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+e adaptability of heart to external and internal stimuli is reflected by the heart rate variability (HRV). Reduced HRV can be a
predictor of negative cardiovascular outcomes. Based on the nonlinear, nonstationary, and highly complex dynamics of the
controlling mechanism of the cardiovascular system, linear HRV measures have limited capability to accurately analyze the
underlying dynamics. In this study, we propose an automated system to analyze HRV signals by extracting multimodal features to
capture temporal, spectral, and complex dynamics. Robust machine learning techniques, such as support vector machine (SVM)
with its kernel (linear, Gaussian, radial base function, and polynomial), decision tree (DT), k-nearest neighbor (KNN), and
ensemble classifiers, were employed to evaluate the detection performance. Performance was evaluated in terms of specificity,
sensitivity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic
curve (AUC). +e highest performance was obtained using SVM linear kernel (TA� 93.1%, AUC� 0.97, 95% CI [lower
bound� 0.04, upper bound� 0.89]), followed by ensemble subspace discriminant (TA� 91.4%, AUC� 0.96, 95% CI [lower bound
0.07, upper bound� 0.81]) and SVM medium Gaussian kernel (TA� 90.5%, AUC� 0.95, 95% CI [lower bound� 0.07, upper
bound� 0.86]). +e results reveal that the proposed approach can provide an effective and computationally efficient tool for
automatic detection of congestive heart failure patients.

1. Introduction

Heart rate variability (HRV) signals are extracted from
electrocardiogram (ECG) [1], which is a noninvasive marker
for monitoring an individual’s health. +e time interval
between two consecutive R-peaks in an ECG is called an RR
interval or interbeat interval.+e analysis of variations in the
interbeat intervals is called HRV analysis, which has diverse
applications in various fields of clinical research to examine a
wide range of cardiac and noncardiac diseases, including
myocardial infarction (MI) [2], hypertension [3], sudden
cardiac death (SCD) and ventricular arrhythmias [4], and
diabetes mellitus (DM) [5]. A low or depressed HRV is seen

in congestive heart failure (CHF) patients. It is hard to
visually identify the minute variations in HRV signals be-
cause ECG signals contain noise and baseline shift. +us,
analysis of such type of signals using traditional methods and
visual detection is challenging, inappropriate, and time-
consuming. Moreover, the parameters of HRV are affected
by respiration [6], instantaneous variation [7], and motion
artifacts [8]. +us, to minimize these obstacles of visual and
manual interpretation, researchers developed computer-
aided diagnostic (CAD) techniques for HRV analysis.

About 26 million people are suffering from CHF around
the world [9]. +is is the pathophysiological condition in
which the heart cannot provide enough blood to meet the
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body’s requirements [9], resulting in the reduction in the
ventricle’s ability to pump blood [10]. +e most common
indications of CHF include dyspnea, edema, fatigue [9, 10],
heart valve disease, myocardial infarction (MI), and dilated
cardiomyopathy [11]. CHF patients are more susceptible to
sudden cardiac death [12]. Hence, CHF must be detected at
the early stages. In this work, we aim to develop a system that
can automatically distinguish between normal persons and
CHF patients using heart rate variability (HRV) signals.

Interbeat intervals cannot be easily analyzed using visual
detection, which may lead toward inaccurate classification of
normal and diseased subjects. In this regard, various tech-
niques [1] have been developed for automated detection and
prediction of normal and abnormal HRV signals, including
discrete wavelet transform (DWT) and empirical mode
decomposition (EMD). HRV signals have been used to
diagnose coronary artery disease (CAD) automatically [13].
Likewise, these signals have also been used to detect ar-
rhythmia [14], risk of cardiovascular diseases [15], post-
myocardial infarction (MI) patients, hypertension [16], di-
abetes [17], and sudden cardiac death [4].

Researchers [18] used time domain analysis techniques
to analyze HRV signals and observed that CHF has an as-
sociation with autonomic dysfunction. Frequency domain
measures such as low frequency (LF), very low frequency
(VLF), high frequency (HF), ratio of LF and HF, and total
power from the HRV signals have been used for assessing
cardiac autonomic control [17]. It was observed that VLF
power is an independent risk predictor in CHF patients. A
decrease in HRV has been observed in CHF patients in
comparison to healthy persons [19]. Likewise, researchers
[20] computed the standard deviation of normal to normal
beat interval (SDNN) and used it for discriminating normal
and CHF subjects. +e researchers [21] analyzed the HRV
signal of low-risk patients (LRP) and high-risk patients
(HRPs) of CHF using time and frequency domain measures.
It was observed that frequency domain parameters calcu-
lated from HRV signals were low in HRPs, except LF/HF
ratio. Moreover, researchers [21] studied the dynamics of
HRV in CHF patients and found lower values of standard
HRV measures, except HF power. +e lower values of HRV
parameters have a correlation with the functional severity of
heart failure [21]. Kumar et al. [22] proposed an automated
method to diagnose CHF using HRV signals. +is method is
based on FAWT by decomposing the HRV signals into
different sub-band signals. Further, accumulated permuta-
tion entropy (APEnt) and fuzzy entropy (AFEnt) are
computed over cumulative sums of these sub-band signals.
Soni et al. [23] proposed data mining techniques for pre-
dicting heart diseases. +ey observed that data mining
techniques such as decision tree (DT) and Bayesian network
(BN) approach outperformed other predictive methods such
as KNN and neural networks. +e classification accuracy of
DTand BN after applying the genetic algorithm by reducing
the data dimension to obtain an optimal subset of attributes
improved heart disease prediction [24]. Heart rate signals
are nonlinear, nonstationary, complex, and time variant.
Based on these characteristics, we extracted multimodal
features from these signals and used robust machine

learning to distinguish NSR and CHF subjects. We used
jack-knife 10-fold cross-validation and evaluated the per-
formance in terms of sensitivity, specificity, positive pre-
dictive value, negative predictive value, and total accuracy.

2. Material and Methods

Figure 1 shows a schematic diagram to illustrate the pro-
cedure used for the classification of NSR and CHF subjects
by using multimodal features.

2.1. Dataset. +e RR interval time series data were taken
from the Physionet databases [25]. +e fluctuations in the
cardiac interbeat interval (RR interval) time series data of
normal sinus rhythm (NSR) subjects, congestive heart
failure (CHF) subjects, and atrial fibrillation (AF) subjects
were studied [25]. +e data of NSR subjects were taken from
24-hour Holter monitor recordings of 72 subjects consisting
of 35 men and 37 women (54 from the RR interval normal
sinus rhythm database and 18 from the MIT-BIH normal
sinus rhythm database). +e age of the measured group was
54.6± 16.2 years (mean± SD), range 20–78 years. ECG data
were sampled at 128Hz. +e CHF group comprised 44
subjects, 29 men and 15 women aged 55.5± 11.4 years, range
22–78 years. +e data of 29 CHF subjects were obtained
from the RR interval congestive heart failure data and 15
from the MIT_BIH Bidmic congestive heart failure database
[25]. CHF subjects can be classified into four groups
according to the New York Heart Association (NYHA)
functional classification system. +is system classifies pa-
tients according to the symptoms to everyday activity and
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Figure 1: Schematic diagram for the classification of NSR and CHF
subjects.
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quality of life of patients. In this study, we considered 20,000
samples for all subjects, including both CHF and NSR
subjects, while extracting features.

2.2. Feature Extraction. In most of the classification and
regression problems, the first and foremost step is to extract
the most relevant features. To predict colon cancer, re-
searchers in the past [26] extracted hybrid and geometric
features. Moreover, to detect breast cancer, Dheeba et al. [27]
extracted texture features. Wang et al. [28] extracted mul-
timodal features from multimodal domains such as time
domain, frequency domain, and complexity-based features
to detect epileptic seizure. +is will give a unified framework
to include the advantages of varying characteristics of EEG
signals. Moreover, nonlinear dynamics based on the KD tree
algorithm (fast sample entropy) provide better results than
the traditional entropy methods.

To capture the temporal short-, medium-, and long-term
dynamics from the physiological signals and systems, we
computed the time domain features from the CHF and
normal subjects. Moreover, for spectral dynamics, we
extracted the frequency domain features. +e statistical
features were also computed to capture basic statistical
properties from these signals. Moreover, most of the
physiological signals are nonlinear in nature and contain
complex hidden dynamics, which can be best detected using
entropy-based computational features. +us, in this study,
we extracted linear features such as time domain, frequency
domain, and statistical and nonlinear features, such as en-
tropy-based complexity features and wavelet entropy fea-
tures, to differentiate normal subjects from CHF subjects. In
order to judge the efficiency of the features, we applied t-test
and ROC curve as previously employed by the researchers
using different rank tests [29–31].

2.2.1. B.B.A. Linear Methods. To measure the variability in
physiological signals (i.e., EEG or ECG) affected by different
pathologies, the time and frequency domain methods are
widely used to capture the time and spectral dynamics in
these signals. +e time domain methods are used to capture
the short-, medium-, and long-term variations present in the
physiological signals and systems, whereas to capture the
dynamics present in different spectra, frequency domain
features are computed.+ere are literature evidences [32, 33]
for patients who suffered from different variability dys-
functions [34–40], including heart rate variability, breathing,
depression, pulse variability, insomnia problems, and
epilepsy.

2.2.2. B.B.B. Nonlinear Methods. Biological signals are the
output of multiple interacting components and exhibit
complicated patterns and rhythms. +ese rhythmical
changes and patterns contain very useful hidden informa-
tion to study the underlying dynamics of these systems. It is
unrealistic to extract valuable information using traditional
data analysis techniques.+e complexity of the physiological
systems comprised structural components and coupling

among them, which is degraded with aging and disease.
Following are the most commonly used complexity base
measures as detailed in [28]. +e complexity of healthy
subjects computed using entropy methods is higher than
that of diseased subjects. +e reason behind this analogy is
that all the structural components and coupling functions
among the structural components in these healthy subjects
are properly working and connected for communication,
thereby increasing their entropy values and complexity. On
the other hand, the entropy and complexity of the diseased
subjects are reduced because of the degradation of the
coupling among the structural components.

