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Summary

During infection, increasing pathogen load stimulates both protective and harmful aspects of the 

host response. The dynamics of this interaction are hard to quantify in humans, but doing so could 

improve understanding of mechanisms of disease and protection. We sought to model the 

contributions of parasite multiplication rate and host response to observed parasite load in 

individual subjects with Plasmodium falciparum malaria, using only data obtained at the time of 

clinical presentation, and then to identify their mechanistic correlates. We predicted higher parasite 

multiplication rates and lower host responsiveness in severe malaria cases, with severe anemia 

being more insidious than cerebral malaria. We predicted that parasite growth-inhibition was 

associated with platelet consumption, lower expression of CXCL10 and type-1 interferon-

associated genes, but increased cathepsin G and matrix metallopeptidase 9 expression. We found 

that cathepsin G and matrix metallopeptidase 9 directly inhibit parasite invasion into erythrocytes. 

Parasite multiplication rate was associated with host iron availability and higher complement 

factor H levels, lower expression of gametocyte-associated genes but higher expression of 

translation-associated genes in the parasite. Our findings demonstrate the potential of using 

explicit modelling of pathogen load dynamics to deepen understanding of host-pathogen 

interactions and identify mechanistic correlates of protection.

Introduction

Improved methods are needed to identify mechanisms which protect against human 

infectious diseases in order to develop better vaccines and therapeutics1,2. Pathogen load is 

associated with the severity of many infections3, and is a consequence of how fast the 

pathogen can replicate, how long the infection has been ongoing, and the inhibition or 

killing of pathogen by the host response (Fig. 1a). The contribution of these factors varies 

within an individual over the course of infection, as well as between individuals. Identifying 

mechanistic correlates of the processes which determine pathogen load is likely to be more 

informative than identifying correlates of pathogen load per se. However, in humans the 

timing of infection is rarely known and treatment cannot usually be withheld to observe the 

natural dynamics of pathogen load and host response. Here we present an approach to 

estimate the latent determinants of parasite load dynamics. We use these estimates to better 

understand severe malaria phenotypes and to identify mechanisms inhibiting parasite growth 

and controlling parasite multiplication during Plasmodium falciparum malaria in Gambian 

children.

Results

Estimating determinants of parasite load and host response dynamics in humans

To estimate the determinants of parasite load dynamics in naturally-infected malaria patients 

we calibrated a statistical prediction model using outputs from a mechanistic simulation 

which combined information from two datasets. A historical dataset of the longitudinal 

course of untreated infection in 97 patients who were deliberately inoculated with P. 
falciparum as a treatment for neurosyphilis (malariatherapy dataset) (Supplementary Fig.1) 
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was used as a reference for changes in parasite load over time4. A dataset from 139 naturally 

infected Gambian children with malaria (Gambian dataset, Supplementary Table 1, 

Supplementary Dataset 1) was used for subsequent discovery of the determinants of parasite 

load dynamics. We used an existing mathematical model for the malariatherapy data (the 

Dietz model4), which estimated latent variables thought to determine changes in parasite 

load over time in each individual, and modified the model to better represent the features of 

the Gambian dataset. We used the modified model to simulate a large number of in-silico 
Gambian patients, with all latent variables and course of infection fully known, and then 

trained a statistical model to learn from these simulations the relationships between variables 

available in the real Gambian patient data and the unobservable, latent variables.

In the models4, the increase in parasite load up to the first peak is determined by two 

individual-specific latent variables (Fig. 1b, see Methods): the within-host multiplication 

rate, m, which is the initial rate of increase in parasite load before any constraint by the host 

response; and the parasite load required to stimulate a host response that reduces parasite 

growth by 50%, Pc,4. When m, Pc, and parasite load are known, parasite growth inhibition 

(PGI) by the host response can be calculated (see Methods). We allowed rescaling of Pc 

values between the malariatherapy and Gambian datasets, and incorporated plasma Tumour 

Necrosis Factors (TNF) concentrations as an indicator of the protective host response5,6, 

using a maximum-likelihood approach (see Methods and Supplementary Fig. 2). These 

modifications resulted in higher Pc values in the Gambian population than malariatherapy 

subjects, consistent with epidemiological data showing higher fever thresholds in P. 
falciparum infected children than in adults7. Other model assumptions and definitions are 

shown in Supplementary Table 2.

To test whether combination of a mechanistic simulation model with statistical learning of 

the relationships between latent and directly observable variables was better at predicting the 

determinants of parasite load than using observable variables alone, we simulated 2000 

Gambian children with malaria with known values of m, Pc, parasite biomass, duration of 

illness and plasma TNF (Fig. 1c and Supplementary Fig. 3) and then fit general additive 

models (GAMs) to predict values of m and Pc for individual children (Supplementary Table 

3). The resulting models produced more accurate predictions of of m and Pc than using 

individual variables alone (Fig. 1d).

