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Abstract
Purpose: To	 identify	 the	 immune	 molecular	 subtype	 for	 MM	 to	 help	 achieve	
individualized	and	precise	targeted	therapy.
Methods: The	GDC	API	was	used	to	download	the	TCGA-	MM	profile	dataset,	
which	contains	859 samples	in	total,	all	of	which	were	anterior	to	the	standard	
treatment	after	diagnosis.	Moreover,	282,	298,	and	258 samples	were	stage	I,	stage	
II,	and	stage	III	separately.	We	used	the	immune	gene	expression	profile	for	con-
sistent	clustering;	and	used	the	R	software	package	ConsensusClusterPlus	to	sort	
the	immune	molecular	subtypes.	Correlation	between	subtypes	and	clinical	fea-
tures,	immunity,	and	prognosis	was	then	analyzed.
Results: A	total	of	859	tumor	samples	were	separated	into	these	three	subtypes,	
which	were	not	meaningfully	related	to	age	or	sex	but	showed	a	remarkable	as-
sociation	with	stage.	The	results	suggested	that	obvious	differences	in	immune	
metagene	expression	and	expression	of	10	immune	checkpoint	genes	appeared	
among	the	three	subtypes.
Conclusion: The	 three	 subtypes	 are	 distinctly	 different	 in	 terms	 of	 immune	
metagenes,	immune	checkpoint	molecules,	and	clinical	prognosis.	The	discovery	
of	 the	 immune	microenvironment	of	MM	could	 further	 reveal	 the	 strategy	 for	
immunotherapy	 in	MM	and	provide	a	promising	candidate	prognostic	 tool	 for	
survival.
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1 	 | 	 INTRODUCTION

Multiple	myeloma	(MM)	is	the	second	most	common	he-
matological	malignancy	after	non-	Hodgkin	lymphoma.	It	
is	characterized	by	the	proliferation	of	clonal	plasma	cells	
in	 the	 bone	 marrow,	 it	 remains	 an	 incurable	 disease.1,2	
More	than	100,000	patients	worldwide	are	diagnosed	with	
MM	each	year	which	accounts	for	approximately	10%	of	
all	 hematological	 malignancies.3,4	 The	 increasing	 inci-
dence	 and	 prevalence	 of	 MM	 make	 it	 a	 significant	 and	
growing	healthcare	challenge	with	a	relapsing	course.

The	 diagnosis	 and	 treatment	 of	 MM	 has	 improved	
significantly,	 and	 there	 are	 many	 available	 treatments	
including	 alkylating	 agents,	 deacetylase	 inhibitors,	 im-
munomodulatory	 agents,	 proteasome	 inhibitors,	 and	
monoclonal	 antibodies.	 MM	 armamentarium	 is	 widely	
used	and	almost	every	patient	can	acquire	adequate	strate-
gies	and	optimal	sequences	of	drugs.3–	6	Given	our	increas-
ing	understanding	of	the	diagnosis	and	treatment	of	MM,	
now	would	seem	an	appropriate	 time	 to	provide	a	more	
robust	classification	system	for	MM,	which	will	pave	the	
way	for	personalized	medicine	and	improve	the	quality	of	
life	and	survival	of	patients	with	MM.7

Immunotherapy	is	considered	the	fifth	pillar	of	cancer	
care	 and	 represents	 a	 paradigm	 shift	 in	 oncology	 treat-
ment.8,9	 As	 a	 result	 of	 advanced	 molecular	 diagnostic	
platforms	 and	 key	 discoveries	 on	 immune	 mechanisms,	
immunotherapy	 has	 revolutionized	 the	 field	 of	 cancer	
therapeutics	 and	 generated	 considerable	 excitement	 for	
the	treatment	of	almost	all	types	of	cancers.10–	12	However,	
the	 management	 of	 MM	 in	 clinical	 trials	 remains	 chal-
lenging	 despite	 the	 enormous	 advances	 in	 immunother-
apy	and	patients	with	MM	treated	with	 immunotherapy	
have	 exhibited	 diverse	 remission	 rates	 within	 cohorts.13	
The	reasons	for	individual	differences	in	cancer	immuno-
therapy	have	been	attributed	to	several	factors,	including	