2.2.3. Approximate Entropy. Pincus in 1991 proposed ap-
proximate entropy (ApEn) [41] to quantify the regularity
present in the time series data. +is entropy measure in-
dicates that the probability of similar observation patterns
does not repeat. Mathematically,

ApEn(m, r, N) � ∅m
(r) − ∅m+1

(r). (1)

To compute the approximate entropy, two criteria are
set, i.e., m, which is the window length and r, the similarity
criteria. In this study, we choosem� 3 and r� 0.15 times the
standard deviation of data as offered in [41].

2.2.4. Fast Sample Entropy with KD Tree Approach.
Sample entropy (SampEn) as proposed by [42] is a modified
form of approximate entropy. Sample entropy in compar-
ison to approximate entropy is more robust because it is
independent of data length and trouble-free
implementation.

Bentley in 1975 developed a binary tree algorithm known
as Kd tree algorithm. Its each “v” node is associated with a
rectangle Bv. If Bv does not contain any point in its interior,
the “v” will be the leaf node. In other cases, Bv will be
partitioned into two rectangles by drawing a horizontal and
a vertical line such that each rectangle contains at most half
of the points. +e computation of Kd tree algorithm is
detailed by [28]. +e time and space complexity is reduced
using the following steps.

Step 1. Transform the original discrete time series to a
special set from x � x1, x2, x3, . . . , xN{ }.
Step 2. +e d-dimensional kd tree is constructed using
N-m points for which the total cost is O(N long N) and
memory is O(N).
Step 3. Range query; For d-dimensional kd search, the
time cost is NO(N1(1/d)) forN queries and the memory
cost is O(N).

2.2.5. Wavelet Entropy. Researchers in the past also com-
puted wavelet-based entropic measures to capture the
nonlinearity present in the data. +e most common wavelet
entropy methods [43] include Shannon, +reshold, Log
Energy, Sure, and Norm. Shannon entropy [43] was
employed to measure signal complexity by computing
wavelet coefficients generated from wavelet packets (WPT),
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where larger values show high uncertainty process and,
therefore, higher complexity. Moreover, Rosso et al. [44]
employed wavelet entropy to capture the underlying dy-
namical process associated with the signal. +e entropy “E”
must be an additive information cost function such that
E(0)� 0.

E(S) � 􏽘
i

E Si( 􏼁, (2)

where on an orthonormal basis S is the signal and (Si) are the
signal coefficients, and P is the threshold, which is always
greater than or equal to 0.

+e Wentropy method was used to compute the wavelet
entropy as shown below.

Figure 2 depicts the flow of computing wavelet entropy
by selecting different wavelet functions, such as threshold,
norm, sure, and log energy.

+e computation of wavelet entropy packets (Shannon,
norm, log energy, threshold, and sure) as reflected in
equations (3)–(9) is detailed in [45–47].

2.2.6. Shannon Entropy. In 1948, Claude Shannon first
proposed the Shannon entropy [48], which is most widely
used in the information sciences. Moreover, it is a measure
of the uncertainty linked with a random variable. Specifi-
cally, Shannon entropy quantifies the expected value of the
information contained in a message. +e Shannon entropy
of a random variable X can be defined as follows:

V(X) � V P1, . . . , Pn( 􏼁 � − 􏽘
n

i�1
Pilog2Pi, (3)

Pi � Pr X � xi( 􏼁, (4)

where Pi is defined in equation (3), with xi indicating the ith
possible value of X out of n symbols, and Pi denoting the
possibility of X � xi.

2.2.7. Wavelet Norm Entropy. +is entropy measure pro-
posed by [49] can be mathematically expressed as follows:

E(S) �
􏽐i Si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

N
, (5)

where p is the power and must be 1≪P< 2 the terminal
node signal and (si) is the waveform of terminal node signals.

2.2.8. �reshold Entropy. +e threshold entropy was com-
puted with threshold at 0.2.

2.2.9. Sure Entropy. +e parameter P is used as threshold
and the values of P ≥ 0.

E(s) � n − # i such that |si|≤p􏼈 􏼉 + 􏽘
i

min si2 ,p2( ), (6)

HSure(B) � − 􏽘
N− 1

i�1
Pi(B)log 2 Pi(B)( 􏼁. (7)

+e Sure entropy was computed with threshold at 3.

2.2.10. Norm Entropy. In norm entropy, p is used as power
and the value of P≥ 1. +e concentration in lp norm entropy
is as follows:

E(si) � si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
,

soE(s) � 􏽘
i

si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

i
� ‖S‖

p
p.

(8)

+e norm entropy was computed with power at 1.1.

2.2.11. Log Energy

HlogEn(B) � − 􏽘
N− 1

i�0
log2 Pi(B)( 􏼁( 􏼁

2
, (9)

where Pi(B) denotes the probability distribution function
and is a logarithmic sum of the square of these probabilities’
distribution.

3. Classification

Classification is a process of categorizing based on the
extracted features. In machine learning, there are different
types of classification techniques, such as supervised, un-
supervised, and re-enforced learning. Researchers in the past
employed robust machine learning classifiers such as sup-
port vector machine (SVM), decision tree (DT), K-nearest
neighbors (KNNs), and Näıve Bayes, and ensemble classi-
fiers in detecting and predicting colon cancer [26, 50]. +us,
in this study, we employed supervised learning based on
label class data including support vector machine (SVM),
decision tree (DT), K-nearest neighbor (KNN), and en-
semble classifiers.

3.1. Support Vector Machine. Support vector machine
(SVM) is the most important technique of supervised
learning methods, which is also used for classification
purposes. For solving the problems related to pattern rec-
ognition [51], medical analysis area [52, 53] and machine
learning [54], recently SVM, are used. Furthermore, SVMs

X (input vector), T (type of
entropy), P (optional parameter)

Wavelet entropy

E (output)

Figure 2: Computation of wavelet entropy.
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are also used in many other fields, such as detection and
recognition, recognition of text, image retrial based on
contents, biometric systems, and speech recognition. To
build a single hyperplane or a set of hyperplanes in infinite
space or high dimension, SVM is used. For obtaining a good
classification, this hyperplane may also be used. By imple-
menting this, a hyperplane that has the greatest distance to
the nearby training point of any class is achieved. Usually, a
lower generalization fault of the classifier is achieved by a
larger margin.

Support vector machine tries to find a hyperplane that
gives the training example with the greatest minimum
distance. In support vector machine theory, this is also
termed as margin. For maximized hyperplanes, the best
margin is attained. +ere are additional significant char-
acteristics for SVM that provide better generalization results.
Support vector machine mainly has a two-type classifier
which converts data into a hyperplane dependent on data
that are nonlinear or dimensionally higher. +e SVM hy-
perplane, maximizing margin, and the kernel tricks as re-
flected in equations (10)–(17) are detailed in [55–57].

Let us express a hyperplane by: x · w + b � 0. Here, w is a
normal. +e data that are separated linearly are labeled as
follows:

xi, yi􏼈 􏼉, xi ∈ R
N

d, yi ∈ − 1, 1{ }, i � 1, 2, . . . , N, (10)

where yi is used as a two-class SVM class label. When
objective function is maximized, the boundary obtained is
optimum with the greatest margin: E � w2 gives

xi · w + b≥ 1, foryi � +1,

xi · w + b≤ 1, foryi � − 1.
(11)

Combining these into a set of dissimilarities as

xi.b + b( 􏼁yi ≥ 1, for all i. (12)

When the data are not linearly separable, then a slack
variable Ξi to represent the amount of misclassification rate

is used as reflected in Figures 3(a) and 3(b). +us, the ob-
jective function in this case can be defined as

E �
1
2
‖w‖

2
+ C 􏽘

i

L Ξi( 􏼁. (13)

Subject to

xi.b + b( 􏼁yi ≥ 1 − ξi, for all i. (14)

On the right-hand side, the first term denotes the reg-
ularization term which gives the ability to SVM for gen-
eralization on the sparse data, whereas the second term
represents the empirical risk for the points that lie within the
margin or are misclassified. Here, L represents the cost
function and C denotes the hyper-parameter, which shows
the trade-off effect by minimising the empirical risk against
maximizing themargin. To detect the outlier, the linear error
cost function is used. +e dual formulation with
L(Ξi) � Ξi is

α∗ � maxα 􏽘
i

αi + 􏽘
i,j

αi αj yi yj xi xj
⎛⎝ ⎞⎠. (15)

Subject to

0≤ αi ≤C,

􏽘
i

αi yj � 0.
(16)

Here, α � α1, α2, α3, . . . , αi􏼈 􏼉 is a set of Lagrange mul-
tipliers of the constraints in the primal optimization
problem. +e optimal decision boundary is now given by

w0 � 􏽘
i

αixiyi. (17)

3.1.1. Kernel Trick. For data that are not linearly separable,
Muller et al. [59] recommended kernel trick to handle this
type of data. To cope up with this type of problem, the
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Ф
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Figure 3: (a) Error on margin using slack variable, (b) SVM nonlinear separation.
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nonlinear mapping function from the input space is
transformed into a higher dimensional feature space. +us,
in the input space, the dot product between two vectors is
expressed by the dot product with some kernel functions in
the feature space. +e commonly used kernel functions are
as follows.