Next we used the GAMs to predict values of Pc and m for each of the 139 individuals in the 

Gambian dataset (Fig. 1e-k, Supplementary Fig. 4). Children with the most severe 

manifestations of malaria (SM2) had the highest parasite load, TNF, predicted m, and 

predicted Pc values, intermediate values were seen in those with prostration as the only 

manifestation of severe disease (SM1), and values were lowest in uncomplicated malaria 

(UM), whilst duration of illness did not differ significantly by clinical phenotype (Fig. 1e-i). 

These observations suggest that high parasite load and severe disease are most likely in 

individuals with either fast replicating parasites (high m) or less immune responsiveness 

(high Pc).

Since age can be a major determinant of malaria severity and naturally acquired immunity8, 

we examined whether age was associated with m or Pc. Age was not significantly correlated 
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with m but was significantly negatively correlated with Pc (Fig. 1j,k). This implies little age-

related acquisition of constitutive resistance (for example, naturally-acquired antibody-

mediated immunity) in these children, as might be expected from the relatively low malaria 

transmission in this region of The Gambia9. However, these data also indicate that a lower 

parasite load would be needed to provoke an equivalent host response in older individuals 

without significant naturally acquired immunity.

Predicting severe malaria phenotype from within-host dynamics

We next asked whether individual estimates of m and Pc could be used to predict 

pathophysiological features malaria which had not been used in our model derivation. 

Severe malarial anemia (hemoglobin concentration <5g/dL), is most common in the 

youngest children in high transmission settings, but rare in lower transmission settings such 

as Greater Banjul region of The Gambia, where cerebral malaria was relatively more 

common10. Severe malarial anemia is characterised by a higher parasite biomass10–12, 

lower levels of both TNF and interleukin-10 (IL-10), but an elevated ratio of 

TNF:IL-1013,14 when compared to cerebral malaria. In our Gambian subjects, hemoglobin 

concentration could be predicted from estimated Pc, m and age; IL-10 concentration could 

be predicted from m and Pc (Supplementary Table 4, Fig. 2a-b). We simulated a population 

of Gambian infants, selected those predicted to have hemoglobin <5 g/dL, and compared 

their characteristics to real Gambian subjects with cerebral malaria. The simulated severe 

anemia cases had lower m but similar Pc, higher parasite biomass and longer duration of 

illness than the cerebral malaria patients (Fig 2c-f). Both TNF and IL-10 concentrations 

were predicted to be lower in severe anemia than in cerebral malaria (Fig 2g-h), whereas the 

TNF:IL-10 ratio was predicted to be higher in severe anemia (Fig 2i), supporting the 

biological plausibility of relationships defined in our model and illuminating a potential 

explanation for these distinct severe malaria phenotypes.

Estimating parasite growth inhibition reveals the protective effect of platelets

The role of the host response in restricting parasite load is often unclear in human malaria 

because the strongest host responses are often seen in patients with the highest parasite loads 

and most severe disease15,16. For example platelets directly inhibit parasite growth16,17, 

and the reduction in platelet count typically seen in malaria is partly a consequence of the 

protective mechanism of platelet adhesion to infected red cells16. However the reduction in 

platelet count is greatest in individuals with the highest parasite load and most severe 

disease18, which seems counterintuitive if the low platelet counts indicate parasite killing. In 

Gambian children, estimated PGI did not differ significantly by clinical phenotype (Fig. 3a) 

indicating that the components of the host response which restrain parasite growth are 

similarly activated in severe and uncomplicated disease groups at the time of hospital 

presentation, but implying that this response developed too late to prevent high parasite load 

in the severe cases. Subjects with severe disease had the lowest platelet counts (Fig. 3b and 

Supplementary Table 1) and the highest parasite loads (Fig. 1d), but the protective role of 

platelets was evident through the significant (P=0.0001) correlation with PGI (Fig. 3c). Thus 

considering differences between individuals in observed parasite load and host response as 

part of a dynamic rather than static process can resolve counterintuitive associations.
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Predicting mechanistic correlates of parasite growth inhibition

To determine whether our model-derived estimates could be used to discover aspects of 

host-parasite interaction we sought to identify mechanistic correlates of protection and 

susceptibility. We analysed human whole blood gene expression, with gene signature-based 

deconvolution to adjust for leukocyte-mixture19, from samples of 24 children at the time of 

presentation (13 with UM, 11 with SM, Supplementary Table 5). Of 11702 detected human 

genes, 51 were significantly correlated (26 positively, 25 negatively) with estimated PGI 

after adjustment for false discovery rate (Benjamini-Hochberg adjusted P<0.05, Fig. 4a, 

Supplementary Table 6). We reasoned that genes positively correlated with PGI should be 

enriched for effector mechanisms which act to reduce parasite load, whilst genes negatively 

correlated with PGI should be enriched for mechanisms which favour increase in parasite 

load. Eight of these genes were also correlated with parasite biomass and three with TNF 

(Supplementary Table 6).

