIV-associated dementia (HAD) and, by inference, also milder
cognitive impairments.
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CLINICAL BACKGROUND

HIV Epidemiology and Impact in Africa
Since its onset, the HIV pandemic has disproportionately
impacted the African continent. While the first case definitions
for AIDS were developed in 1982 (7), by the end of 2001 there
were 40 million people living with HIV (PLWH), of whom 28.5
million (71%) were located in sub-Saharan Africa, at that time
without access to antiretroviral therapy (ART) (8). While ART
first became available to resource-rich countries in the 1990’s,
it took another decade of grass-roots political advocacy before
ART first became more widely available in Africa through the
United Nations Global Fund and the US President’s Emergency
Plan for AIDS Relief (9). Over the subsequent two decades,
there has been tremendous progress in scaling up HIV care
and treatment, and in 2021, 27.5 million PLWH globally were
taking ART.

However, there remain important gaps. The prevalence of
HIV in Africa varies widely among countries, from a low of
<0.1% in Algeria and Egypt to more than 19% in South Africa,
Botswana, Lesotho, and Eswatini (10). There remain 10.2 million
PLWH who are not on HIV treatment, and in 2020 there were
1.5 million new HIV infections and 680,000 deaths (11). In sub-
Saharan Africa, women and children are particularly vulnerable;
in sub-Saharan Africa, women aged 15–49 make up 52% of new
infections though they only represent 24% of the population.
Older children (age 5–14 years) make up two-thirds of those
not on treatment, and only 40% of children living with HIV had
suppressed viral loads, as compared to 67% of adults (11).

CNS Disease in Africa
CNS complications of HIV are important causes of morbidity
and mortality in Africa, and indeed globally (12). Descriptive
epidemiology of HIV-associated CNS disease in Africa is limited
by the availability of neurologists and advanced diagnostics such
as computed tomography (CT), magnetic resonance imaging
(MRI), and cerebrospinal fluid (CSF) analysis (13). Thus, many
studies and clinical management decisions rely on syndromic
clinical diagnoses with limited diagnostic precision, depending
on the local resources. However, CNS opportunistic infections
(OIs) are clearly common causes of hospitalization and may
cause approximately 20% of deaths (14, 15). For disorders such
as HIV-associated dementia (HAD) and, by inference, alsomilder
cognitive impairments, diagnostic precision is evenmore limited.

Estimates of the prevalence of HIV-associated cognitive
impairment have varied widely across the continent but are
comparable to other world regions (16, 17) and have generally
decreased as ART became more widely available (18–20). The
prevalence of mild impairment was reported to be between
40 and 55% and moderate to severe impairment between 3
and 25% in two large multi-country cross-sectional and cohort
studies using comprehensive neuropsychological test batteries
in the African continent [the AIDS Clinical Trials Group 5199
(17, 21) and the African Cohort Study (22)], and in several
larger studies from South Africa (23), Malawi (24), Tanzania (25)
and Zimbabwe (26). Cognitive development is also impacted in
pediatric HIV, where infants and young children with HIV do

not perform as well as their HIV-exposed or HIV uninfected
peers (27–30).

The variation in estimates of HIV-associated cognitive
impairment in across Africa may be due in part to the use of tests
with limited cultural validity, lack of well-matched norms and
relying on screening tools with limited sensitivity and specificity
when resources for neuropsychological testing are limited (31–
33). In particular, the clinical relevance of mild impairment on
neuropsychological tests in African populations is unclear (31)
and test performance is impacted by literacy (22) and education
level (23). HIV-uninfected individuals often perform poorly
on tests (22), there is significant between country variation in
normative data (21), and particularly among older individuals,
there may be no group level differences observed between HIV-
infected and -uninfected individuals (34, 35).

Pathophysiology: HIV Neuroimmune-Virus
Interactions and Their Impact on the CNS
Among the viruses considered in this collection, HIV likely
has the most complex and intimate interactions with the
immune system and inflammatory responses, both outside
(i.e., systemically) and within the CNS. In both systemic and
CNS compartments these interactions change over the long
course of chronic infection (36, 37). Figure 1 diagrams these
interactions, dividing the systemic (left) from CNS (right)
processes. The elements in these two compartments interact, and
more particularly, systemic HIV disease serves as the foundation
for the CNS complications in several aspects. It establishes
the conditions of immunosuppression and immune activation
that underlie CNS vulnerability (37–40), and, more directly,
supplies the key elements of neuropathogenesis, including
HIV invasion and major blood-derived cells involved in CNS
immune-inflammatory reactions. However, while CNS virus-
immune interactions partially echo those occurring systemically,
there are important differences, with the CNS interactions being
highly compartmentalized despite these systemic origins (36).