differing	 antigen	 specificity	 and	 expression	 levels,	 im-
mune	competency,	and	diversity.7,14,15	The	intricate	tumor	
immune	microenvironment	plays	an	important	role	in	the	
effectiveness	 of	 immunotherapy;	 however,	 the	 relation-
ship	 between	 the	 tumor	 immune	 microenvironment	 in	
MM	and	clinical	prognosis	is	currently	unclear.	Hence,	it	
is	essential	to	fully	explore	the	immune	status	of	patients,	
to	confirm	the	molecular	subtypes	of	MM,	and	to	further	
improve	treatment	outcomes	in	patients	with	MM.

The	purpose	of	this	study	was	to	investigate	the	overall	
immune	status	of	patients	with	MM	and	 its	clinical	 sig-
nificance.	By	screening	the	immune	gene	expression	data	
from	 the	TCGA	 database,	 we	 identified	 three	 molecular	
subtypes	of	MM.7,16,17	We	then	compared	clinical	features,	
immune	landscape,	and	finally,	our	analysis	results	were	
validated	 using	 external	 datasets.	 These	 findings	 are	 of	
great	significance	for	the	individualized	treatment	of	MM	
and	may	guide	the	treatment	principles	in	future	clinical	
trials.18

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Data collection and processing

TCGA-	MM	 profile	 dataset	 was	 downloaded	 from	 TCGA	
and	 contained	 a	 total	 of	 859  samples,	 all	 of	 which	 were	
samples	anterior	to	the	standard	treatment	after	diagnosis.	
Moreover,	282,	298,	and	258 samples	were	stage	I,	 stage	
II,	and	stage	III	separately.	Detailed	clinical	information,	
including	age,	sex,	tumor	type,	and	tumor	stage	was	also	
collected	 from	 the	 study,	 as	 listed	 in	 Table  1.	 We	 then	
matched	the	expression	profile	with	the	clinical	follow-	up	
samples	and	chose	these	as	the	sample	set	for	the	study.	
Furthermore,	we	extracted	the	expression	profiles	of	im-
mune	gene	sets	and	selected	the	expression	levels	in	each	

C1 C2 C3

p. overallN = 272 N = 295 N = 292

Age 64.0	(11.2) 62.8	(10.2) 62.1	(10.4) 0.098

Gender: 0.406

Female 105	(38.6%) 122	(41.4%) 129	(44.2%)

Male 167	(61.4%) 173	(58.6%) 163	(55.8%)

Type: 0.003

Primary 235	(86.4%) 264	(89.5%) 277	(94.9%)

Recurrent 37	(13.6%) 31	(10.5%) 15	(5.14%)

Stage: <0.001

I 83	(31.3%) 82	(28.5%) 117	(41.1%)

II 98	(37.0%) 86	(29.9%) 114	(40.0%)

III 84	(31.7%) 120	(41.7%) 54	(18.9%)

T A B L E  1 	 Relationship	between	three	
subtypes	and	clinical	characteristics	(χ2	
test)
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sample	 that	were	greater	 than	0.	Eventually,	5000 genes	
met	the	inclusion	criteria	which	means	sample	with	more	
than	30%	of	the	genes	was	included	as	an	immune	gene	
for	this	study.19

The	GSE13	6400	dataset	of	the	GPL570	platform	which	
contained	1293 standard	samples	with	survival	 informa-
tion	as	listed	in	Table 2	was	downloaded	using	the	R	pack-
age	GEOquery.

Eventually,	we	appraised	and	quantified	 the	 immune	
and	matrix	scores	for	each	sample	using	the	R	package.