3.1.2. SVM Polynomial Kernel

K xi, yi( 􏼁 � xi.yi + 1( 􏼁
n
. (18)

3.1.3. SVM Gaussian (RBF) Kernel

K xi, yi( 􏼁 � exp
− 1
2

xi − yi

����
����
2

σ2
⎛⎝ ⎞⎠. (19)

3.1.4. SVM Fine Gaussian (RBF) Kernel

K xi, yi( 􏼁 � exp
− 1
2

xi − yi

����
����′ xi − yi

����
����

σ2
􏼠 􏼡, (20)

where n is the order of polynomial kernel and σ is the width
of RBF.+e dual formulation for a nonlinear case is given by

α∗ � maxα􏼠 􏽘
i

αi + 􏽘
i,j

αi αj yi yjK xi · xj􏼐 􏼑􏼡. (21)

Subject to

0≤ αi ≤C,

􏽘
i

αi yj � 0.
(22)

+e performance of SVM classifiers depends on several
parameters. One of the famous methods is the grid search
method, which selects the optimal parameter value by setting
carefully the grid range and step size. In linear kernel, only
one parameter, i.e., “c” a soft margin constant, is used, which
represents the constraint violation cost associated with the
data point lying on the wrong side of the decision boundary.
However, the SVM with Gaussian and RBF has two training
parameters: cost (c), which controls the overfitting of the
model, and sigma (), which controls the degree of nonlin-
earity of the model. In this study, we used the default values
of both cost function and sigma. For SVM fine Gaussian, the
default kernel scale was selected as 0.61; for medium
Gaussian, the kernel scale was 2.4; and for coarse Gaussian,
the kernel scale was 9.8.

3.2. Decision Tree (DT). +e DT classifier checks the dataset
similarity that is given and classifies it into different separate
classes. Decision trees are used for making classifiers of data
depending on the choice of a feature, which fixes and
maximizes the data division. +ese attributes are separated
into different branches until the end criteria are met. +e
mathematical formulations are described in [59] for equa-
tions (23) and (24).

+e decision tree classifier is based on supervised
learning technique, which uses a recursive approach by
dividing a dataset in order to reach a similar classification of
a goal like below (Figure 4.

Mathematically, the following algorithm is used to
compute the DT:

X � X1, X2, X3, . . . , Xm􏼈 􏼉
T
,

Xi � x1, x2, x3, . . . , xij, . . . , xin􏽮 􏽯,

S � S1, S2, S3, . . . , Si, . . . , Sm􏼈 􏼉.

(23)

In the above equations, m denotes the available quantity
of observations, n denotes the number of independent
variables, S denotes the m-dimension vector of the variable
predicted through X · Xi is the ith element of n-dimension
independent variables. +e independent variable is
x1, x2, x3, . . . , xij, . . . , xin of design Xi vector and T is used
for transpose symbolization.

+e main aim of DT is to estimate the value of X. By
using X, different DTs may construct different accuracy and
correctness levels; however, an optimum DT is inspiring
because the space for search has a larger dimension.

To find the trade-off between correctness and compli-
cation for decision trees, appropriate algorithms can be
created. In this situation, a categorization of locally optimum
decisions that are nearly the parameters of features is used
for making partition of the dataset X using algorithms of
DTs. OptimumDT,Tk0, is created according to the following
problems of optimization.

􏽢R Tk0( 􏼁 � min 􏽢R Tk0( 􏼁􏽮 􏽯, k � 1, 2, 3, . . . , K,

􏽢R(T) � 􏽘
k

t∈T
r(t)p(t)􏼈 􏼉,

(24)

where 􏽢R (T) symbolizes the level of error during the
misclassification of tree Tk, Tk0 indicates the optimum
decision tree that reduces the error related to misclas-
sification in the binary tree, and T denotes the binary tree
∈, T1, T2, T3, . . . , Tk, t1􏼈 􏼉. +e tree index is represented by k,
t stands for node of tree, t1 stands for node of root, r(t) for
resubstituting error that misclassifies node t, p(t) represents
the probability that any case drop into node t is represented
by TL and TR representing the sub-trees of the right and left
sets of partition. +e tree T is deliberate by feature plan
partitioning.

Most of the classification problems with large datasets
are complex and contain errors, and the decision tree al-
gorithm is most appropriate in these situations.+e decision
tree works by taking the objects as an input and giving the
output as yes/no decision. Decision trees use sample se-
lection [60] and also exhibit Boolean functions [61]. +e
decision trees are also quick and effective methods used for
large classification dataset entries and provide best decision
support proficiencies. +ere are many applications of using
DTs, such as medical problems, and economic and other
scientific situations [62].

+ere are several parameters that are used to tune the
decision tree. In this study, we used the default parameters to
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get a baseline. +e min-sample-per-leaf node was set to 1 by
default, which can make a tree over fit and learn from all the
data points, including outliners. Another parameter is the
maximum depth of the tree, which indicates how deep the
tree can be. A deeper tree has more splits and is capable of
capturing more information about the data. +e decision
tree in this study was fit with a depth ranging from 1 to 32.
Another important parameter is the number of random
splits required to split the internal node. +is varies from
considering at least one sample at each node by considering
all samples at each node. By increasing the parameters, the
tree can become more constrained because it will consider
more samples at each node. In this study, we consider this
parameter from 10% to 100% of the sample. A similar ap-
proach was adopted for minimum sample leaf.

3.2.1. K-Nearest Neighbor (KNN). In the field of pattern
recognition, machine learning, etc., K-nearest neighbor is
the regularly used algorithm. KNN is a nonparametric
method used for both classification and regression
problems. In both cases, the given input consists of
k-closest training samples in the feature space. +e output
is dependent on whether we use KNN for regression or
classification. For the KNN classification method, the
output is a class membership. Any object can be classified
based on the majority voting of its neighboring data points
with the object being assigned to the class that is common
among its K-nearest neighbors (where K is a positive
integer, typically small). If K � 1, then the objects will be
classified and assigned to the nearest class of that single
neighbor.

We used the default parameters during training/testing
of data using the KNN algorithm. KNN was used for
classification complications in [63]. KNN is also termed as
lazy learning algorithm. A classifier is not promptly con-
structed; however, all preparation information tests are
spared and held up until the point that new perceptions
should be classified.+ese characteristics of the lazy learning
algorithm make it better than excited learning because it
builds a classifier even before new interpretations need to be
classified. It is explored by [64] that KNN is also more

important when the dynamical data need to be changed and
more rapidly simplified. Different distance matrices are
employed for KNN.+e following are steps of this algorithm
in which the formula of Euclidean distance are used and
reflected by equation (25) (also described in [65]).

Step I. In the first step, prepare the framework and provide
the feature space to KNN.

Step II. By using the following distance formula termed as
Euclidean distance formula, find the distance.

d xi, yi( 􏼁 � 􏽘
n

i�1

��������

xi − yi( 􏼁
2

􏽱

. (25)

Step III. Type the calculated value from the Euclidean
distance formula by using di ≤ di + 1, where i � 1, 2, 3, . . . , k.

Step IV. According to the nature of data, apply different
means and polling.

Step V. +e value of K (i.e., the number of nearest
neighbors) depends on the volume and nature of data
delivered to KNN. For smaller data, the value of k is also
reserved small, and for large data, the value of k is reserved
as large.

In this study, we selected K� 3, distance metrics as
Euclidean distance, and distance weight as equal weight.

3.2.2. Ensemble Classifiers. +e ensemble classifiers com-
prise a set of individually trained classifiers whose predic-
tions are then combined when classifying the novel instances
using different approaches. +ese new learning algorithms
by constructing a set of algorithms classify new data based
on the new data points by taking the weight of their pre-
diction. Based on these capabilities, these algorithms have
successfully been used to enhance the prediction power in a
variety of applications, such as predicting signal peptide for
predicting protein subcellular location [66], predicting
subcellular location, and predicting enzyme subfamily
prediction [67]. +e ensemble classifiers in many

Root

Root split

1st child 
split 

2nd child
split 

Figure 4: Decision tree split decision.
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applications give relatively enhanced performance than the
individual classifier. +e researchers [68] reported that in-
dividual classifiers can produce different errors during
classification; however, these errors can be minimized by
combining the classifiers because the error produced by one
classifier can be compensated by another classifier.

3.2.3. Performance Evaluation Measures. To detect CHF,
the following measures were used to compute the true
positive rate (TPR), true negative rate (TNR), positive
predictive value (PPV), negative predictive value (NPV),
total accuracy (TA), and area under the receiver operating
curve (AUC) as depicted in equations (21)–(25) and de-
tailed in [69, 70].

3.2.4. True Positive Rate (TPR). +e TPR measure, also
known as sensitivity or recall, is used to test the proportion
of people who test positive for the disease among those
who have the disease. Mathematically, it is expressed as
follows:

TPR �
􏽐True Positive

􏽐Condition Positive
,

TPR �
TP

TP + FN
,

(26)

i.e., the probability of positive test given that the patient has
the disease.

3.2.5. True Negative Rate (TNR). +e TNR measure also
known as Specificity is the proportion of negatives that are
correctly identified. Mathematically, it is expressed as

TNR �
􏽐TrueNegative

􏽐ConditionNegative
,

TNR �
TN

TN + FP
,

(27)

i.e. probability of a negative test given that patient is well.

3.2.6. Positive Predictive Value (PPV). PPV is mathemati-
cally expressed as follows:

PPV �
􏽐True Positive

􏽐Predicted Condition Positive
,

PPV �
TP

TP + FP
,

(28)

where TP denotes that the test makes a positive prediction
and the subject has a positive result under gold standard,
while FP is the event that the test makes a positive prediction
and the subject has a negative result.

3.2.7. Negative Predictive Value (NPV). NPV can be com-
puted as

NPV �
􏽐TrueNegative

􏽐 PredictedConditionNegative
,

NPV �
TN

TN + FN
,

(29)

where TN indicates that the test makes a negative prediction
and the subject also has a negative result, while FN indicates
that the test makes a negative prediction and the subject has
a positive result.

3.2.8. Total Accuracy (TA). +e total accuracy is computed
as

TA �
TP + TN

TP + FP + FN + TN
. (30)

3.2.9. �e 95% Confidence Interval (CI). For the mean μX, a
common confidence interval is 95% CI. For normally dis-
tributed sample means, z-statistics (called z1 and z2) is such
that P (z1<Z< z2)� 0.95.