In both systemic and CNS compartments the interactions
of HIV and immune reactions evolve in important ways over
the protracted course of chronic untreated infection. While the
CNS infection echoes its systemic counterpart, it also diverges in
important details, including in virus populations and particular
inflammatory profiles (36, 41). If unchecked by ART this chronic
course may be complicated by a range of disorders afflicting the
brain, including major OIs and direct neuropathic HIV CNS
infection (42, 43). Because of space constraints, this review omits
detailed discussion of CNS OIs as well as disorders of the spinal
cord and peripheral nervous system (PNS) that may be impacted
by similar disease processes (44).

Progressive Systemic HIV Infection: Prerequisite and

Facilitator of Major AIDS-Associated CNS Diseases
Anumber of the features of systemic HIV infection are important
for the development of CNS HIV infection and disease.
Ultimately, these stem from the fact that CD4+ T lymphocytes
and, to a lesser extent, macrophages and related myeloid cells, are
the main cellular targets of HIV infection (45–50). This targeted
infection leads to progressive immunosuppression and also to
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FIGURE 1 | Interactions of HIV and immune-inflammatory responses in systemic and CNS infection. This simplified schematic outlines the systemic and CNS

viral-immune interactions that determine the immunopathogenesis of CNS injury. Systemic interactions (shown in the left part of the figure) establish the foundation for

CNS vulnerability that are partly echoed by interactions within the CNS (right part of the figure), though with important differences. (A) HIV targets CD4+ T

lymphocytes (and to a lesser degree myeloid cells) in which viral replication both sustains viremia and establishes long-term viral persistence, leading to gradual T-cell

loss and immunosuppression and to lifelong infection. Virus-induced T-cell activation, in turn, enhances viral replication and dissemination. (B) Systemic viremia is the

source of CNS HIV infection, beginning early in infection, likely mainly via infected T cells that migrate through the blood-brain barrier (BBB, depicted by vertical dotted

line). (C) Cells important to the CNS inflammatory response also derive from blood sources; these include CD4+ and CD8+ T cells and macrophages that elaborate

cytokines and other signaling and toxic molecules that contribute to the compartmentalized CNS inflammatory response within the CNS and are reflected in CSF. (D)

HIV can replicate locally within these migrating CD4+ T cells and macrophages sustaining a genetically independent infection and perhaps establishing a longer-lived

second viral reservoir within the CNS. (E) The interaction of the local HIV infection with “imported” inflammatory cells and native CNS cells (including astrocytes and

microglia) establish an independent inflammatory milieu that evolves over the course of disease and is particularly heightened in HAD/HIVE. (F) Both HIV gene

products and (G) host inflammatory reactions likely contribute to ‘indirect’ CNS injury. (H) inflammatory reactions can disrupt the blood-brain barrier, further

exacerbating this injury. (I) CNS OIs may involve a similar pathway, first with loss of systemic immune surveillance allowing entry or activation of pathogens that then

invade the CNS and cause neurological disease by direct injury or through a local inflammatory response. (J) ART reverses or mitigates all of these processes. By

suppressing HIV replication, treatment fosters a variable degree of CD4+T cells restoration and partial reversal of these pathological processes. Abrupt restoration of

immunity may lead to robust local inflammation and the immune restoration inflammatory response (IRIS) with exacerbation of neurological symptoms and signs. The

blood-brain barrier variably impedes CNS concentrations of certain drug components of ART, delaying or reducing local antiviral effects and, in rare cases,

contributing to the development of neurosymptomatic CSF escape despite systemic viral suppression.

a state of enhanced immunoactivation, with both contributing
to CNS disease consequences (51–54). HIV infection is chronic
and persistent, but importantly mitigated by ART. It remains,
however, a major challenge to therapeutic cure efforts (55, 56),
and stopping ART almost inevitably leads to a return of viremia
accompanied by CSF viral rebound (57, 58).

Complications of HIV vary with the stage of systemic
disease progression, most easily assessed by the blood CD4+
T lymphocyte count (38, 59, 60). AIDS is defined by the
development of major OIs (and, in parallel, including HIV-
associated dementia,HAD) or by a CD4+ count falling below 200
per µl (61).

