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Abstract: The aim of this study was to investigate the potential of a machine learning algorithm to
classify breast cancer solely by the presence of soft tissue opacities in mammograms, independent
of other morphological features, using a deep convolutional neural network (dCNN). Soft tissue
opacities were classified based on their radiological appearance using the ACR BI-RADS atlas.
We included 1744 mammograms from 438 patients to create 7242 icons by manual labeling. The
icons were sorted into three categories: “no opacities” (BI-RADS 1), “probably benign opacities”
(BI-RADS 2/3) and “suspicious opacities” (BI-RADS 4/5). A dCNN was trained (70% of data),
validated (20%) and finally tested (10%). A sliding window approach was applied to create colored
probability maps for visual impression. Diagnostic performance of the dCNN was compared to
human readout by experienced radiologists on a “real-world” dataset. The accuracies of the models
on the test dataset ranged between 73.8% and 89.8%. Compared to human readout, our dCNN
achieved a higher specificity (100%, 95% CI: 85.4–100%; reader 1: 86.2%, 95% CI: 67.4–95.5%; reader
2: 79.3%, 95% CI: 59.7–91.3%), and the sensitivity (84.0%, 95% CI: 63.9–95.5%) was lower than that
of human readers (reader 1:88.0%, 95% CI: 67.4–95.4%; reader 2:88.0%, 95% CI: 67.7–96.8%). In
conclusion, a dCNN can be used for the automatic detection as well as the standardized and observer-
independent classification of soft tissue opacities in mammograms independent of the presence of
microcalcifications. Human decision making in accordance with the BI-RADS classification can be
mimicked by artificial intelligence.

Keywords: breast neoplasms; mammography; neural networks; computer; machine learning;
artificial intelligence

1. Introduction

Breast cancer (BC) is the most commonly diagnosed cancer among women. With an
incidence of 12.3%, it constitutes the leading cause of cancer death (15.5%) in the female
population [1]. It appears that the incidence for BC in industrialized countries is higher
than in developing countries, partly due to lifestyle factors. Moreover, lower screening rates
and incomplete reporting lead to the discrepancy of incidences [2]. The main risk factors
of BC include female gender, older age, genetic predisposition, especially the presence
of BRCA-1 or BRCA-2 mutations, hormonal changes and a previous diagnosis of ductal
carcinoma in situ (DCIS). Besides non-modifiable risk factors, mammographic density is an
independent risk factor for BC and is known to be inductive for modifiable risk factors, such
as hormonal changes due to menopausal transition, lifestyle, obesity or excessive alcohol
consumption [3–5]. As demonstrated in numerous large-scale randomized trials, mam-
mography screening is known to reduce relative BC mortality by 20–31% [6–9]. However,
mammography has its limitations. On the one hand, it is examiner dependent. A second
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reading is an established quality control tool; therefore, screening programs are often time-
consuming and cost intensive. In addition, sensitivity is strongly reduced in dense tissue.
Whereas the sensitivity in almost entirely fatty breast is reported to be 98%, it decreases to
48% in women with very dense breasts [10]. Moreover, a false positive rate of about 20%
in screening programs reduces their efficiency, potentially resulting in overtreatment with
consequences for those affected [11].

With the introduction of the BI-RADS classification of the American College of
Radiology (ACR), a large degree of standardization was introduced in the assessment
of mammograms. Based on morphological features, the BI-RADS classification is di-
vided into six categories indicating the relative probability of malignancy: negative (1),
benign (2), probably benign (3), suspicious (4), highly suggestive of malignancy (5) and
known biopsy-proven malignancy (6). Depending on the BI-RADS category, different pa-
tient management is recommended. For benign findings, no further treatment is required,
whereas for probably benign findings, follow-up after 6 months is recommended. In case of
suspicious findings, a biopsy is typically performed to obtain tissue samples for histological
examination [12].

In this study, we focus on soft tissue opacities in mammography, which are one
possible phenotype of BC. According to the BI-RADS catalogue, certain characteristics of
a soft tissue lesion, such as irregular shape, fuzzy, microlobulated or spiculated margins,
and high density are suspicious for malignancy [12] Microcalcifications are one additional
feature in the assessment of BC, then often indicative for malignancy. However, soft tissue
opacities or lesions can present without associated features, e.g., microcalcifications or
architectural distortion, making it quite challenging to detect them.