+e margin of error can be computed by multiplying the
value of Z2, denoted by Z∗, by the standard deviation of the
sample mean, i.e., δX � δX/

�
n

√
. +at is, the margin of error is

(Z∗)(δX/
�
n

√
).

+e lower bound and upper bound as reflected in
equations (31) and (32) are detailed in [71, 72].

3.2.10. Lower Bound (LB) of 95% CI. +e lower bound of
95% CI for μX is computed by subtracting the margin of
error from the point estimate X:

lower bound (LB) � X − Z
∗

( 􏼁
δX�

n
√􏼠 􏼡. (31)

3.2.11. Upper Bound (UB) of 95% CI. +e upper bound of
95% CI for μX is computed by adding the margin of error
with the point estimate X:

upper bound (UB) � X + Z
∗

( 􏼁
δX�

n
√􏼠 􏼡. (32)

4. Results

In this study, we extracted multimodal features, such as time
domain, frequency domain, statistical and complexity-based
features from congestive heart failure (CHF), and normal
sinus rhythm (NSR) subjects. We computed the perfor-
mance based on single features and hybrid features. Robust
machine learning classification methods, such as decision
tree (DT), support vector machine (SVM) and its kernel,
K-nearest neighbors (KNN), and ensemble methods, were
employed. +e performance was computed using true
positive rate (TPR), true negative rate (TNR), positive
predictive value (PPV), negative predictive value (NPV),
total accuracy (TA), and area under the receiver operating
curve (AUC). Performance based on single features is

8 BioMed Research International



reflected in Tables 1–4, whereas performance based on a
combination of features is reflected in Figures 5–7.

We extracted the time domain features, such as SDANN,
SDNN, SDSD, and RMSSD, and applied machine learning
classifiers such as decision tree (DT); support vector ma-
chine (SVM) and its kernels linear, quadratic, cubic, and
medium Gaussian; K-nearest neighbor (KNN) with fine,
medium, and cosine KNN; and ensemble classifiers such as
bagged tree, subspace discriminant, and RUSBoosted tree, as
reflected in Table 1.+e detection performance with decision
tree such as fine DTwas obtained, such as TPR (78%), TNR
(77%), PPV (68%), NPV (77.8%), TA (77.6%), AUC (0.73),
and 95% CI with LB (0.22) and UB (0.77). Using coarse tree,
we obtained the performance such as TPR (89%), TNR
(55%), PPV (78%), NPV (81%), TA (80.2%), and AUC (075)

with LB (0.11) and UB (0.66). Similarly, the highest detection
performance was obtained using SVM linear with TPR
(90%), TNR (73%), PPV (82%), NPV (84%), TA (83.6%),
and AUC (0.92) with LB (0.10) and UB (0.73), followed by
SVM medium Gaussian with TPR (89%), TNR (73%), PPV
(80%), NPV (80%), PPV (84%), TA (82.8%), and AUC (0.90)
with LB (0.11) and UB (0.73); SVM cubic with TA (79.3%),
AUC (0.88) and SVM quadratic with TA (79.3%) and AUC
(0.84). Likewise, by applying KNN, the highest detection
accuracy was obtained using cosine KNN with TA (81.0),
AUC (0.83) followed by medium KNN with TA (80.2%),
AUC (0.87) and fine KNN with TA (71.6%), AUC (0.69). By
applying the ensemble classifiers, the highest detection
performance was obtained using subspace discriminants
with TPR (96%), TNR (66%), PPV (91%), NPV (82%), TA
(84.5%), and AUC (0.91) with LB (0.04) and UB (0.66),
followed by bagged tree with TA (81.0%), AUC (0.87), and
RUSBoosted tree with TA (73.3%), AUC (0.81).

By extracting the frequency domain features such as TP,
ULF, VLF, LF, HF, and LF/HF from CHF and normal
subjects, as reflected in Table 2, we applied different machine
learning classifiers to distinguish these conditions. Using the
decision tree, the highest detection performance was ob-
tained with coarse DT such as TA (81.9%), AUC (0.81)
followed by fine DT with TA (80.2%), AUC (0.84). Using
SVM, the highest detection accuracy was obtained using
SVM medium Gaussian with TA (85.3%), AUC (0.90)
followed by quadratic SVM with TA (81.9%), AUC (0.88);
linear SVM with TA (80.2%), AUC (0.86); and cubic SVM
with TA (%), AUC (0.83). Likewise, by applying KNN, the
highest detection performance was obtained using fine KNN
with TA (81.0%), AUC (0.86) followed by medium KNN
with TA (80.2%), AUC (0.88) and cosine KNN with TA
(67.2%), AUC (0.75). Moreover, by applying the ensemble
classifiers, the highest detection performance was obtained
using bagged tree with TA (81.9%), AUC (0.88) followed by
subspace discriminant with TA (80.2%), AUC (0.85) and
RUSBoosted tree with TA (77.6%), AUC (0.81).

Table 1: CHF detection performance based on time domain features by applying machine learning techniques.

Classifier TPR (%) TNR (%) PPV (%) NPV (%) TA (%) AUC LB UP
Decision tree (DT)
Fine 78 77 68 85 77.6 0.73 0.22 0.77
Coarse 89 66 78 81 80.2 0.75 0.11 0.66
Support vector machine
(SVM)
Linear 90 73 82 84 83.6 0.92 0.10 0.73
Quadratic 88 66 76 81 79.3 0.84 0.13 0.66
Cubic 85 70 74 82 79.3 0.88 0.15 0.70
Med. Gaussian 89 73 80 84 82.8 0.90 0.11 0.73
K-nearest neighbor (KNN)
Fine 79 59 63 76 71.6 0.69 0.21 0.59
Medium 88 68 77 82 80.2 0.87 0.15 0.75
Cosine 82 80 73 87 81.0 0.83 0.18 0.80
Ensemble classifiers
Bagged tree 85 75 75 85 81.0 0.87 0.15 0.75
Subsp. disc. 96 66 91 82 84.5 0.91 0.04 0.66
RUSBoosted tree 76 68 64 80 73.3 0.81 0.24 0.68
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Figure 5: Heart failure rate detection performance using decision
tree and KNN methods.
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To discriminate the CHF from normal subjects, we
extracted statistical features such as RMS, variance, skew-
ness, smoothness, and kurtosis, as reflected in Table 3, and
applied robust machine learning techniques. Based on de-
cision tree, the highest detection performance was obtained
using coarse DT with TA (77.6%), AUC (0.80), followed by
fine DTwith TA (75.9%), AUC (0.77). Similarly, by applying
SVM, the highest detection performance was obtained using
SVM linear with TA (81.9%), AUC (0.80), followed by SVM
quadratic with TA (81.0%), AUC (0.84); SVM medium
Gaussian with TA (73.9%), AUC (0.81), and SVM cubic
Gaussian with TA (75.9%), AUC (0.78). By applying KNN,
the highest detection accuracy was obtained using cosine
KNN with TA (73.3%), AUC (0.78), followed by medium
KNN with TA (71.6%), AUC (0.78) and fine KNN with TA
(69.0%), AUC (0.66). Likewise, by applying the ensemble
classifiers, the highest detection accuracy was obtained using
bagged tree with TA (77.6%), AUC (0.81), followed by

RUSBoosted tree with TA (77.6%), AUC (0.79) and subspace
discriminant with TA (74.1%), AUC (0.77).

+e entropy-based features were computed based on
complexity measures such as sample entropy using KD tree
approaches; approximate entropy and wavelet entropy
measures such as Shannon, threshold, log energy, sure, and
norm; and applied machine learning classifiers such as DT,
SVM, KNN and ensemble classifiers, as reflected in Table 4.
By applying the decision tree, the highest detection per-
formance was obtained using coarse DT with TA (69.8%),
AUC (0.65), followed by fine DT with TA (62.9%), AUC
(0.65). Likewise, using SVM, the highest detection accuracy
was obtained using SVM quadratic with TA (73.3%), AUC
(0.74), followed by SVM cubic with TA (70.7%), AUC (0.73);
SVM medium Gaussian with TA (69.8%), AUC (0.75); and
SVM linear with TA (69.0%), AUC (0.71). By applying KNN,
the highest detection performance was obtained using
medium KNN with TA (71.6%), AUC (0.69), followed by

Table 2: CHF detection performance based on frequency domain features by applying machine learning techniques.

Classifier TPR (%) TNR (%) PPV (%) NPV (%) TA (%) AUC LB UP
Decision tree (DT)
Fine 83 75 73 85 80.2 0.84 0.17 0.75
Coarse 93 64 85 81 81.9 0.81 0.07 0.64
Support vector machine
(SVM)
Linear 82 77 72 86 80.2 0.86 0.18 0.77
Quadratic 82 82 73 88 81.9 0.88 0.18 0.82
Cubic 88 68 77 82 80.2 0.83 0.13 0.58
Med. Gaussian 90 77 83 87 85.3 0.90 0.16 0.77
K-nearest neighbor (KNN)
Fine 85 75 75 85 81.0 0.86 0.15 0.75
Medium 89 66 78 81 80.2 0.88 0.11 0.66
Cosine 64 73 55 79 67.2 0.75 0.36 0.73
Ensemble classifiers
Bagged tree 85 77 76 86 81.9 0.88 0.15 0.77
Subsp. disc. 86 70 76 83 80.2 0.85 0.14 0.70
RUSBoosted tree 79 75 69 84 77.6 0.81 0.21 0.75

Table 3: CHF detection performance based on statistical features by applying machine learning techniques.