CNS OIs develop when there is loss of systemic immune
surveillance that allows certain organisms to escape a latent or
quiescent presence in the body (e.g., JC virus or Toxoplassma
gondii) or to evade defenses that would otherwise prevent
systemic dissemination (e.g., Cryptococcus neoformans); this
is followed by subsequent failure of these same defenses to
eliminate these pathogens within the CNS. The spectrum of
common CNS OIs is relatively circumscribed and involves
organisms of relatively low pathogenicity that are otherwise
readily contained or prevented by T-cell/macrophage defenses in
the normal host. In Africa where M. tuberculosis is common in
the community, HIV infection also enhances susceptibility even
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if this organism isn’t readily classified as strictly “opportunistic”
and is more common even at CD4 counts above those defining
AIDS (15). However, the common CNS OIs generally occur
at <200 CD4+ cells/µl (43). We emphasize this well-known
susceptibility here because this also defines the susceptibility
to HIV encephalitis (HIVE) and HAD which usually develops
below this T-cell threshold (62), indicating that a similar level
of immunosuppression is a prerequisite. In a sense HIVE
might also be viewed as a CNS OI in which the same virus
“creates the opportunity” through chronic systemic infection
of CD4+ T cells before it can then “opportunistically” cause
encephalitis. However, as discussed below, this does not apply
to overall susceptibility to CNS HIV infection per se, but
to “invasive” neuropathic encephalitic infection. In fact, low-
grade HIV-1 meningeal infection is a common feature of
systemic HIV infection that develops early in its course (37).
The CNS is exposed to HIV very early in systemic infection,
though it is often silent or accompanied by headache, fatigue
or other unspecific symptoms. More rarely, acute encephalitis
may develop during primary infection, likely involving an
immunological pathogenesis (63). Over the course of chronic
infection, milder neurocognitive impairment may develop and
relate to low-grade forms of the viral and immunological
processes that underlie HAD/HIVE, though these connections
remain to be more precisely defined.

Systemic Origin of the Elements of CNS Infection
In addition to providing the background foundation and
necessary level of immunosuppression for OIs and HIVE,
systemic infection more directly underlies HIV CNS disease by
providing both the invading virus and principal inflammatory
cells that react to infection and contribute to immunopathology.

Most probably, HIV seeding of the CNS occurs via trafficking
infected CD4+ T cells rather than by more direct virion
penetration of the blood-brain barrier (64, 65). Infected
cells entering the CNS can clonally expand and release
(clonal) virus; this can then lead to further infection of
susceptible cells, amplifying infection and establishing local
replication (66). During later stage infection monocytes may
also enter the CNS (65–70). This later CNS infection may
be more compartmentalized with more notable evolution of
virus populations independent of those examined in blood.
Uninfected CD4+ T cells and monocytes may also enter the
CNS contributing to amplified infection. This can also lead
to local CNS HIV persistence after treatment, though, this
has been less clearly defined, including the types of cells and
anatomic locations, state of viral expression and mechanisms of
replication control.

Dynamics of CNS Infection With Disease Progression:

Transition From Meningitis to Encephalitis
A central feature of CNS HIV infection is its changing character
with systemic disease progression. This includes shifts in the
relation of CSF and blood viral populations (71–73), changes
in the accompanying inflammatory profiles (36) and eventual
shift in the main anatomic site of productive infection from the
leptomeninges to the brain in some individuals. In the earlier

phase of infection when blood CD4+ T cell levels are above 200
per µl, the leptomeninges are the most conspicuous location of
chronic CNS HIV-1 infection so that a clinically silent aseptic
meningitis is frequent. This infection is largely “equilibrated”
with CSF HIV RNA concentrations maintained at levels near
10 percent of those in blood (37, 74, 75), and CSF and blood
populations are genetically similar (76), presumably because of
continuous and fresh virus traffic from blood to CSF. When
CD4 cells fall below 50/µl, the ratio of CSF to blood virus
deceases to near 1% blood HIV RNA levels as CSF pleocytosis
also diminishes, consistent with a relation between CSF WBCs
and viral load (77–80). The extent of penetration of infection into
the brain parenchyma at this stage is uncertain, but if present it is
largely clinically silent. Whether this early type of infection and
inflammation is responsible for milder cognitive impairment is
still not definitively established, though often presumed.

These relationships change in those who develop HIVE
that presents clinically as subacute HAD (36). This condition
usually develops after blood CD4+ cells fall below 200/µl and
represents an extension of infection frommeninges into the brain
parenchyma. White matter abnormalities are usually prominent
on MRI but gray matter also is frequently affected, particularly
the basal ganglia (81–83). While inflammation in those without
HIVE largely involves lymphocyte-related cytokines, as CD4+T
cell counts fall, macrophage-related inflammation increases. In
those with overt HIVE there is augmentation of both lymphocytic
and macrophage biomarkers (36). CNS viral populations in
these individuals are more compartmentalized in relation to
those in blood, and exhibit macrophage tropism (76, 84). While
astrocytes can be infected by HIV, this is usually considered to
be non-productive with limited gene expression; hence, their
role in persistence and neuropathogenesis is still uncertain (85,
86). Importantly, neurons are not infected, and thus damage
to neurons is largely or exclusively by “indirect” mechanisms,
meaning that they are injured from without by signals and toxins
released by neighboring cells rather than from direct effects
of viral genes and their products expressed within these cells
(87). Likely the external toxic signals are elaborated mainly from
inflammatory cells, perhaps predominantly from macrophages
and other myeloid cells. Late in infection HIVE also commonly
disrupts the blood-brain barrier, further contributing to neuronal
injury and dysfunction (36, 88, 89).