Genes positively correlated with PGI (Fig 4a) showed limited canonical pathway 

enrichments (Supplementary Table 7) but 16 (62%) were linked together in a network 

around extracellular signal-regulated kinases ERK1/2 and AKT serine/threonine kinase (Fig. 

4b). These kinases integrate cellular inflammatory and metabolic responses to control innate 

defence mechanisms such as cytokine secretion, phagocytosis and degranulation20,21. The 

25 genes negatively correlated with PGI were strongly enriched in immune response 

pathways (Supplementary Table 7). Network analysis showed 15 (60%) of the negatively 

correlated genes were linked through a network focussed around type 1 interferon (Fig. 4c), 

consistent with observations that sustained type 1 interferon signalling is associated with 

higher parasitemia in mice22–25 and potentially in humans22,26. C-X-C motif chemokine 

ligand 10 (CXCL10, also known as IFN-γ-inducible protein of 10 kDa, IP-10) expression 

had the greatest log-fold change of the genes negatively correlated with PGI (Fig. 4c), 

consistent with findings that CXCL10 deletion and neutralisation decrease parasite load in 

mice27.

We investigated whether associations with PGI were dependent on assumptions we made 

about the true severity rate in Gambian children, which we assumed to be 5% based on 

published data in other settings28,29. Varying this to credible extremes of 1% and 10% and 

repeating the process of calibration between datasets, fitting of models to predict m and Pc, 

and estimating new values for PGI, resulted in little difference in the genes identified as 

significantly associated with PGI, or the significance of individual genes (Supplementary 

Table 8).

Cathepsin G and MMP9 directly inhibit parasite growth

The 26 genes positively correlated with PGI have not, to our knowledge, previously been 

described as having anti-parasitic effects so we sought direct biological evidence, focussing 

on two encoding secreted proteins as the best candidates: CTSG (cathepsin G) and MMP9 
(matrix metallopeptidase 9, also known as matrix metalloproteinase 9 and gelatinase B), 

which both encode neutrophil granule proteins30. We tested whether these proteases could 

inhibit parasite growth in vitro. Cathepsin G and MMP9 both inhibited growth of P. 
falciparum 3D7 strain (Fig. 5a). Addition of cathepsin G to schizont cultures produced a 
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dramatic reduction in invasion of new erythrocytes, and pretreatment of erythrocytes with 

cathepsin G before adding them to schizont cultures produced a similar reduction in their 

invasion (Fig. 5b), indicating that cathepsin G acts primarily on the erythrocyte. Addition of 

MMP9 to schizont cultures produced a more modest reduction, whilst pretreatment of 

erythrocytes did not reduce invasion, implying that MMP9 likely acts against schizonts or 

free merozoites rather than preventing invasion at the erythrocyte surface (Fig. 5b).

In order to identify biologically relevant concentrations of cathepsin G and MMP9 we 

measured their concentrations in whole blood from healthy donors, before and after 

stimulating degranulation, and in plasma from children with malaria at the time of clinical 

presentation (Fig. 5c). Local concentrations which might occur in vivo, adjacent to 

degranulating neutrophils, could be at least an order of magnitude higher31. MMP9 is also 

known to be released from other cell types in response to P. falciparum, including vascular 

endothelial cells32. MMP9 dose-dependently inhibited parasite growth over a physiological 

range of concentrations (Fig. 5d). Similarly, parasite invasion was dose-dependently 

inhibited by cathepsin G pre-treatment of erythrocytes, with similar effects in each of four 

parasite strains with different invasion phenotypes33 (Fig. 5e). Combined treatment with low 

doses of MMP9 and cathepsin G – in the range detected in patient plasma – showed an 

additive effect (Fig. 5f).