In the past, computer-aided diagnosis (CAD) systems have been used to assist ra-
diologists in decision making or even to replace them. Previous CAD systems rely on
hand-crafted features based on prior expertise and expert instructions. Approaches based
on the selection of hand-crafted features that characterize geometry and textures have
been proposed for the classification of masses. Within the burgeoning field of artificial
intelligence, deep learning has been introduced as a new paradigm to interpret certain
features directly from an image. To train deep convolutional neural networks (dCNNs) for
breast cancer diagnosis, data samples need to be labelled, which enables the detection of
complex associations in the data [13].

Previous studies have shown the applicability of a dCNN on mammographic images.
For example, Becker et al. reported that a neural network was capable of detecting BC
on mammograms with an accuracy similar to radiologists [14]. Using the detection and
classification of breast lesions by ultrasound as an example, Ciritsis et al. demonstrated that
their implemented dCNN with a sliding window approach similar to ours reaches high
accuracy, thereby mimicking human decision making [15]. Different studies successfully
trained a dCNN to classify microcalcifications according to the BI-RADS classification
system, providing the expertise of a radiology team [16]. Even if the accuracy of the dCNNs
is reported to be comparable to human readers, the process of decision making often
remains obscure for the user.

The purpose of this study was to provide a dCNN where the decision making in the
presence of BC is based on one single feature and is therefore comprehensible for the user.
Therefore, the aim of this study was to train a dCNN for the classification and detection
of breast cancer solely by its appearance as a soft tissue opacity without the presence of
associated features such as microcalcifications.

2. Materials and Methods
2.1. Database Search

A local database search from the Picture Archiving and Communication System (PACS)
was performed (A.S.). Between 2010 and 2019, 32,579 mammographies were performed
at our institution. Based on the ethics proposal, data from the years 2010 to 2016 could
be included in the study, as no signed informed consent had to be obtained from these
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patients. For the data from 2017 to 2019, only those were included who had given written
consent to use the data for research purposes. According to the standards of our institution,
all mammograms had undergone double-reading by two radiologists with over five years
of experience in mammography. Based on the radiologists’ report, distribution was as
follows: BI-RADS 1: 3626 examinations; BI-RADS 2: 22,727 examinations; BI-RADS 3:
4882 examinations; BI-RADS 4: 850 examinations; BI-RADS 5: 330 examinations; BI-RADS
6: 164 examinations.

A full-text search for “soft tissue opacities” resulted in 2297 examinations from
1549 patients. Examinations from patients with previous surgeries (n = 732) and pre-
vious diagnosis of DCIS or breast cancer on the side examined (n = 16) were excluded.
Further, any mammograms depicting soft tissue opacities with associated features, e.g., mi-
crocalcifications (n = 446), architectural distortion (n = 18) or mamillary retraction (n = 7)
were excluded. From the remaining 1078 examinations, a single researcher (A.S.) retrieved
22 randomly chosen patients from the BI-RADS 1 cohort (84 mammograms), 196 from the
BI-RADS 2 and 3 cohort (782 mammograms) and 220 from the BI-RADS 4 and 5 cohort
(878 mammograms), resulting in a total of 1744 mammograms from 438 patients to train
the dCNN. We divided the BI-RADS 4 and 5 cohort into two folders that were classified
as “typically malignant”, which corresponded to spiculated lesions, and “not typically
malignant”, which partly had criteria of benign lesions. The subdivision was based on
a consideration of training the models with regard to this differentiation. However, this
procedure was discarded in the further course, and the two folders were combined. The
patient inclusion process is depicted in Figure 1.
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Figure 1. Flowchart depicting patient selection process. Only examinations depicting soft tissue
opacities were included. Examinations of women with previous surgery, diagnosed DCIS or breast
cancer (BC) on the side examined and examinations from the same patient were excluded. Soft tissue
opacities with associated features, e.g., microcalcifications, architectural distortion or mamillary
retraction, were excluded.
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Out of all the retrieved mammograms, 54 were left for comparisons with human
readers, and all the rest were randomly split in 70%:20%:10% proportions for the training,
validation and testing of the dCNN models, leaving 1183 for training, 338 for validation
and 169 mammograms for model-testing purposes.