Classifier TPR (%) TNR (%) PPV (%) NPV (%) TA (%) AUC LB UP
Decision tree (DT)
Fine 81 68 68 81 75.9 0.77 0.19 0.68
Coarse 86 64 74 79 77.6 0.80 0.14 0.64
Support vector machine
(SVM)
Linear 99 55 96 78 81.9 0.80 0.01 0.55
Quadratic 92 64 82 80 81.0 0.84 0.08 0.64
Cubic 85 61 71 78 75.9 0.78 0.15 0.61
Med. Gaussian 90 52 77 76 75.9 0.81 0.10 0.52
K-nearest neighbor (KNN)
Fine 78 55 60 74 69.0 0.66 0.22 0.56
Medium 89 43 70 72 71.6 0.78 0.11 0.43
Cosine 89 48 72 74 73.3 0.78 0.11 0.48
Ensemble classifiers
Bagged tree 85 66 73 80 77.6 0.81 0.15 0.66
Subsp. disc. 99 34 94 71 74.1 0.77 0.01 0.34
RUSBoosted tree 85 66 73 80 77.6 0.79 0.15 0.66
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cosine KNNwith TA (70.7%), AUC (0.72) and fine KNNwith
TA (68.1%), AUC (0.66). Similarly, by applying the ensemble
classifiers, we obtained the highest detection performance
using bagged tree with TA (72.4%), AUC (0.78), followed by
subspace discriminant with TA (69.8%), AUC (0.71) and
RUSBoosted tree with TA (69.0%), AUC (0.75).

Based on a combination of features, the detection per-
formance using DT and KNN is shown in Figure 5. +e
performance obtained using decision tree (DT) with fine DT
was obtained as TPR (82%), TNR (82%), PPV (73%), NPV

(88%), TA (81.9%), and AUC (0.84) and with coarse DT as
TPR (85%), TNR (70%), PPV (74%), NPV (82%), TA (79.3%),
and AUC (0.75). +e performance based on KNN was ob-
tained as fine KNN with TPR (85%), TNR (66%), PPV (73%),
NPV (80%), TA (77.6%), and AUC (0.75); median KNN with
TPR (99%), TNR (52%), PPV (96%), NPV (77%), TA (81%),
and AUC (0.92); and cosine KNN with TPR (93%), TNR
(66%), PPV (85%), NPV (82%), TA (82.8%), and AUC (0.92).

+e heart failure rate detection performance based on
SVM was obtained using SVM linear as TPR (96%), TNR
(89%), PPV (93%), NPV (93%), TA (93.1%), and AUC
(0.97); SVM quadratic with TPR (94%), TNR (77%), PPV
(89%), NPV (87%), TA (87.9%), and AUC (0.93); SVM cubic
with TPR (97%), TNR (77%), PPV (94%), NPV (88%), TA
(89.7%), and AUC (0.91); and SVM median Gaussian with

Table 4: CHF detection performance based on entropy-based features by applying machine learning techniques.

Classifier TPR (%) TNR (%) PPV (%) NPV (%) TA (%) AUC LB UP
Decision tree (DT)
Fine 71 50 51 70 62.9 0.65 0.29 0.50
Coarse 90 36 70 70 69.8 0.69 0.10 0.36
Support vector machine
(SVM)
Linear 93 30 72 68 69.0 0.71 0.07 0.30
Quadratic 83 57 68 76 73.3 0.74 0.17 0.57
Cubic 82 52 64 74 70.7 0.73 0.18 0.52
Med. Gaussian 94 30 76 69 69.8 0.75 0.06 0.30
K-nearest neighbor (KNN)
Fine 75 57 58 74 68.1 0.66 0.25 0.57
Medium 85 50 67 73 71.6 0.69 0.15 0.50
Cosine 82 52 64 74 70.7 0.72 0.18 0.52
Ensemble classifiers
Bagged tree 82 57 66 76 72.4 0.78 0.18 0.57
Subsp. disc. 89 39 68 70 69.8 0.71 0.11 0.39
RUSBoosted tree 75 59 59 75 69.0 0.75 0.25 0.59
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Figure 6: Heart failure rate detection performance using SVM and
ensemble methods.
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TPR (93%), TNR (86%), PPV (88%), NPV (92%), TA
(90.5%), and AUC (0.95). +e performance computed using
ensemble methods was obtained using ensemble boosted
tree with TPR (90%), TNR (84%), PPV (84%), NPV (90%),
TA (87.9%), and AUC (0.93); ensemble subspace discrim-
inant with TPR (93%), TNR (89%), PPV (89%), NPV (93%),
TA (91.4%), and AUC (0.96); and ensemble RUSBoosted
tree with TPR (89%), TNR (75%), PPV (80%), NPV (85%),
TA (83.6%), and AUC (0.87). +e detection performance is
shown in Figure 6.

Figure 7 depicts the heart failure rate detection perfor-
mance using area under the receiving operating curve (ROC).
Multimodal features based on entropy methods, wavelets,
statistical, time, and frequency domain features are extracted
from congestive heart failure and normal subjects. Based on
the combined features, the highest AUC was obtained using
SVM RBF with AUC (0.9359), followed by SVM Gaussian
with AUC (0.9293), Näıve Bayes and decision tree with AUC
(0.9287), and SVM polynomial with AUC (0.9258). +e AUC
values based on the single features are reflected in Tables 1–4.

In Figures 8 and 9, the blue color denotes the means of
CHF subjects and red color denotes the NSR subjects. +e

lines denote the correctly classified subjects, while x denotes
the incorrectly classified samples using SVM linear and
quadratic kernels. +ere is a total of 44 CHF subjects and 72
NSR subjects. SVM with linear kernel provides the highest
performance with accuracy (93.1%), AUC (0.97) with TP
(39), FP (5), FN (3), and TN (69) with less incorrectly
classified results, as reflected in Figure 5. Similarly, in Fig-
ure 8, SVM quadratic kernel provides accuracy (87.9%),
AUC (0.93) with TP (34), FP (10), FN (4), and TN (68)
having more incorrectly classified results than SVM linear
kernel, as reflected in Figure 9.

We computed the mean± std from CHF and normal
subjects by extracting different time domain, frequency
domain, statistical, and entropy-based features as reflected in
Table 5. To discriminate these subjects, the P-value is re-
flected in the last column. All the extracted features provided
highly significant results to discriminate the CHF subjects
from NSR subjects. +e significance level is represented by
∗∗∗P-value<×10− 100 and>×10− 50, ∗∗P-value<×10− 49

and>×10− 25, and ∗P-value<×10− 24 and>0.01. Mostly, the
standard features computed gives higher mean values for
NSR than CHF subjects. +e lowest standard deviations
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Figure 8: Model prediction to detect heart failure using SVM linear classifier based on multimodal features.
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from mean were obtained at SDANN, SDNN, SDSD,
RMSSD, MSEKD, MApEn, RMSD, RMSE, variance,
smoothness, and skewness. +e significance level of ∗∗∗ was
obtained at time domain features (SDNN), entropy-based
features (MSEKD, wavelet entropy Shannon, log energy,
threshold, sure, and norm), and statistical features (RMS,
smoothness, kurtosis). +e significance level of ∗∗ was ob-
tained using time domain features (SDANN), frequency
domain features (LFHF ratio), and statistical features (RMS),
and the significance level of ∗ was obtained using time
domain features (SDSSD and RMSSD), frequency domain
features (TP, ULF, VLF, LF, and HF), entropy-based features
(MApEn), and statistical features (Smoothness, kurtosis, and
skewness).

5. Discussion

+e dynamics of heart signals are highly complex and
nonlinear in nature. Moreover, the temporal dynamics
present in the heart variability based on short-, medium-,
and long-term variations can be best captured by
extracting time domain features. Moreover, heart rate

failure dynamics can also be captured by extracting
spectral components which are computed using frequency
domain features. +e complex dynamics of the dynamical
systems can be measured based on structural components
and coupling among these components. +e complexity
degraded when any of the structural/functional compo-
nents is lost. +is loss of complexity is also due to the
pathological conditions and aging.

Recently, Kumari et al. [73] in their article concluded
that patients with coronary heart disease and diabetes
mellitus get significant results in clinical symptoms with
improvement in the quality of life.+ey employed SVMwith
radial base function kernel and decision support systems to
predict the heart rate variability [74]. +e results obtained
using these methods showed good detection performance.
+e classification accuracy, sensitivity, and specificity of the
SVM and RBF have been found to be high, thus making it a
good option for the diagnosis [75].

Based on the varying dynamics of the physiological
systems, researchers employed different features of
extracting methods. Want et al. [28] extracted discrete
wavelet transform (DWT), nonlinear, and multidomain
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Figure 9: Model prediction to detect heart failure using SVM quadratic classifier based on multimodal features.
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features to detect epileptic seizure and obtained the highest
detection accuracy of 99.25%.

Recently, Hussain et al. [76] extracted multimodal fea-
tures to detect arrhythmia and applied machine learning
techniques. Data on CHF and NSR ECG signals were taken
from the Beth Israel Deaconess Medical Center (BIDMC)
CHF database and the Massachusetts Institute of Technol-
ogy-Beth Israel Hospital (MIT-BIH) arrhythmia database,
respectively. By extracting the frequency domain features
(TP, ULF, VLF, LF, HF, and LF/HF), the highest detection
performance was obtained using SVM cubic with total ac-
curacy (80.3%) and AUC (0.76). By extracting entropy-based
features (sample entropy with KD tree; approximate en-
tropy; and wavelet entropies Shannon, threshold, sure, log
energy, and norm), the highest detection accuracy was
obtained using SVM medium Gaussian, and fine KNN with
total accuracy (100%) and AUC (1.0). Likewise, by extracting
time domain and statistical features (SDANN, SDNN,
SDSD, RMSSD, RMS, variance, skewness, kurtosis, and
smoothness), the highest arrhythmia detection performance
was obtained using fine KNNwith total accuracy (100%) and
AUC (1.0), followed by ensemble bagged tree and subspace
discriminant with total accuracy (98.5%) and AUC (0.99 and
1.0, respectively). Moreover, by extracting the entropy-based
features, the highest detection performance was obtained
using SVM medium Gaussian, fine KNN, and ensemble
subspace discriminant with sensitivity (100%), specificity
(100%), total accuracy (100%), and AUC (1.0), followed by
SVM cubic, medium KNN with sensitivity (98%), specificity
(100%), total accuracy (98.5%), and AUC (1.0). Most re-
cently, Tripathy et al. [77] used a similar dataset by extracting
time-frequency entropy features and applied a hybrid
classifier with mean metric (HCMM); the highest detection

accuracy was obtained with sensitivity (98.48%), specificity
(99.09%), and accuracy (98.78%). +e result reveals that our
approach of multimodal features from time domain, fre-
quency domain, statistical, and entropy-based features gives
higher detection performance than the feature extracting
and classification approach employed by [77] for a similar
dataset.