Cathepsin G has previously been reported to cleave red cell surface glycophorins34, 

therefore we asked whether it might also cleave other RBC surface proteins which are used 

as invasion receptors by P. falciparum35. Consistent with its broad inhibition of parasite 

invasion, cathepsin G dose-dependently cleaved the majority of P. falciparum invasion 

receptors including glycophorins A, B, and C, CD147 (basigin), CD108 (semaphorin 7A), 

and complement receptor 1 (CR1), but not CD55 (DAF) (Fig. 5g). MMP9 did not cleave any 

of these surface receptors (Supplementary Fig. 5). PMA stimulation of healthy donor whole 

blood recapitulated the loss of erythrocyte surface glycophorins A and B, CD108 and 

CD147 in all donors, decreased glycophorin C expression in 6 of 8 healthy donors, but did 

not consistently reduce CR1 (Fig. 5h) (as might be expected from the dose-response curves, 

Fig 5g). In samples from Gambian children on the day of presentation with P. falciparum 
malaria, the proportions of erythrocytes with detectable expression of glycophorins A and B 

and CD147 were significantly lower than in convalescent samples (28 days after treatment), 

and there was a trend to lower expression of CD108 and glycophorin C (Fig. 5i). These 

results would be consistent with cleavage of these surface molecules in vivo during acute 

infection. The variable expression seen at day 28 (Fig. 5i) may indicate the persistence of 

modified erythrocytes in the circulation. The importance of glycophorins and basigin in 

RBC invasion and genetic susceptibility to severe malaria is well established36–38, and so it 

is highly likely that the cleavage of these erythrocyte receptors by cathepsin G would have a 

protective effect in vivo.

Host and parasite factors associated with parasite multiplication rate

In our model, m is influenced by constitutive host and parasite factors but independent of 

any parasite load-dependent responses. We sought to confirm associations with two 

constitutive host factors known to influence parasite growth: iron39 and complement factor 
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H (FH)40,41 (Supplementary Dataset 1). Since we did not have premorbid blood samples 

we used convalescent blood as a proxy for pre-infection status, with samples collected 28 

days after treatment when the host response was quiescent (median C-reactive protein 

1.1mcg/mL (IQR 0.5-5.1, n=70), similar to healthy West African population levels42).

Iron deficiency is protective against malaria43 and reduces parasite multiplication in vitro39. 

Consistent with this, levels of hepcidin (a regulator of iron metabolism and marker of iron 

sufficiency or deficiency44) were significantly correlated with m (rs=0.21, P=0.049) in 92 

children who had not received blood transfusion.

FH is a constitutive negative regulator of complement activation which protects host cells 

from complement mediated lysis45 but many pathogens including P. falciparum have 

evolved FH binding proteins to benefit from this protection40,41. FH protects blood-stage 

parasites from complement mediated killing in vitro40,41 and higher plasma levels are 

associated with susceptibility and severity of malaria46. In the 14 children with residual day 

28 plasma available, FH correlated with m (rs=0.75, P=0.002), providing further support that 

the quantitative estimates from our model exhibit expected relationships with known 

determinants of parasite growth.

We investigated whether we could identify any parasite processes associated with m, through 

correlation with parasite gene expression. Of 3704 parasite genes detected by RNA-Seq, 

adjusted for developmental stage distribution19, no individual genes passed the FDR 

adjusted P-value threshold of <0.05. Therefore we used weighted gene correlation network 

analysis to reduce dimensionality47, generating 17 modules of co-expressed parasite genes. 

Module eigengene values19 of two modules correlated with m (unadjusted Spearman 

correlation P<0.05); their hub-genes were PF3D7_1136000 (a conserved Plasmodium 
protein of unknown function) and PF3D7_1238300 (putative pre-mRNA-splicing factor 

CWC22). The PF3D7_1136000 module was negatively correlated (rs=-0.5, P=0.01) with m 
and contained 140 genes with greatest gene ontology enrichment in microtubule-based 

movement (Supplementary Tables 9 & 10). The PF3D7_1136000 module genes have high 

tolerance to insertional mutagenesis (Fig. 6a) and high parasite fitness following mutation 

(Fig. 6b), characteristics of winning mutants in competitive growth assays48, supporting the 

concept that lower expression of these genes may favour more rapid growth. 77 (55%) of the 

genes in this module exhibit greatest expression during gametocyte development49, 

consistent with the concept that increased sexual-stage commitment results in reduced 

asexual replication50. In contrast, the PF3D7_1238300 module was positively correlated 

with m (rs=0.46, P=0.03), and contained 45 genes enriched in translation functions 

(Supplementary Tables 9 & 10), plausible determinants of m, with mutagenesis tolerance 

typical of essential genes (Fig. 6a,b). Parasite genes differentially expressed between severe 

and uncomplicated malaria cases19 were highly over-represented in this module (16 of 45 

(36%), P=1.2x10-8, Fisher exact test).

Discussion

Using a model-based approach to estimate the within-host dynamics of pathogen load and its 

determinants in human infection we could estimate the relative contributions of parasite 
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multiplication and host response to parasite load measured at a single point in time, and we 

have used these predictions to identify mechanistic determinants of parasite load in malaria. 