2.2. Data Preparation

All mammographic images were initially resized to 3510 × 2800 pixels. A custom-
made OCTAVE script (release 5.2.0) was used for the labeling task. According to three
classes, for each mammogram, different rectangular regions of interest (ROIs) were manu-
ally labeled, cropped, and saved as new images (351× 380 pixels). The classes were defined
as 1: “healthy tissue” (BI-RADS 1), 2: “probably benign soft tissue opacities” (BI-RADS
2/3) and 3: “suspicious soft tissue opacities” (BI-RADS 4/5). For labeling healthy tissue, in
Figure 2, mammographic illustrations of these three classes with magnification of the ROIs
are shown. The human labeling and cropping of the original set of 1690 mammograms
resulted in 7242 crops from images (see Table 1).
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Table 1. Number crops of mammograms used for training, validation and testing of the different
dCNN models.

Category

BI-RADS 1
(Healthy Tissue)

BI-RADS 2/3
(Probably Benign Opacities)

BI-RADS 4/5
(Suspicious Opacities)

Training 2472 1733 865
Validation 695 489 264

Test 371 220 133

2.3. Training of dCNN Models

Training was performed on a consumer-grade computer (Intel i7-7700, 16 GB, NVIDIA
1080 GTX 8 GB graphic card) running the operating system Ubuntu Linux 16.04. Models
were created in the Python programming language (Python Software Foundation, version
3.8.24), using Keras 2.0.4 (Massachusetts Institute of Technology, Cambridge, MA, USA)
for model compilation and training. Models were built with a sequential class of Keras,
containing 13 convolutional layers with four max pooling layers for downsampling, fol-
lowed by two dense layers with the ReLU activation function. To reduce overfitting, 50%
dropout and l1/l2 regularization was applied, class weights were added to counteract
class imbalance and a softmax activation function was used for the final weights. Models
were trained with categorical cross-entropy loss function. To classify the three types of
opacities described above according to the BI-RADS standard, four different dCNN models
were generated, differing in the optimizer (SGD, Adam), batch size (16, 32), learning rate
(1 × 10−5, 5 × 10−5) and input size of the image (351 × 280, 175 × 140). A graphical
representation of the applied multilayered dCNN is shown in Figure 3. Training images
fed to the network have been randomly augmented in 10-fold manner using the built-in
ImageDataGenerator class of Keras with random shear, shift, zooming, rotating and bright-
ness changes with the following settings: ‘zooming’: 0.05, ‘rotation’: 5.0, ‘horizontal_shift’:
0.05, ‘vertical_shift’: 0.05, ‘brightness’: 0.1′. Figure 4 depicts the schematic workflow from
labeling to classification.
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Figure 3. Schematic pattern of the applied multilayered deep convolutional neural network (dCNN),
containing 13 convolutional layers with 4 max pooling layers followed by 2 dense layers. Input size
of the image was 351 × 280 for dCNN models 1–3 and 175 × 140 for dCNN model 4. Feature maps
are described as the number of layers x number of kernels at(@) the resolution of the images.
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Figure 4. Schematic pipeline of the workflow used. (a) First mammograms were resized. For each
image, different rectangular regions of interest (ROIs) were generated and labeled to three defined BI-
RADS classes: “healthy tissue” (1), “probably benign opacities” (2/3) and “suspicious opacities” (4/5).
(b) Data was randomly augmented with a built-in ImageDataGenerator class of Keras. (c) After image
preprocessing and data augmentation, four different dCNN models were trained, validated and
tested, (d) classifying the generated images based on the probability for the different BI-RADS classes.
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2.4. Human Readout on a “Real-World” Dataset

To evaluate unbiased performance, a “real-world” test dataset consisting of 54 mam-
mograms not used during the training process was created. The images were classified
based on the highest probability assigned to the different categories “probably benign soft
tissue opacities” and “suspicious soft tissue opacities”. Diagnostic performance was then
compared to human reading by two highly experienced radiologists in breast imaging
(reader 1: 3 years of experience (C.S.); reader 2: 7 years of experience (M.M.)). For the
evaluation with the dCNN, soft-tissue lesions were present in the center of all images
(351 × 280 pixels), with 29 “probably benign lesions” (BI-RADS 2 + 3) and 25 “suspicious
lesions” (BI-RADS 4 + 5). The radiologists received the entire mammography in one di-
mension for their reading. The performance of the dCNN model, as well as that of the two
radiologists in terms of classification into the two categories “probably benign soft tissue
opacities” and “suspicious soft tissue opacities”, was assessed using receiver-operating
characteristics (ROC) in comparison to the clinical radiological reports, which served as
the ground-truth.