2.2	 |	 Molecular subtypes screening 
according to immune genes

We	 screened	 the	 molecular	 subtypes	 using	 the	 immune	
gene	expression	profile	 for	consistent	clustering	and	 the	
R	software	package	ConsensusClusterPlus.	The	Euclidean	
distance	was	used	to	calculate	the	similarity	distance	be-
tween	 samples,	 while	 K-	means	 was	 used	 for	 clustering.	
We	then	sampled	80%	of	the	samples	using	a	resampling	
scheme	that	was	executed	100	times.	Using	the	cumula-
tive	distribution	function	(CDF),	we	figured	out	the	opti-
mal	number	of	clusters.	In	the	end,	the	R	package	sigclust	
was	utilized	to	further	analyze	the	clustering	significance	
between	these	subtypes.

2.3	 |	 The correlation between 
subtypes and clinical features

The	 development	 of	 the	 disease	 is	 closely	 linked	 to	 dif-
ferent	 clinical	 features.	 By	 analyzing	 the	 correlation	 be-
tween	 subtypes	 and	 clinical	 features,	 we	 could	 further	
understand	the	correlation	between	subtypes	and	disease	

development.	Then	the	correlation	between	the	subtypes	
and	age,	grade,	and	stage	was	observed	in	the	light	of	the	
clinical	follow-	up	data	of	the	patients.

2.4	 |	 The correlation between 
subtypes and immunity

To	 investigate	 the	 correlation	 between	 the	 immune	
metagenes	and	subtypes,	we	selected	13	types	of	immune	
metagenes	that	are	involved	in	the	immune	process.	Based	
on	the	relationship	between	the	immune	components	of	
tumor	 tissue	 and	 prognosis,	 we	 further	 studied	 the	 cor-
relation	between	the	matrix,	immune	landscape,	and	mo-
lecular	subtypes.	We	further	evaluated	the	differences	in	
the	scores	of	the	subtypes	by	utilizing	variance	analysis.

2.5	 |	 The correlation between 
subtypes and prognosis

We	 utilized	 K–	M	 to	 evaluate	 the	 prognostic	 differences	
between	the	different	subtypes	after	we	processed	the	fol-
low-	up	data	from	the	sample	follow-	up	information.

2.6	 |	 Other statistical methods

To	study	the	relationship	between	the	molecular	subtypes	
and	 conventional	 clinical	 variables,	 chi-	square	 test	 and	
exact	 test	of	Fisher's	were	utilized.	Besides,	 the	 log-	rank	
test	and	Kaplan–	Meier	curves	were	utilized	when	we	com-
pared	the	OS	rates	of	all	molecular	subtypes.	Meantime,	
all	the	statistical	tests	were	two-	sided	tests	and	we	utilized	
R	software	for	statistical	analysis.

C1 C2 C3

p. overallN = 800 N = 133 N = 360

OS 0.39	(0.49) 0.53	(0.50) 0.41	(0.49) 0.009

PFI 0.49	(0.50) 0.61	(0.49) 0.53	(0.50) 0.031

Gender: 0.397

Female 297	(37.1%) 56	(42.1%) 145	(40.3%)

Male 503	(62.9%) 77	(57.9%) 215	(59.7%)

Stage: 0.004

I 355	(44.5%) 38	(28.6%) 143	(40.4%)

II 254	(31.8%) 47	(35.3%) 109	(30.8%)

III 189	(23.7%) 48	(36.1%) 102	(28.8%)

OS	time 2860	(1335) 2229	(1423) 2648	(1316) <0.001

PFI	time 1603	(929) 1223	(875) 1505	(941) <0.001

T A B L E  2 	 Summary	descriptive	of	the	
GEO	database

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136400
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3 	 | 	 RESULTS

3.1	 |	 Identification of three immune 
molecular subtypes of MM based on 
immune profiles

To	 identify	 the	 MM	 immune	 molecular	 subtypes	 in	
the	 TCGA	 cohort,	 the	 gene	 expression	 profiles	 of	
782	 immune-	related	 genes	 were	 considered.20	 Using	
ConsensusClusterPlus,	 the	 most	 favorable	 number	 of	
clustering	was	achieved	when	k = 3	(Figure 1)	according	
to	the	cumulative	distribution	function	curves	of	the	con-
sensus	score.20,21