Our approach is based on clearly defined assumptions, but as with any attempt to model 

complex biology, alternative approaches are possible. We cannot, at present, propagate 

uncertainty throughout the sequential stages of the model fitting, prediction of parameter 

estimates in individual subjects, and association of these parameter estimates with real 

variables. However, estimating the dynamics of parasite load allows us to make inferences 

about disease biology and mechanisms associated with PGI which could not have been made 

using only direct measurements. Our mechanistic validation suggests that the relative 

estimates of latent variables are accurate enough to be useful, providing proof-of -principle 

that pathogen load dynamics can be estimated in humans. This approach could be refined 

and expanded to identify additional genetic and serological determinants of pathogen load 

dynamics. The latter should be identified prospectively, since use of convalescent samples 

may introduce confounding.

Parasite load is only one of the factors associated with severe malaria and its interpretation is 

dependent on epidemiological context10,15,29. Variations in the host response, naturally 

acquired immunity, and the expression of P. falciparum erythrocyte membrane protein 1 

(PfEMP1) variants are also important determinants of severity and of disease 

phenotype10,15. We have previously suggested that variation in the dynamics of parasite 

load may explain why cerebral malaria and severe anaemia occur with parasites expressing 

the same PfEMP1 variants10, and our model-based approach predicted that slower growth 

and longer duration of illness may distinguish severe anemia from cerebral malaria.

The importance of pathogen load and the dynamic nature of host-pathogen interactions are 

often omitted from studies of life-threatening infectious diseases in humans3. Much of our 

understanding of the host-pathogen interactions comes from comparisons between 

individuals at the point of clinical presentation, despite the fact that they may be at different 

stages in the dynamic process of infection. This can result in seemingly paradoxical 

observations such as high levels of TNF or low levels of platelets associated with severe 

malaria15,16, whilst evidence also indicates that TNF and platelets mediate defense against 

malaria parasites5,6,15–17. Considering the dynamic nature of the host-parasite interaction 

may explain these paradoxes and identify protective mechanisms more efficiently.

We identified several mechanisms which might be considered as prototypes for host-directed 

therapy in malaria. Inhibition of type-1 interferon or CXCL10 signalling with inhibitory 

antibodies or small molecules might be strategies to enhance control of parasite load. The 

therapeutic potentials of cathepsin G and MMP9 may be counterbalanced by risk of 

collateral tissue damage, but selective targeting of receptors on the erythrocyte surface may 

be a useful paradigm for both treatment and prevention of malaria.

Our approach could be applied to some other infectious diseases in which pathogen load can 

be measured and for which we do not have effective treatments, including emerging viral 

infections like Ebola, and possibly highly resistant bacterial pathogens, for which host-

directed therapies may life-saving2.
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Methods

Subjects and laboratory assays

We used data from all of the malariatherapy patients reported by Dietz et al.4 and from all 

139 Gambian subjects reported in our previous studies11,51,52 who had all of the following 

data available: age, parasite biomass estimate, plasma TNF concentration, duration of illness 

and severity of illness. No subjects were excluded after this selection, and all available data 

was included in analyses, with the exception that one outlier was excluded from parasite 

gene expression analysis. As described previously11,51,52, Gambian children (<16 years 

old) were recruited with parental consent from three peri-urban health centres in the Greater 

Banjul region, from August 2007 through January 2011 as part of a study approved by the 

Gambia Government/MRC Laboratories Joint Ethics Committee, and the Ethics Committee 

of the London School of Hygiene and Tropical Medicine. P. falciparum malaria was defined 

by compatible clinical symptoms in the presence of ≥5000 asexual parasites/μL blood, and 

any children suspected or proven to have bacterial co-infection were excluded. Severe 

malaria was specifically defined by the presence of prostration (SM1) or any combination of 

three potentially overlapping syndromes (cerebral malaria (CM), severe anemia (SA, 

hemoglobin <5 g/dL), and hyperlactatemia (blood lactate >5 mmol/L) - collectively 

SM2)11,51–53. Clinical laboratory assays, measurements of plasma TNF and IL-10 by 

Luminex, measurements of gene expression by RT-PCR, and estimation of total parasite 

biomass from PfHRP2 ELISA have been previously described11,52. Subject-level data from 

these Gambian children is available as Supplementary Dataset 1.

Statistical analyses

Statistical analyses were undertaken using the R statistical software54 and GraphPad Prism 

(GraphPad Software, Inc.). Directly measured continuous variables were compared between 

groups using unpaired or paired student’s t-test (when normally distributed) and the Mann-

Whitney or Wilcoxon matched pairs tests (when normal distribution could not be assumed), 

and ANOVA or Kruskal-Wallis test for comparison across multiple groups. Associations 

between measured variables and latent variables were assessed using generalised additive 

models (GAM55, with the R package “mgcv”); the generalised cross-validation score and 

explained variance were used to select the best GAM once all model terms had significant 

effects (P<0.05). It was not possible to propagate uncertainty estimates through all stages 

from model development, calibration to the Gambian data, and prediction of latent variables 

in individual subjects, and so statistical analyses of latent variable were undertaken using 

their predicted values without any measure of uncertainty, and using non-parametric 

methods. Correlations between predicted values of latent variables and measured variables 

were done using Spearman correlation.