2.5. Computation of Probability Maps

Representative mammographies were analyzed using a sliding window approach
implemented with the computer vision OpenCV library (Intel Corporation, Santa Clara,
CA, USA) Berkeley Software Distribution License). At each position of the sliding window
with an increment of 10 in the x and y positions in the nested loops, a 351 × 280 array was
cropped and classified with the dCNN model. The probabilities determined by the dCNN
classification and the center coordinates were noted for each position of the sliding window.
For visualization of the classification results, probabilities were converted into an RGB
image according to the three classes (“healthy tissue”: blue, “probably benign lesions”:
purple, “suspicious lesions”: red).

2.6. Statistical Analysis

The statistical evaluation was performed using IBM SPSS Statistics software
(version 27.0, IBM Corp. Armonk, NY, USA). Inter-rater agreement between the dCNN,
both the readers’ and the radiologists’ report (ground-truth) was calculated using Fleiss’
kappa. The strength of agreement beyond chance obtained can be interpreted as follows:
poor, <0; slight, 0–0.2; fair, 0.21–0.4; moderate, 0.41–0.6; substantial, 0.61–0.8; almost perfect
0.81–1 [16]. For inter-reader reliability, an intraclass correlation coefficient (ICC) greater
than 0.8 was considered almost perfect. The level of significance was set to a p-value < 0.05.

3. Results
3.1. Data Preparation and Training of dCNN Models

Figure 5 shows the progression of the training and validation accuracies as well as
the loss function for the different dCNN models. In model 1, a stochastic gradient descent
(SGD) optimizer was used, and only moderate augmentation (zooming, rotating, horizontal
and vertical shifting, brightness) of the images was performed, which resulted in the lowest
accuracy of only 73.8% (95% CI: 70.4–76.9%). In model 2, the SGD optimizer was replaced
by Adaptive Moment Estimation (ADAM), which resulted in an accuracy of 88.4% (95%
CI: 85.8–90.6%), an improvement of 14.6% compared to the SGD optimizer. In model 3,
data augmentation was increased, which resulted in the highest accuracy of all models of
89.8% (95% CI: 87.3–91.9). The fourth model, in which the matrix size of the input images
was reduced by half, led to an accuracy of 88.4% (95% CI: 85.8–90.6%). For all models,
the accuracy of the validation dataset was initially higher than that of the training dataset,
which may be explained by the small batch size used for training, whereas the validation
dataset is evaluated completely after each epoch. Confusion matrices for the test data set
are shown in Table 2. For model 1, a systematic deviation of the dCNN prediction to lower
classes can be seen, whereas in the other confusion matrices, a mostly symmetric behavior
can be observed.
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best performance was achieved by model 3.

3.2. Validation on “Real-World” Data

In Figure 6, example images for each class and the assigned probabilities are depicted.
The confusion matrices of the “real-world” test dataset for dCNN model 3 and both human
readers are presented in Table 3. In relation to the radiological reports, which served as
a ground-truth, the dCNN reached an overall accuracy of 92.6% (95% CI:82.1–97.9). Four
suspicious opacities were misclassified as probably benign, resulting in a sensitivity of
84.0% (95% CI: 63.0–95.5%), which was comparable to that of the radiologists (reader 1:
88.0%, 95% CI: 67.4–95.4%; reader 2: 88.0%, 95% CI: 67.7–96.8%). However, the specificity
for the dCNN (100%, 95% CI: 85.4–100%) was superior compared to that of the radiologists
(reader 1: 86.2%, 95% CI: 67.4–95.5%; reader 2: 79.3%, 95% CI: 59.7–91.3%. The inter-rater
reliability between the three raters was substantial, with an ICC of 0.77 (95% CI 0.65–0.87,
p-value < 0.001). Kappa values between both readers and the dCNN were moderate but
almost perfect between the dCNN and the ground-truth (Table 4) [16]. The diagnostic
performance of the dCNN was excellent, with an area under the receiver operating char-
acteristics (ROC) curve of 92% (95% CI: 83.3–100%), which was superior to both readers
(reader 1: 87.1, 95% CI 76.6–97.5%; reader 2: 83.7%, 95% CI 72.2–95.1%), as depicted in
(Figure 7).
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Table 2. Confusion matrices of the different dCNN models (1–4) on the test dataset, with 1: “healthy
tissue”, 2/3: “probably benign opacities”, 3/4: “suspicious opacities”. The correctly assigned classes
are highlighted in bold.