Impact of ART on CNS Infection and Disease
ART has had a profound effect on preserving CNS integrity,
both in preventing HAD/HIVE development and in mitigating
this CNS disease after it manifests (90, 91). This effect may be
in part through preservation or restoration of immunity but
mainly by more directly suppressing both systemic viremia and
HIV replication within the CNS. As a result, HAD incidence
is now markedly reduced and confined largely to those not
receiving ART.

For individuals who present with HAD, having fallen through
defects in the treatment network, ART can arrest and often
reverse the severity of its impact, depending on the time frame
of HAD development and treatment initiation. Diagnosis should
be made quickly, and treatment begun rapidly. This is a setting
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in which both the antiviral potency and CNS penetration of the
components ART regimens are likely important (92, 93). In some
of treated individuals the degree of short- and long-term recovery
can be remarkable.

CSF Escape
This term refers to situations in which the impact of ART on
CNS HIV infection is relatively reduced compared to that on
systemic infection, leading to CSF HIV RNA levels exceeding
those of plasma (94–98). Three distinct types of CSF escape have
been defined: asymptomatic, neurosymptomatic and secondary.
The most important of these is neurosymptomatic CSF escape in
which ART-treated individuals present with new or progressive
neurological deficits (96–100). Most often, in addition to
symptoms and signs of CNS injury and dysfunction, there is
CSF pleocytosis, elevated CSF neurofilament light chain protein
(NfL) concentration, and neuroimaging abnormalities consistent
with active CNS HIV infection. Neurosymptomatic escape
overlaps with pathologically-defined CD8 encephalitis (101–
103). Inmost cases a background of reduced treatment adherence
and drug resistance, at times in combination with insufficient
CNS penetration of component antiviral drugs, can be identified
(96). This provides further support for the need for targeted
treatment of CNS, at least in some settings. Inflammation and
immunopathology may be an important mechanistic component
in this setting in which CD4+T cell counts are higher than in
HAD/HIVE because of the disproportionate systemic efficacy of
ART that fosters CD4+ cell recovery and suppresses systemic
viremia. CNS HIV isolates often exhibit drug resistance, though
not always. The main avenue of treatment is changing the ART
regimen to a potent antiviral drug combination that includes
component drugs to which the CSF/CNS virus is susceptible and
also achieve therapeutic brain concentrations.

The other two forms of CSF escape are of less clinical
importance. Asymptomatic escape is an incidental findingmainly
in CSF cohort studies. It is characterized by detectable CSF HIV
RNA in the presence of plasma viral suppression; CSF HIV RNA
levels are usually low with little or no pleocytosis. By definition

these individuals lack new neurological symptoms or signs (104,
105). Secondary escape entails a disproportional increase in
CSF HIV RNA in association with another CNS inflammatory
process (usually another CNS infection) that provokes local
HIV replication through recruitment of activated lymphocytes.
Treatment of the provoking infection leads to reduction of the
CSF HIV RNA elevation (79).

CNS Persistence and Cure
Despite the effectiveness of ART in suppressing systemic and
CSF HIV infection, it does not cure HIV. When ART is stopped,
viremia and CNS replication re-emerge (106). Because of this
intractable persistence of HIV, efforts are now underway to
effect a systemic cure using a variety of strategies (55). There is
precedent with bone marrow transplant using an HIV-resistant
donor. In one well-studied case, not only was there no evidence
of viral persistence systemically but also no trace of virus in CSF
(107). More broadly it remains an open issue as to whether the
CNS serves as an independent viral reservoir that might require
CNS-targeted cure strategies.

CONCLUSION

CNS HIV infection is a component of the “ecology” of HIV,
an offshoot of systemic viremia that can lead to important
morbidity and mortality. Fortunately, ART has a major impact
on CNS infection and its effects, from Pre-Exposure Prophylaxis
(PrEP) preventing initial infection, to early treatment of infection
that likely reduces the CNS reservoir (91), to treatment of
established HAD/HIVE. Thus, while additional interventions,
including vaccines and cure efforts are welcome, widespread use
of preventative and therapeutic ART continue to have a major
impact on neurological disease in HIV and AIDS.
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