All hypothesis tests were two-sided with alpha = 0.05 unless specifically stated otherwise. 

One-sided testing was only used when justified by small sample size and a strong a priori 
hypothesis for the direction of effect. We did not adjust for multiple hypothesis testing, 

except in the case of gene expression analyses where false-discovery rate was controlled 

using the Benjamini-Hochberg method. Dose-response curves were fitted using 

asymmetrical sigmoidal five-parameter logistic equation in GraphPad Prism.
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Model relating parasite multiplication, host response and parasite load

A process-based, stochastic simulation model was devised to reproduce the clinical data 

collected from the Gambian children. This was achieved by combining the information in 

the Gambian data with a model describing the first wave of parasitemia in non-immune 

adults who were deliberately infected with P. falciparum malaria to treat neurosyphilis 

(“malariatherapy”)4. These malariatherapy data, from the pre-antibiotic era, are the main 

source of information on the within-host dynamics and between-host variation in the course 

of parasitemia in untreated malaria infections. The model of Dietz et al.4 was modified and 

extended in order to be applied to the Gambian data, and we made the assumption that the 

Gambian children presented to hospital prior to the first peak of parasitemia.

Model of ascending parasitemia in malariatherapy subjects—The model relates 

parasite density after each 2-day asexual blood stage cycle (P(t+2)) to the parasite density at 

the end of the previous cycle (P(t)) by the following equation:

P(t + 2) = P(t) . m . Sc(t)

The host-specific parasite multiplication rate, m, is a property of both parasite and host, 

allowing for growth-inhibition by constitutive factors; the proportion of parasites that will 

survive the effects of the density-dependent host response in the present cycle is Sc:

Sc(t) = 1

1 +
P(t)
Pc

,

where Pc is the host-specific parasite load threshold at which the host response is strong 

enough to inhibit 50% of parasite growth in that cycle. Parasite growth inhibition (PGI(t)) is 

defined as 1-Sc(t).

Consistent with the original Dietz model, P(0) was set to 0.003 parasites/μl4.

The original Dietz model included an additional parameter, Sm, to help describe the decline 

in parasitemia after the peak of the first wave. Sm is the proportion of isogenic parasites 

surviving an additional density- and time-dependent host response, which might represent 

adaptive immunity (4). Estimates of the range of values of Sm in the Dietz dataset and model 

were used when simulating data but since this parameter has little influence on parasite 

densities prior to the peak it was not used to make subsequent predictions of m and Pc in 

individual Gambian subjects.

At the explicit request of Klaus Dietz and Louis Molineaux, we hereby communicate the 

following correction regarding their assertion that the malariatherapy patients had not 

received any treatment4: it was later found that 47 of these patients had indeed received 

subcurative treatment, and that those patients had significantly higher parasite densities. This 

is unlikely to influence our analysis, because treatment would only be provided when 

malariatherapy patients became very unwell, presumably at maximum parasitemia, whereas 
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we assume that most patients with naturally acquired infection likely present prior to the 

peak parasitemia that might occur in the absence of treatment.

Fitting of the malariatherapy model to data from Gambian children—Individual-

level parameter estimates for the malariatherapy dataset were kindly provided by Klaus 

Dietz. The logarithms of these 97 estimates of m and Pc were well described by a 

multivariate normal distribution, providing a quantitative description of inter-individual 

variation in the dynamics of the first wave of parasitemia. In order to use the Dietz model to 

simulate the Gambian data, a number of modifications and extensions were made. Some of 

these required estimation of additional parameters by comparing the model simulations with 

the Gambian data. Dietz et al. provided a statistical description of the parasite density at 

which first fever occurred (the “fever threshold”) in the form of the distribution of the ratio 

of threshold density to peak parasitemia. The median density at first fever was at 1.4% of 

peak density. We introduced the assumption that the onset of fever occurs at a particular 

threshold value of Sc, because fever is dependent on the production of cytokines like 

interleukin-6 and TNF, both components of the host response. This constitutes a process-

based model for the onset of fever rather than a purely statistical one. Because individuals 

differ in their response to parasite load (captured through variation in Pc), this results in 

variation of parasite densities at first fever but ignores any potential variation among 

individuals with respect to magnitude of host response necessary to generate fever. The host 

response threshold for the onset of fever Sc
f = 0.86 was determined as the value of Sc 

calculated at 1.4% of the peak density of a simulated individual with the median parameter 

values. This yielded a distribution of fever ratios similar to the one described by Dietz et al.