Model 1 Predicted

real

1 2/3 4/5

1 307 36 3
2/3 45 191 5
4/5 27 74 36

Model 2 Predicted

real

1 2/3 4/5

1 331 11 4
2/3 17 215 9
4/5 23 20 94

Model 3 Predicted

real

1 2/3 4/5

1 316 14 16
2/3 9 222 10
4/5 13 12 112

Model 4 Predicted

real

1 2/3 4/5

1 325 13 8
2/3 18 208 11
4/5 18 12 197
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classification probabilities of dCNN model 3 to the three defined BI-RADS classes (1) “healthy tissue”
(2/3) “probably benign soft tissue opacity” and (4/5) “suspicious soft tissue opacity”.
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Table 3. Confusion matrices for reader 1, reader 2 and dCNN model 3 for classification to BI-RADS
2/3, “probably benign soft tissue opacities”, and BI-RADS 4/5,“suspicious soft tissue opacities” on
the “real world” dataset. Correctly assigned classes are highlighted in bold.

Reader 1 Predicted

radiological report
(ground-truth)

2/3 4/5

2/3 25 4
4/5 3 22

Reader 2 Predicted

radiological report
(ground-truth)

2/3 4/5

2/3 23 6
4/5 3 22

dCNN Predicted

radiological report
(ground-truth)

2/3 4/5

2/3 29 0
4/5 4 21

Table 4. Inter-reader reliability between dCNN model 3, both readers and the radiologists report
(ground-truth). Kappa values of 0.81–1.0 were considered almost perfect, 0.61–0.80 as substantial and
0.41–0.60 as moderate agreement.

Ground-Truth dCNN Model 3 Reader 1 Reader 2

Ground-truth 1 0.85
(CI: 0.71–0.99)

0.74
(CI: 0.56–0.92)

0.67
(CI: 0.47–0.87)

dCNN model 3 1 0.59
(CI: 0.38–0.80)

0.52
(CI: 0.30–0.74)

Reader 1 1 0.48
(CI: 0.25–0.72)

Reader 2 1
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(AUC) for dCNN model 3 and the two readers for the classification “probably benign soft tissue
opacity” and “suspicious soft tissue opacity” compared to the radiologist’s report, which served as
the ground-truth.
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3.3. Probability Maps

The sliding window approach was able to correctly detect the areal distribution of
the suspicious soft tissue opacity. Excellent image quality could be obtained. Examples of
probability maps are shown in (Figure 8).
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Figure 8. Overlay images of the calculated probability maps (b,d) created by the sliding window
approach and the corresponding mammographic images (a,c) of two patients from the test dataset.
In (a,b), a suspicious soft tissue opacity is highlighted in red. An area of denser tissue in the left axilla
is correctly highlighted as a healthy tissue in blue. In (c,d), a probably benign soft tissue opacity is
highlighted in purple.
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4. Discussion

In this study, we were able to show that artificial intelligence in the form of deep
convolutional neural networks (dCNN) can be trained to distinguish between benign and
malignant soft tissue opacities in mammograms on a BI-RADS based approach. Depending
on the BI-RADS classification, a decision is made as to whether no further action is necessary
(BI-RADS 1), a follow-up examination in 6 months is recommended (BI-RADS 2 and 3)
or if a biopsy is indicated (BI-RADS 4 and 5). The proposed dCNN model was able to
distinguish probably benign and suspicious findings solely based on the specific features of
the soft tissue opacities without associated microcalcifications, asymmetries or architectural
distortions. As the sensitivity of our dCNN was comparable to human readers, we were
able to demonstrate that human decision making can be mimicked by the algorithm in
regard of the assessment of soft tissue opacities, which are often a cause of uncertainty
for inexperienced radiologists. Moreover, the specificity and accuracy of our dCNN was
superior to that of the human readers, showing that artificial intelligence can be used
as a second reading for mammographic images, providing a time-saving approach in
screening programs.