Recently, many studies have been conducted which
provided different methods to discriminate CHF patients
from normal patients. Isler et al. [78] offered the structure of
multistage classifiers in discriminating CHF patients and
obtained a specificity of 98.1% and sensitivity of 100%. A
recent study [74] investigated the effect of the number of
folds in discriminating patients with CHF from normal
subjects using five different popular classifiers. It was proved
that average performance was enhanced and the variability
of performances was decreased when the number of data
sections used in the cross-validation method was increased.
+e highest performance was obtained using KNN with the
LOO method having accuracy (80.9%), sensitivity (52.1%),
and specificity (96.3%).

Narin et al. [79] investigated the statistical feature se-
lection methods to improve the classifier performances on
CHF using HRV analysis. Isler and Kuntalp [80] investigated
the effect of heart rate normalization in the classifier per-
formance on CHF patients using HRV analysis. +ey
employed KNN with and without HR normalization by
selecting K� 1, 3, 5, 7, 9, 11, and 13, with maximum per-
formance of 93.98%. Isler and Kuntalp [81]showed the
importance of wavelet-based features in the diagnosis of
CHF using HRV signals. +ey obtained the highest dis-
criminating powers in terms of sensitivity and specificity.
+e researchers [82] employed different machine learning

Table 5: Features-based significance level to distinguish the CHF and NSR subjects.

Feature CHF NSR
P-valueMean± std Mean± std

SDANN 0.010± 0.015 0.018± 0.008 ∗∗7.68×10− 36

SDNN 0.066± 0.032 0.086± 0.026 ∗∗∗2.85×10− 53

SDSD 0.056± 0.045 0.028± 0.018 ∗4.08×10− 23

RMSSD 0.063± 0.050 0.035± 0.020 ∗1.04×10− 24

TP 347099± 316751 858649± 563951 ∗1.11× 10− 24

ULF 80616± 80069 228361± 175578 ∗1.5×10− 20

VLF 178871± 166993 501651± 350518 ∗1.32×10− 22

LF 42353± 50725 68217± 53525 ∗2.6×10− 21

HF 45257± 58350 60419± 55206 ∗3.05×10− 18

LFHF 1.442± 0.872 1.304± 0.389 ∗∗6.55×10− 46

MSEKD 1.370± 0.293 1.464± 0.179 ∗∗∗2.37×10− 93

MApEn 0.004± 0.006 0.0009± 0.003 ∗2.07×10− 5

WEShannon 6594± 962 6151± 1351 ∗∗∗1.38×10− 84

WELogEn − 17460± 5702 − 14830± 5722 ∗∗∗4.62×10− 55

WE+ 19999± 0.347 19999± 0.201 ∗∗∗0
WESure − 11085± 2692 − 9771± 2829 ∗∗∗4.32×10− 68

WENorm 12613± 2043 13594± 2070 ∗∗∗1.96×10− 94

RMS 0.660± 0.096 0.708± 0.098 ∗∗∗4×10− 99

Var 0.005± 0.005 0.008± 0.005 ∗∗4.26×10− 27

Smoothness 0.999 1.08×10− 5 0.999± 1.11× 10− 5 ∗∗∗0
Kurtosis 40.2 75.4 5.125± 7.386 ∗0.000108
Skewness 1.996± 2.672 0.264± 0.656 ∗8.93×10− 7
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classifiers such as support vector machine (SVM) with ac-
curacy (81.0%) and random forest with accuracy (81%) to
detect and predict the 5 minute preshock data of CHF.
Moreover, Sharma et al. [83] applied time-frequency
methods for prediction of CHF. Sharma et al. [84] extracted
energy and eigenspace to localize and detect myocardial
infarction. Similarly, Tripathy et al. [85] employed a novel
approach for the prediction of myocardial infarction from
ECG signals of multiple electrodes. Moreover, Sharma et al.
[86] employed eigenvalue decomposition-based features
extracted from HRV signals for automated detection of
congestive heart failure. Table 6 reflects the findings of
previous studies.

+e present study was aimed to study the dynamics of
heart rate variability based on multimodal features by
extracting strategy and employing robust machine learning
techniques. We have extracted time domain features (to
capture short-, medium-, and long-term variations), fre-
quency domain features (to capture spectral components),
entropy features (to capture complex dynamics), and applied
machine learning classifiers such as support vector machine
(SVM) and its kernel, decision tree (DT), K-nearest neighbor
(KNN), and ensemble classifiers. Coarse DTgives the highest
performance with TPR (85%) and fine DT with PPV (88%).
+e SVM linear gives performance with TA (93%), TPR
(96%), and AUC (0.97), and SVM cubic with TPR (97%),
PPV (94%), TA (89.7%), and AUC (0.91). Moreover, the

medium KNN gives TPR (99%), PPV (96%), TA (81%), and
AUC (0.92). +e ensemble method subspace discriminant
gives TPR (93%), PPV (89%), TA (91.4%), and AUC (0.96).
+e results reveal that extracting multimodal features based
on time variation, temporal dynamics, and complex dy-
namics can improve the early detection of heart failure and
survival rate.

6. Conclusion

Hear rate variability analysis is a noninvasive tool used for
assessing the cardiac autonomic control of the nervous
system. Various kinds of defects can be detected by ana-
lyzing the oscillations between consecutive heart beats. +e
analysis of HRV is the subject of different clinical studies
investigating a wide spectrum of cardiological and non-
cardiological diseases and clinical conditions. In other
clinical conditions and diseases, a depressed HRV has also
been observed in patients suffering from dilated cardio-
myopathy, CHF, etc. In this study, we aimed to discriminate
the CHF patients from normal subjects after extracting
multimodal features. We extracted time domain, frequency
domain, statistical, and entropy-based features from CHF
and normal subjects and employed the robust machine
learning techniques. A 10-fold cross-validation was applied
for training and testing data validation. +e performance
was evaluated in terms of sensitivity, specificity, PPV, NPV,

Table 6: Algorithm comparison of previous studies.

Author Title of article Method Performance

Li et al. [87] Combining convolutional neural network and distance distribution
matrix for identification of congestive heart failure CNN TA� 81.9%

Isler and
Kuntalp [81]

Combining classical HRV indices with wavelet entropy measures
improves to performance in diagnosing congestive heart failure KNN

ACC� 81.92%
Sens� 82.74%
Spec� 96.27%

Narin et al. [79]
Investigating the performance improvement of HRV indices in CHF
using feature selection methods based on backward elimination and

statistical significance
SVM Sens� 79.33%

Spec� 94.47%

Isler and
Kuntalp [80]

Heart rate normalization in the analysis of heart rate variability in
congestive heart failure KNN Sens� 82.72%

Spec� 100.0%
Pecchia et al.
[88]

Discrimination power of short-term heart rate variability measures for
CHF assessment CART Sens� 89.75%

Spec� 100.0%
Elfadil and
Ibrahim [89]

Self-organising neural network approach for identification of patients
with congestive heart failure

Spectral
NN ACC� 83.65%

Yang et al. [90] A heart failure diagnosis model based on SVM
SVM
NB
CA

TA� 74.42%

Chang et al. [91] Decision making model for early diagnosis of CHF using rough set and
decision tree approaches

RS
DT SEN� 97.53%

Our method Extraction of multimodal features to predict congestive heart failure
(CHF)

DT
Sens� 82%
Spec� 82%
TA� 81.9%

SVM linear
Sens� 96%
Spec� 89%
TA� 93.1%

EnsembleSubspace
discriminant

Sens� 93%
Spec� 89%
TA� 91.4%
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TA, and AUC. We evaluated the CHF detection perfor-
mance based on single and hybrid features. +e highest
performance using decision tree was obtained with sen-
sitivity (82%), specificity (82%), and accuracy (81.9%).
Using SVM, the highest detection performance was ob-
tained with SVM linear with sensitivity (96%), specificity
(89%), and accuracy (93.1%). Moreover, using the en-
semble methods, the highest detection performance was
obtained using subspace discriminant with sensitivity
(93%), specificity (89%), and accuracy (91.4%). +e results
reveal that by considering temporal, spectral, and nonlinear
dynamics, the detection performance of CHF can be very
helpful in the early diagnosis and prognosis of heart failure
patients.

In the present study, we extracted multimodal features
from CHF and NSR subjects and employed machine
learning techniques to detect congestive heart failure. In
future, we will extract features by considering the clinical
information of patients and from the severity level of
congestive heart failure classes. We will also apply deep
convolutional neural network (CNN) using transfer learning
approach for pretrained networks, such as GoogleNet,
AlexNet, and Inception V3, as CNN is not feature dependent
and is fine-tuned. +ese directions will provide more de-
tailed and comprehensive studies for further performance
improvement.
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causes, consequences, and treatment of left or right heart
failure,” Vascular Health and Risk Management, vol. 7, p. 237,
2011.

[11] T.-L. Jong, B. Chang, and C.-D. Kuo, “Optimal timing in
screening patients with congestive heart failure and healthy
subjects during circadian observation,” Annals of Biomedical
Engineering, vol. 39, no. 2, pp. 835–849, 2011.

[12] A. S. Khaled, M. I. Owis, and A. S. A. Mohamed, “Detection of
congestive heart failure using time-domain methods and
poincar plot of heart rate variability signals,” in Proceedings of
the �ird Cairo International Biomedical Engineering
Conference, Cairo, Egypt, January 2006.