4, albeit with less variation.

To simulate the time between onset of fever and clinical presentation we made use of the 

self-reported duration of symptoms in the Gambian data. The model which was most 

consistent with these values assumed a gamma-distributed duration of symptoms in non-

severe cases, and a possibility to present earlier in the case of more severe disease. Since 

parasite biomass is related to likelihood of having severe malaria11,12,56 the probability of 

early presentation on any day after onset of fever was set proportional to the (density-

dependent) probability of having severe disease on that day. Scale (ζ) and shape (κ) 

parameters of the gamma distribution as well as the factor (ξ) for determining the 

probability of early presentation were estimated from the Gambian data.

We assumed that TNF production τ(t) increases monotonically with density dependent host 

response (1-Sc) and represented this relationship using a heuristic function of the form

τ(t) = a + b 1 − 1

1 +
−log (Sc(t))

λ∗

γ ,

with free parameters a, b, λ* and γ estimated from the Gambian data.
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The Gambian children had on average higher parasite densities than the malariatherapy 

patients, which led to a bad fit of the original model to the Gambian data. This was 

overcome by introducing the assumption that the Gambian children had a different range of 

values of Pc to the adult malariatherapy patients. A factor π was therefore estimated by 

which the ln Pc value from the Dietz model was multiplied. This led to overall higher 

parasite densities upon presentation. However, our model uses parasite biomass and its 

relationship with disease severity to predict day of presentation, and there is an interaction 

between the mean ln Pc and the variation in ln Pc, as well as the proportion of severe malaria 

in the simulated Gambian population. Based on the relatively low malaria transmission in 

the Banjul area of The Gambia, we assumed that severe cases (defined by the presence of 

any of: prostration, hyperlactatemia, severe anemia or cerebral malaria) were over-

represented by hospital-based recruitment and that in an unselected population of children of 

similar age to those in our dataset only approximately 5% of all malaria infections would be 

severe28,29. Therefore we estimated a factor δ by which the variance of ln Pc should be 

multiplied such that both rate of severity as well as the distribution of parasite biomass 

matched well after fitting our simulation to the Gambian data.

The free parameters ζ, κ, ξ, a, b, λ*, γ, π and δ (Supplementary table 11), together 

summarized as θ, were estimated by fitting model simulations to the information on TNF, 

parasite density, and duration of symptoms, for any given candidate parameterization, a total 

of 139 clinically presenting individuals were simulated from the model, which corresponds 

to the size of the Gambian dataset. An objective function L(θ) was calculated, and a 

simulated annealing algorithm (provided by the “optim” function in R) determined the value 

for θ which maximizes this function. The log-likelihood L (θ) was comprised of three 

separate objectives. The first objective represented the log-probability that the frequency of 

severe cases in the simulation was equal to an assumed 5%, employing a binomial 

likelihood, given the actual number of severe cases sampled in 139 simulated individuals. 

The second objective considered the overlap between the bivariate distribution of ln parasite 

density vs. ln TNF concentration in the simulated data compared to the Gambian dataset. An 

approximate numerical value for this partial log-likelihood was obtained as the log 

probability of the Gambian data (density and TNF) given a two-dimensional kernel density 

estimate of the simulation output as a likelihood model. Kernel density estimates were 

obtained using the “kde2d” function in the “MASS” package in R. In this calculation, the 

TNF/density data points of severe or prostrated Gambian patients entered the partial 

likelihood with a weight of 1/11, to account for the oversampling of severe cases in the 

Gambian data. The third objective concerned the two-dimensional distribution of log density 

and duration since first fever. This partial log-likelihood was obtained using the same kernel-

based approach described above, with weights of 1/11 for severe and prostrated cases. The 

overall log-likelihood L (θ) was calculated as a weighted sum of the three partial log-

likelihoods, with the log-probability of having the desired true severity rate weighted with a 

factor of 68, which ensured similar magnitude of the three partial log-likelihoods at the 

optimum.

The results of the fitting algorithm were visually confirmed to yield a good overlap of the 

joint distributions of density and biomass, the duration of symptoms, TNF and biomass 

between simulation and the Gambian children. Approximate confidence intervals for the 
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parameter estimates were determined by employing a 2nd degree polynomial to estimate the 

curvature of the maximum simulated likelihood surface in the vicinity of the parameter point 

estimate, assuming independence of parameters.

As in the original model of Dietz et al.4, peripheral parasite densities were used to determine 

the dynamic changes in parasitemia, implying a correlation between peripheral densities and 

total parasite biomass. Total parasite biomass per kg was calculated from the predicted 

parasite density by the equation 70,000 x 1.09 x predicted parasite density in parasites/μL, as 

has been determined previously for uncomplicated malaria cases in the Gambian dataset11.