There are several studies with various approaches regarding the role of machine
learning and its capabilities to detect suspicious masses in mammograms. In a study
from 2016, Lévy and Jain used deep learning (DL) to discriminate between benign and
malignant regions in mammograms. They additionally put the masses in the context of
the parenchyma surrounding the mass. With their approach, they were able to reach an
accuracy of 92.4%, which was comparable to our study [12]. Another study by Shen et al.
took the approach of assessing the complete image of the mammogram using DL, which
was able to achieve an accuracy of 96% [17]. However, their aim was only to detect the
lesion; the classification of the lesion was out of the scope of their study.

Whereas different studies often used DL to assess the image with all its features, we
focused on detecting and classifying local soft tissue opacities without “typical” associated
features, such as microcalcifications, architectural distortions, cutis thickening, enlarged
lymph nodes or others. Not only are associated features often indicative for malignancy, but
they also lead to attention on a suspicious area in the mammogram. Without the presence
of microcalcifications or other features, detecting and assessing suspicious tissue opacities
seems more challenging, particularly in the presence of surrounding glandular tissue. Since
mammograms are superimposed images, the effect of tissue overlay impedes the visibility
of tissue opacities, especially in women with denser breast tissue, reducing the sensitivity
of screening programs [10]. The lack of additional features such as microcalcifications,
architectural disturbances and cutis thickening may by the origin of the lower sensitivity of
87.9% observed in our study.

Deep convolutional neural networks as used in our study are currently the most
powerful deep learning algorithm [18]. However, the training of a dCNN requires many
data and a lot of computing power. Therefore, a specific adaptation of the neural network
was necessary to achieve sufficient accuracy. The original optimizing algorithm “SGT”
used in dCNN model 1 reached the lowest accuracy compared to model 2–4 using the more
powerful optimizer “ADAM”.

Despite the presence of certain features, the assessment of mammographic images,
particularly soft tissue opacities, strongly depends on the radiologists’ experience. In our
study, the sensitivity of the dCNN was comparable to the human readers (87.9% vs. reader
1: 84.6% vs. reader 2: 78.6%). However, the specificity was perfect (100%), leading to a
higher overall accuracy (92% vs. reader 1: 87.1% vs. reader 2: 83.7%). Artificial intelligence,
therefore, may serve as a second reading tool to improve image assessment. Particularly in
screening programs, where second reading is a standard procedure, AI algorithms could
be a cost-effective alternative. However, in radiological imaging, the process of decision
making by AI algorithms is often considered a black box, whereby the user knows the input
and output but is not aware of the image features underlying the classification decision.
This lack of information can be a problem for clinical applicability. Therefore, AI algorithms
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need to be trained to classify the different relevant features of breast cancer such as soft
tissue opacities and microcalcifications (explainable AI). With the proposed technology, we
will provide another element to improve the applicability of AI in breast imaging.

Our study has several limitations: First, compared to other studies applying AI on
BC detection, only few data were used. Because our intention was to train the dCNN on
the detection of soft tissue opacities, we omitted many mammographic images showing
additional features of BC such as microcalcifications or architectural distortions. However,
it was out of the scope of this study to train a dCNN with higher accuracy than previous
studies. Instead, we wanted to provide the proof-of-principle that a dCNN can be trained
with high accuracy for the detection of breast cancer solely by the feature of soft tissue
opacities. Second, we cannot exclude that different machine learning algorithms other than
dCNNs might reach a higher accuracy on the available amount of data. However, dCNNs
are currently regarded as the most powerful machine learning algorithm [18]. Third, only
four different dCNN configurations have been tested. From our initial optimizations of
the dCNN, however, we know that optimizer, spatial resolution and the degree of data
augmentation are among the most influential parameters. Fourth, we did not system-
atically evaluate how dense breast tissue influences the detectability of breast lesions in
the mammography using our dCNN model, which is an interesting question that should
be addressed in a different study. Fifth, we also did not evaluate how the presence of
additional features such as microcalcifications might influence the performance of our
dCNN model. However, as the aim of this study was to provide the proof-of-principle that
a dCNN can be trained to detect breast cancer as soft tissue opacities without additional
features, the testing of supplementary features was out of our scope.

In conclusion, we were able to show that a dCNN can be successfully trained to
accurately classify soft tissue opacities on mammograms according to the BI-RADS classifi-
cation system to obtain an observer-independent classification with the ability to provide a
standardized recommendation for the follow-up procedure. In addition, we were able to
highlight benign and suspicious soft tissue opacities in the mammograms using a sliding
window approach. The proposed technique might be used as a standardized quality control
tool, providing the expertise of a team of radiologists.
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