3.2	 |	 Correlation between the three 
molecular subtypes and clinical 
characteristics

As	shown	in	Table 1,	we	analyzed	the	correlation	between	
the	 three	 subtypes,	 age,	 sex,	 and	 tumor	 type	 and	 tumor	
stage.	Three	subtypes	had	almost	no	relationship	with	age	
or	sex,	but	showed	a	notable	correlation	with	tumor	type	
and	stage.	For	 instance,	 the	 recurrence	of	C1 subtype	 is	
notably	 greater	 than	 other	 subtypes;	 meanwhile,	 there	
were	more	stage	Ⅲ	samples	of	C2 subtype	than	those	of	
the	other	subtypes.

3.3	 |	 Correlation between the three 
subtypes and immunity

To	analyze	the	relevance	between	the	three	subtypes	and	
immune	 microenvironment,	 we	 analyzed	 the	 relevance	
between	the	three	subtypes	and	28	immune	metagenes.22	
The	results	revealed	that	the	expression	of	the	28	immune	
metagenes	is	quite	different;	 the	majority	of	which	were	
highly	 expressed	 in	 the	 C1  subtype,	 whereas	 almost	 all	
the	28	immune	metagenes	exhibited	low	expression	in	the	
C3 subtype	(Figures 2,	S1-	S3).

3.4	 |	 Relationship between the three 
subtypes and the expression of 10 immune 
checkpoint genes

We	 further	 studied	 the	 relationship	 between	 the	 expres-
sion	of	10	 immune	checkpoint	genes	and	the	three	sub-
types.	The	expression	levels	of	SDC1,	XPO1,	TNFRSF17,	
GPRC5D,	 and	 CD38	 in	 C1  subtype	 were	 significantly	
lower	than	those	in	other	subtypes,	while	the	C3 subtype	
showed	higher	expression	levels	of	TNFRSF17	and	CD38	
(Figure 3).	Statistical	significance	was	set	at	p	<	0.05.

3.5	 |	 Prognosis differences between the 
three subtypes

The	 Kaplan–	Meier	 method	 was	 used	 to	 study	 the	 prog-
nostic	differences	between	the	three	subtypes	and	further	
explore	 the	 correlation	 between	 the	 three	 subtypes	 and	
prognosis.23	 There	 was	 an	 obvious	 contrast	 between	 the	
three	 subtypes	 regarding	 prognosis:	 the	 C2  subtype	 had	
the	 worst	 prognosis	 and	 the	 C3  subtype	 showed	 better	
prognosis	than	the	other	subtypes	(Figure 4).

3.6	 |	 Validation of external datasets

Within	the	HSIC	Lasso	framework,	we	performed	feature	
selection	and	selected	120 genes.24	To	further	identify	the	
three	 subtypes,	 GSE13	6400  standard	 data	 were	 down-
loaded	from	the	GEO	database,	which	included	1293 sam-
ples.	As	 shown	 in	Figure 5,	7	of	10 genes	demonstrated	
a	similar	expression	to	the	10	immune	checkpoint	genes.	
Based	on	the	analysis	of	prognostic	differences	(Figure 6),	
the	results	of	the	validation	dataset	were	consistent	with	
those	of	the	TCGA	cohort.

4 	 | 	 DISCUSSION

With	 the	 emerging	 immunotherapy	 for	 MM,5,8,25,26	 his-
topathological	 criteria	 cannot	 adequately	 provide	 treat-
ment	recommendations;	therefore,	an	immune	molecular	
taxonomy	 has	 the	 potential	 to	 improve	 outcomes	 and	
accelerate	 therapeutic	 development.16,27,28	 Increasing	 re-
search	has	 focused	on	exploring	 the	molecular	 subtypes	
of	various	types	of	tumors	based	on	genome-	wide	profiles	
or	multi-	omics.16,19,29–	32	These	strategies	will	lead	to	better	
treatment	 options,	 focused	 on	 the	 underlying	 biology	 of	
each	specific	subtype.	These	findings	provide	new	insights	
into	the	diagnosis	and	treatment	of	MM.