[13] S. Patidar, R. B. Pachori, and U. Rajendra Acharya, “Auto-
mated diagnosis of coronary artery disease using tunable-Q
wavelet transform applied on heart rate signals,” Knowledge-
Based Systems, vol. 82, pp. 1–10, 2015.

[14] K. C. Chua, V. Chandran, U. R. Acharya, and C. M. Lim,
“Cardiac state diagnosis using higher order spectra of heart
rate variability,” Journal of Medical Engineering & Technology,
vol. 32, no. 2, pp. 145–155, 2008.

[15] U. Acharya, M. Sankaranarayanan, J. Nayak, C. Xiang, and
T. Tamura, “Automatic identification of cardiac health using
modeling techniques: a comparative study,” Information
Sciences, vol. 178, no. 23, pp. 4571–4582, 2008.

[16] H. Mussalo, E. Vanninen, R. Ikaheimo et al., “Heart rate
variability and its determinants in patients with severe or mild
essential hypertension,” Clinical Physiology, vol. 21, no. 5,
pp. 594–604, 2001.

[17] M. Hadase, A. Azuma, K. Zen et al., “Very low frequency
power of heart rate variability is a powerful predictor of
clinical prognosis in patients with congestive heart failure,”
Circulation Journal, vol. 68, no. 4, pp. 343–347, 2004.

[18] J. Nolan, P. D. Batin, R. Andrews et al., “Prospective study of
heart rate variability and mortality in chronic heart failure,”
Circulation, vol. 98, no. 15, pp. 1510–1516, 1998.

[19] M. Vallejo, S. Ruiz, A. G. Hermosillo, V. H. Borja-Aburto, and
M. Cárdenas, “Ambient fine particles modify heart rate
variability in young healthy adults,” Journal of Exposure
Science & Environmental Epidemiology, vol. 16, no. 2,
pp. 125–130, 2006.

[20] M. H. Asyali, “Discrimination power of long-term heart rate
variability measures,” in Proceedings of the 25th Annual In-
ternational Conference of the IEEE Engineering in Medicine

16 BioMed Research International



and Biology Society (IEEE Cat. No. 03CH37439), pp. 200–203,
IEEE, Cancun, Mexico, April 2004.

[21] P. Melillo, N. De Luca, M. Bracale, and L. Pecchia, “Classi-
fication tree for risk assessment in patients suffering from
congestive heart failure via long-term heart rate variability,”
IEEE Journal of Biomedical and Health Informatics, vol. 17,
no. 3, pp. 727–733, 2013.

[22] M. Kumar, R. Pachori, and U. Acharya, “Automated diagnosis
of myocardial infarction ECG signals using sample entropy in
flexible analytic wavelet transform framework,” Entropy,
vol. 19, no. 9, p. 488, 2017.

[23] J. Soni, U. Ansari, D. Sharma, and S. Soni, “Predictive data
mining for medical diagnosis: an overview of heart disease
prediction,” International Journal of Computer Applications,
vol. 17, no. 8, pp. 43–48, 2011.

[24] A. R. Falsey, E. E. Walsh, M. T. Esser, K. Shoemaker, L. Yu,
and M. P. Griffin, “Respiratory syncytial virus-associated
illness in adults with advanced chronic obstructive pulmonary
disease and/or congestive heart failure,” Journal of Medical
Virology, vol. 91, no. 1, pp. 65–71, 2019.

[25] A. L. Goldberger, L. A. N. Amaral, L. Glass et al., “PhysioBank,
physiotoolkit, and physionet,” Circulation, vol. 101, no. 23,
2000.

[26] S. Rathore, M. Hussain, M. Aksam Iftikhar, and A. Jalil,
“Ensemble classification of colon biopsy images based on
information rich hybrid features,” Computers in Biology and
Medicine, vol. 47, no. 1, pp. 76–92, 2014.

[27] J. Dheeba, N. Albert Singh, and S. Tamil Selvi, “Computer-
aided detection of breast cancer on mammograms: a swarm
intelligence optimized wavelet neural network approach,”
Journal of Biomedical Informatics, vol. 49, pp. 45–52, 2014.

[28] L. Wang, W. Xue, Y. Li et al., “Automatic epileptic seizure
detection in EEG signals using multi-domain feature ex-
traction and nonlinear analysis,” Entropy, vol. 19, no. 6, p. 222,
2017.

[29] D. S. Baim, W. S. Colucci, E. S. Monrad et al., “Survival of
patients with severe congestive heart failure treated with oral
milrinone,” Journal of the American College of Cardiology,
vol. 7, no. 3, pp. 661–670, 1986.

[30] F. Wilcoxon, “Individual comparisons by ranking methods,”
Biometrics Bulletin, vol. 1, no. 6, p. 80, 1945.

[31] U. R. Acharya, H. Fujita, V. K. Sudarshan, S. Bhat, and
J. E. W. Koh, “Application of entropies for automated di-
agnosis of epilepsy using EEG signals: a review,” Knowledge-
Based Systems, vol. 88, pp. 85–96, 2015.

[32] Task Force of +e European Society of Cardiology and +e
North American Society of Pacing and Electrophysiology,
“Guidelines Heart rate variability,” European Heart Journal,
vol. 17, pp. 354–381, 1996.

[33] A. J. Seely and P. T. Macklem, “Complex systems and the
technology of variability analysis,” Critical Care, vol. 8, no. 6,
pp. R367–R384, 2004.

[34] M. R. Esco, H. N. Williford, A. A. Flatt, T. J. Freeborn, and
F. Y. Nakamura, “Ultra-shortened time-domain HRV pa-
rameters at rest and following exercise in athletes: an alter-
native to frequency computation of sympathovagal balance,”
European Journal of Applied Physiology, vol. 118, no. 1,
pp. 175–184, 2018.

[35] A. Choi and H. Shin, “Photoplethysmography sampling
frequency: pilot assessment of how low can we go to analyze
pulse rate variability with reliability?,” Physiological Mea-
surement, vol. 38, no. 3, pp. 586–600, 2017.

[36] S. A. Geronikolou, K. Albanopoulos, G. Chrousos, and
D. Cokkinos, GeNeDis 2016, Springer International Pub-
lishing, Cham, Switzerland, 2017.

[37] C. A. Sima, J. A. Inskip, A. W. Sheel, S. F. van Eeden,
W. D. Reid, and P. G. Camp, “+e reliability of short-term
measurement of heart rate variability during spontaneous
breathing in people with chronic obstructive pulmonary
disease,” Revista Portuguesa de Pneumologia (English Edition),
vol. 23, no. 6, pp. 338–342, 2017.

[38] D. Kuang, R. Yang, X. Chen et al., “Depression recognition
according to heart rate variability using bayesian networks,”
Journal of Psychiatric Research, vol. 95, pp. 282–287, 2017.

[39] H. Fujita, U. R. Acharya, V. K. Sudarshan et al., “Sudden
cardiac death (SCD) prediction based on nonlinear heart rate
variability features and SCD index,” Applied Soft Computing,
vol. 43, pp. 510–519, 2016.

[40] K. L. Dodds, C. B. Miller, S. D. Kyle, N. S. Marshall, and
C. J. Gordon, “Heart rate variability in insomnia patients: a
critical review of the literature,” Sleep Medicine Reviews,
vol. 33, pp. 88–100, 2017.

[41] S. M. Pincus, “Approximate entropy as a measure of system
complexity,” Proceedings of the National Academy of Sciences,
vol. 88, no. 6, pp. 2297–2301, 1991.

[42] M. Costa, A. L. Goldberger, and C.-K. C.-K. Peng, “Multiscale
entropy analysis of complex physiologic time series,” Physical
Review Letters, vol. 89, no. 6, Article ID 068102, 2002.

[43] D. Wang, D. Miao, and C. Xie, “Best basis-based wavelet
packet entropy feature extraction and hierarchical EEG
classification for epileptic detection,” Expert Systems with
Applications, vol. 38, no. 11, pp. 14314–14320, 2011.

[44] O. A. Rosso, S. Blanco, J. Yordanova et al., “Wavelet entropy: a
new tool for analysis of short duration brain electrical signals,”
Journal of Neuroscience Methods, vol. 105, no. 1, pp. 65–75,
2001.

[45] D. Wang, D. Miao, and C. Xie, “Best basis-based wavelet
packet entropy feature extraction and hierarchical EEG
classification for epileptic detection,” Expert Systems with
Applications, vol. 38, no. 11, pp. 14314–14320, 2011.

[46] S. Ekici, S. Yildirim, and M. Poyraz, “Energy and entropy-
based feature extraction for locating fault on transmission
lines by using neural network and wavelet packet decom-
position,” Expert Systems with Applications, vol. 34, no. 4,
pp. 2937–2944, 2008.

[47] Y. Zhang, Z. Dong, S. Wang, G. Ji, and J. Yang, “Preclinical
diagnosis of magnetic resonance (MR) brain images via
discrete wavelet packet transform with tsallis entropy and
generalized eigenvalue proximal support vector machine
(GEPSVM),” Entropy, vol. 17, no. 4, pp. 1795–1813, 2015.

[48] Y. Wu, Y. Zhou, G. Saveriades, S. Agaian, J. P. Noonan, and
P. Natarajan, “Local Shannon entropy measure with statistical
tests for image randomness,” Information Sciences, vol. 222,
pp. 323–342, 2013.

[49] E. Avci, D. Hanbay, and A. Varol, “An expert discrete wavelet
adaptive network based Fuzzy inference system for digital
modulation recognition,” Expert Systems with Applications,
vol. 33, no. 3, pp. 582–589, 2007.

[50] S. Rathore, M. Hussain, and A. Khan, “Automated colon
cancer detection using hybrid of novel geometric features and
some traditional features,” Computers in Biology and Medi-
cine, vol. 65, pp. 279–296, 2015.

[51] V. N. Vapnik, “An overview of statistical learning theory,”
IEEE Transactions on Neural Networks, vol. 10, no. 5,
pp. 988–999, 1999.

BioMed Research International 17



[52] A. Subasi, “Classification of EMG signals using PSO opti-
mized SVM for diagnosis of neuromuscular disorders,”
Computers in Biology and Medicine, vol. 43, no. 5, pp. 576–
586, 2013.

[53] A. P. Dobrowolski, M. Wierzbowski, and K. Tomczykiewicz,
“Multiresolution MUAPs decomposition and SVM-based
analysis in the classification of neuromuscular disorders,”
Computer Methods and Programs in Biomedicine, vol. 107,
no. 3, pp. 393–403, 2012.

[54] P. Toccaceli and A. Gammerman, “Combination of conformal
predictors for classification,” Proceedings of Machine Learning
Research, vol. 60, pp. 39–61, 2017.

[55] A. Shmilovici, “Support vector machines,” Data Mining and
Knowledge Discovery Handbook, pp. 231–247, Springer,
Boston, MA, USA, 2009.

[56] C.-J. Lin, “Formulations of support vector machines: a note
from an optimization point of view,” Neural Computation,
vol. 13, no. 2, pp. 307–317, 2001.

[57] V. Vapnik and O. Chapelle, “Bounds on error expectation for
support vector machines,” Neural Computation, vol. 12, no. 9,
pp. 2013–2036, 2000.

[58] K. R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf,
“An introduction to kernel-based learning algorithms,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 12, no. 2, pp. 181–201, 2011.

[59] W. Liu, S. Chawla, D. A. Cieslak, and N. V. Chawla, “A robust
decision tree algorithm for imbalanced data sets,” in Pro-
ceedings of the 2010 SIAM International Conference on Data
Mining, pp. 766–777, Society for Industrial and Applied
Mathematics, Columbus, OH, USA, May 2010.

[60] R. Ran Wang, S. Sam Kwong, Xi-Z. Xi-Zhao Wang, and
Q. Qingshan Jiang, “Segment based decision tree induction
with continuous valued attributes,” IEEE Transactions on
Cybernetics, vol. 45, no. 7, pp. 1262–1275, 2015.

[61] M. J. Aitkenhead, “A co-evolving decision tree classification
method,” Expert Systems with Applications, vol. 34, no. 1,
pp. 18–25, 2008.

[62] J. J. Rissanen, “Fisher information and stochastic complexity,”
IEEE Transactions on Information �eory, vol. 42, no. 1,
pp. 40–47, 1996.

[63] P. Zhang, B. J. Gao, X. Zhu, and L. Guo, “Enabling fast lazy
learning for data streams,” in Proceedings of the 2011 IEEE
11th International Conference on Data Mining, pp. 932–941,
Washington, DC, USA, December 2011.

[64] F. Schwenker and E. Trentin, “Pattern classification and
clustering: a review of partially supervised learning ap-
proaches,” Pattern Recognition Letters, vol. 37, no. 1, pp. 4–14,
2014.

[65] L.-Y. Hu, M.-W. Huang, S.-W. Ke, and C.-F. Tsai, “+e
distance function effect on k-nearest neighbor classification
for medical datasets,” SpringerPlus, vol. 5, no. 1, p. 1304, 2016.

[66] K.-C. Chou and H.-B. Shen, “Review: recent advances in
developing web-servers for predicting protein attributes,”
Natural Science, vol. 1, no. 2, pp. 63–92, 2009.

[67] K.-C. Chou and H.-B. Shen, “Recent progress in protein
subcellular location prediction,” Analytical Biochemistry,
vol. 370, no. 1, pp. 1–16, 2007.

[68] M. Hayat and A. Khan, “Discriminating outer membrane
proteins with Fuzzy K-nearest neighbor algorithms based on
the general form of chou’s PseAAC,” Protein & Peptide
Letters, vol. 19, no. 4, pp. 411–421, 2012.

[69] T. Fawcett, “An introduction to ROC analysis,” Pattern
Recognition Letters, vol. 27, no. 8, pp. 861–874, 2006.

[70] S. V. Stehman, “Selecting and interpreting measures of the-
matic classification accuracy,” Remote Sensing of Environ-
ment, vol. 62, no. 1, pp. 77–89, 1997.

[71] P. A. R. Koopman, “Confidence intervals for the ratio of two
binomial proportions,” Biometrics, vol. 40, no. 2, p. 513, 1984.

[72] R. A. Charter, “Confidence interval formulas for split-half
reliability coefficients,” Psychological Reports, vol. 86, no. 3,
pp. 1168–1170, 2000.

[73] G. Kumari, B. Chhajer, A. K. Jhingan, and S. Dahiya,
“Evaluation of enhanced external counter pulsation effec-
tiveness on clinical profile and health-related quality of life in
coronary heart disease patients,” International Journal of Life
Sciences, vol. 7, no. 1, pp. 796–805, 2018.

[74] Y. Isler, A. Narin, and M. Ozer, “Comparison of the effects of
cross-validation methods on determining performances of
classifiers used in diagnosing congestive heart failure,”
Measurement Science Review, vol. 15, no. 4, pp. 196–201, 2015.

[75] R. Han, X. Liu, M. Zheng et al., “Effect of remote ischemic
preconditioning on left atrial remodeling and prothrombotic
response after radiofrequency catheter ablation for atrial fi-
brillation,” Pacing and Clinical Electrophysiology, vol. 41,
no. 3, pp. 246–254, 2018.

[76] L. Hussain, W. Aziz, S. Saeed, I. A. Awan, A. A. Abbasi, and
N. Maroof, “Arrhythmia detection by extracting hybrid fea-
tures based on refined Fuzzy entropy (FuzEn) approach and
employing machine learning techniques,” Waves in Random
and Complex Media, vol. 30, pp. 1–31, 2018.

[77] R. K. Tripathy, M. R. A. Paternina, J. G. Arrieta, A. Zamora-
Méndez, and G. R. Naik, “Automated detection of congestive
heart failure from electrocardiogram signal using stockwell
transform and hybrid classification scheme,” Computer
Methods and Programs in Biomedicine, vol. 173, pp. 53–65,
2019.

[78] Y. Isler, A. Narin, M. Ozer, and M. Perc, “Multi-stage clas-
sification of congestive heart failure based on short-term heart
rate variability,” Chaos, Solitons & Fractals, vol. 118,
pp. 145–151, 2019.

[79] A. Narin, Y. Isler, and M. Ozer, “Investigating the perfor-
mance improvement of HRV Indices in CHF using feature
selection methods based on backward elimination and sta-
tistical significance,” Computers in Biology and Medicine,
vol. 45, pp. 72–79, 2014.

[80] Y. Isler and M. Kuntalp, “Heart rate normalization in the
analysis of heart rate variability in congestive heart failure,”
Proceedings of the Institution of Mechanical Engineers, Part H:
Journal of Engineering in Medicine, vol. 224, no. 3, pp. 453–
463, 2010.

[81] Y. Isler and M. Kuntalp, “Combining classical HRV indices
with wavelet entropy measures improves to performance in
diagnosing congestive heart failure,” Computers in Biology
and Medicine, vol. 37, no. 10, pp. 1502–1510, 2007.

[82] W.-T. M. Au-Yeung, P. G. Reinhall, G. H. Bardy, and
S. L. Brunton, “Development and validation of warning
system of ventricular tachyarrhythmia in patients with heart
failure with heart rate variability data,” PLoS One, vol. 13,
no. 11, Article ID e0207215, 2018.

[83] R. R. Sharma, M. Kumar, and R. B. Pachori, “Joint time-
frequency domain-based CAD disease sensing system using
ECG signals,” IEEE Sensors Journal, vol. 19, no. 10,
pp. 3912–3920, 2019.

[84] L. N. Sharma, R. K. Tripathy, and S. Dandapat, “Multiscale
energy and eigenspace approach to detection and localization
of myocardial infarction,” IEEE Transactions on Biomedical
Engineering, vol. 62, no. 7, pp. 1827–1837, 2015.

18 BioMed Research International



[85] R. K. Tripathy, A. Bhattacharyya, and R. B. Pachori, “A novel
approach for detection of myocardial infarction from ECG
signals of multiple electrodes,” IEEE Sensors Journal, vol. 19,
no. 12, pp. 4509–4517, 2019.

[86] R. R. Sharma, A. Kumar, R. B. Pachori, and U. R. Acharya,
“Accurate automated detection of congestive heart failure
using eigenvalue decomposition based features extracted from
HRV signals,” Biocybernetics and Biomedical Engineering,
vol. 39, no. 2, pp. 312–327, 2019.

[87] Y. Li, Y. Zhang, L. Zhao et al., “Combining convolutional
neural network and distance distribution matrix for identi-
fication of congestive heart failure,” IEEE Access, vol. 6,
pp. 39734–39744, 2018.

[88] L. Pecchia, P. Melillo, M. Sansone, and M. Bracale, “Dis-
crimination power of short-term heart rate variability mea-
sures for CHF assessment,” IEEE Transactions on Information
Technology in Biomedicine, vol. 15, no. 1, pp. 40–46, 2011.

[89] N. Elfadil and I. Ibrahim, “Self organizing neural network
approach for identification of patients with congestive heart
failure,” in Proceedings of the 2011 International Conference on
Multimedia Computing and Systems, pp. 1–6, IEEE, Ouar-
zazate, Morocco, April 2011.

[90] G. Yang, Y. Ren, Q. Pan et al., “A heart failure diagnosis model
based on support vector machine,” in Proceedings of the 2010
3rd International Conference on Biomedical Engineering and
Informatics, pp. 1105–1108, IEEE, Yantai, China, October
2010.

[91] C.-S. Son, Y.-N. Kim, H.-S. Kim, H.-S. Park, and M.-S. Kim,
“Decision-making model for early diagnosis of congestive
heart failure using rough set and decision tree approaches,”
Journal of Biomedical Informatics, vol. 45, no. 5, pp. 999–1008,
2012.

BioMed Research International 19