Despite	 comprehensive	 survival	 amelioration	 and	 the	
availability	of	new	drugs	in	the	past	two	decades,	MM	is	still	
an	incurable	disease.33	However,	treatment	for	MM	contin-
ues	to	develop	as	a	result	of	many	emerging	immunother-
apies	 that	 may	 achieve	 treatment	 breakthroughs.25,34	 The	
first	 immunotherapy	 for	 MM	 was	 an	 allogeneic	 stem	 cell	
transplant,	which	remains	a	routine	treatment	for	the	long-	
term	management	of	high-	risk	diseases.35	In	the	mid-	2000s,	
immunomodulatory	drugs	designed	to	improve	the	immu-
nomodulatory	 and	 anticancer	 properties	 and	 tolerability	
profiles	of	treatments;	such	as	thalidomide,	were	shown	to	
be	 effective	 in	 MM	 and	 substantially	 improved	 survival.36	
The	next	generation	of	immunotherapies	for	MM	comprises	
monoclonal	antibodies,37	chimeric	antigen	receptor	T	cells,38	
bispecific	 antibodies,39	 antibody	 drug	 conjugates,40	 and	

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136400
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checkpoint	inhibitors.41	Although	several	other	novel	recep-
tors	have	been	identified,	B-	cell	maturation	antigen	(BCMA)	
is	still	the	predominant	target	for	emerging	treatments.42

Nevertheless,	 MM	 appears	 to	 be	 able	 to	 escape	 im-
munotherapy	 as	 seen	 with	 chemotherapy,	 due	 to	 the	
intimate	 relationship	 with	 the	 cells	 in	 the	 bone	 marrow	
microenvironment,	 which	 supports	 multiple	 aspects	 of	
the	 tumor.25,43	 Thus,	 not	 all	 therapies	 can	 successfully	
treat	MM,	and	some	may	even	be	harmful.	Therefore,	it	is	

of	great	clinical	significance	to	screen	for	immune	molec-
ular	subtypes	of	MM,	which	will	contribute	to	the	individ-
ualization	of	immunotherapy.

The	superiority	of	the	research	is	predominantly	to	in-
vestigate	the	global	immune	spectrum,	which	can	contrib-
ute	to	more	features	about	the	immune	landscape	in	MM.	
Finally,	we	identified	three	gene	expression	subtypes	ac-
cording	to	global	immune	genes	in	the	TCGA-	MM	cohort	
and	confirmed	them	in	the	external	dataset	GSE13	6400.

F I G U R E  1  Identification	of	MM	subtypes	based	on	immune	genes.	(A)	CDF	curve;	different	colors	reflect	different	cluster	numbers,	
the	horizontal	axis	represents	the	consensus	index,	the	vertical	axis	stands	for	cumulative	distribution	function	(CDF),	and	a	bigger	AUC	
indicates	better	clustering.	(B)	CDF	delta	area	curve	of	consensus	clustering,	indicating	the	relative	change	in	area	under	the	cumulative	
distribution	function	(CDF)	curve	for	each	category	number	k	compared	with	k	−	1.	The	horizontal	axis	represents	the	category	number	
k,	and	the	vertical	axis	represents	the	relative	change	in	area	under	CDF	curve.	(C)	Heatmap	of	sample	clustering	at	consensus	k = 3;	(D)	
Heatmap	of	sample	clustering	at	consensus	k = 4

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136400


7400 |   GAO et al.

The	overall	immune	profiles	were	significantly	differ-
ent	 among	 the	 three	 molecular	 subtypes,	 with	 different	
high-	expressing	 immune-	related	 cells.	 These	 findings	
suggested	that	the	C1 subtype	was	linked	to	an	enriched	
immune	 status	 in	 the	 tumor	 microenvironment,	 which	
can	be	described	as	EIME	(enriched	immune	status	in	the	
tumor	microenvironment).20	Meanwhile,	 the	C3 subtype	
showed	a	reduced	immune	status,	and	the	C2 subtype	was	
the	intermediate	type.	Importantly,	we	concluded	that	the	
immune	 phenotype	 has	 a	 greater	 influence	 on	 survival	
which	may	allow	a	more	accurate	classification	of	patients	
and	 contribute	 to	 the	 realization	 of	 personalized	 medi-
cine.	Regarding	survival	probability,	the	prognosis	of	the	
C2 subtype	was	the	poorest	while	the	C1 subtype	showed	
the	 best	 prognosis.	 This	 suggested	 that	 the	 immune-	
enhanced	subtypes	may	correspond	to	the	best	prognosis	
in	 MM.	 In	 addition,	 we	 could	 draw	 the	 conclusion	 that	
an	abundance	of	infiltrating	lymphocytes	correlates	with	

favorable	prognosis	and	the	activation	of	antitumor	adap-
tive	immune	responses	can	inhibit	tumor	development.44

As	a	fresh	hallmark	of	immunotherapy	for	MM,	immune	
checkpoint	blockade	therapy	has	shown	unexpected	antitu-
mor	effects	in	patients	with	relapsed	and/or	refractory	MM,	
which	motivated	us	to	find	more	potential	immune	check-
points.45,46	Hence,	we	further	explored	the	correlation	be-
tween	the	three	subtypes	and	10	immune	checkpoint	genes	
(MS4A1,	 GPRC5D,	 OTUB1,	 XPO1,	 SDC1,	 CD19,	 CD38,	
CTLA4,	 CD24,	 and TNFRSF17),	 which	 mainly	 encode	
high-	interest	therapeutic	targets.	Currently,	daratumumab,	
a	monoclonal	antibody	developed	for	CD38,	has	been	ap-
proved	 for	 the	 treatment	 of	 MM.47	 Our	 results	 suggested	
that	 the	 expression	 levels	 of	 SDC1,	 XPO1,	 TNFRSF17,	
GPRC5D,	and	CD38	in	the	samples	of	the	C1 subtype	were	
significantly	lower	than	those	in	other	subtypes,	while	the	
C3 subtype	showed	higher	expression	levels	of	TNFRSF17	
and	 CD38.	 In	 summary,	 these	 observations	 may	 help	

F I G U R E  2  Immune	profiles	of	the	
three	molecular	subtypes	in	the	TCGA-	
MM	cohort.	Gene	expression	score	of	
28 groups	of	immune	metagenes	in	
4 molecular	subtypes	of	ovarian	cancer.	
In	the	heat	map	of	gene	expression,	red	
represents	high	expression	and	blue	
represents	low	expression

F I G U R E  3  Expression	distribution	of	10	immune	checkpoint	genes	in	3 subtypes	in	the	TCGA-	MM	cohort
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physicians	 choose	 precise	 immune	 checkpoint	 blockade	
and	treat	patients	with	personalized	medicine.

5 	 | 	 CONCLUSION

In	conclusion,	three	immune	subtypes	of	MM	were	iden-
tified	 using	 global	 immune	 gene	 expression	 profiles	 by	
exploring	TCGA	databases.	The	three	subtypes	were	dis-
tinctly	different	in	terms	of	immune	metagenes,	immune	
checkpoint	 molecules,	 and	 clinical	 prognosis.	 The	 dis-
covery	 of	 the	 immune	 microenvironment	 of	 MM	 could	

further	 inform	 the	 strategy	 of	 immunotherapy	 in	 MM	
and	 provide	 a	 promising	 candidate	 prognostic	 tool	 for	
survival.
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F I G U R E  4  Survival	analysis	of	the	
three	MM	subtypes.	KM	curves	showing	
prognostic	relationship	of	3 subtypes;	The	
p-	value	was	calculated	using	the	log-	rank	
test,	by	comparing	the	overall	survival	
of	3 subtypes.	The	abscissa	represents	
survival	time	(d)	and	the	ordinate	
represents	survival	probabilities

F I G U R E  5  Validation	of	external	datasets.	Expression	distribution	of	10	immune	checkpoint	genes	in	3 subtypes	in	the	validation	set
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