Deterministic relationships between observable and latent variables—The 

range of values of m and ln Pc in a simulated population of 2000 patients were determined 

and each divided into 50 equally spaced increments in order to generate 2500 possible 

combinations of m and ln Pc for which all model outcomes were determined in order to 

visualize their relationships. For the purpose of this analysis, the time-dependent adaptive 

immune response parameters (which comprise Sm) were set for all subjects at their 

respective population median values. The model of Dietz et al. makes use of discrete 2 day 

time intervals4, corresponding to the duration of the intraerythrocytic cycle in a highly 

synchronised infection. However, naturally acquired infections are rarely this synchronous 

and the time since infection of our Gambian patients is an unknown continuous variable. In 

order to cope with this we assumed that the relationship between predicted outcome 

variables (parasite biomass, duration of illness and TNF concentration) and explanatory 

variables (m and Pc) could be approximated by smoothed GAM. We used the GAM to 

estimate values of m, Pc and parasite growth inhibition (PGI, 1-Sc) in the Gambian children, 

based on their known total parasite biomass, duration of symptoms and TNF concentration.

Predicting severe anemia and IL-10 concentrations

We used the data from the Gambian children to predict hemoglobin and IL-10 

concentrations as continuous variables, using GLM with predicted Pc, predicted m, and age 

as explanatory variables. We then simulated a population of 50,000 1-year olds with malaria, 

allowing for normal variation in baseline hemoglobin concentration57, and adjusting Pc 

values according to a linear relationship between predicted ln Pc and age in the Gambian 

children. To predict the occurrence of severe anemia, we calculated the proportion of 

subjects estimated to have hemoglobin <5g/dL, and for these we calculated IL-10 

concentrations as a continuous outcome.

RNA-sequencing and data analysis

We used RNA-sequencing data from all 24 subjects who were included in our previously 

reported study19 and had data to allow estimation of parasite growth inhibition and 

multiplication rate. RNA extraction, library preparation, sequencing and downstream 

analysis, including adjustment for leukocyte and parasite developmental stage mixture, have 

all been previously described19.

The association of gene expression with m and PGI was determined using a generalized 

linear model approach in edgeR, allowing adjustment for leukocyte and parasite 
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developmental stage mixture. Coefficients and P-values were calculated for the relationships 

between adjusted log gene expression and PGI for all detected genes. False discovery rate 

(FDR) was then computed using the Benjamini-Hochberg approach and FDR below 0.05 

was considered to be significant in the initial analysis. FDRs between 0 and 0.1 were 

considered to indicate consistent findings when comparing associations obtained under 

different model assumptions. Gene ontology (GO) terms were obtained from Bioconductor 

packages “org.Hs.eg.db” and “org.Pf.plasmo.db”. Fisher’s exact test was used to identify 

significantly over-represented GO terms from gene lists. The background gene sets consisted 

of all expressed genes detected in the data set. Enrichment analysis for biological process 

terms was carried out using the "goana()" function in edgeR. Using groups of genes 

significantly positively or negatively correlated with PGI, Ingenuity Pathway Analysis 

(Qiagen) was used to identify networks of genes functionally linked by regulators, 

interactions or downstream effects, which were visualized as radial plots centered around the 

most connected network member. The weighted gene co-expression network analysis 

(WGCNA) tool47 was used to construct modules of highly co-expressed parasite genes, 

based on analysis of 23 samples (sample HL_478 was removed as an outlier in parasite 

RNA-seq analysis) as described previously19. Module eigengene values for each subject 

were correlated with predicted m, using Spearman correlation.

Parasite culture, growth and invasion assays

P. falciparum 3D7 strain was used in continuous culture for all of the experiments unless 

otherwise stated. Asexual blood stage parasites were cultured in human blood group A red 

cells, obtained from the National Blood Service, at 1-5% hematocrit, 37°C, 5% CO2 and low 

oxygen (1% or 5%) as described previously58,59. Growth medium was RPMI-1640 

(without L-glutamine, with HEPES) (Sigma) supplemented with 5 g/L Albumax II 

(Invitrogen), 147 μM hypoxanthine, 2 mM L-glutamine, and 10 mM D-glucose. Parasite 

developmental stage synchronization was performed using 5% D-sorbitol to obtain ring 

stage parasites or Percoll gradients for schizont stage enrichment58,60. For growth assays, 

schizonts were mixed at <1% parasitemia with uninfected erythrocytes at 2% final 

hematocrit. Cathepsin G (Abcam) or recombinant active MMP9 (Enzo) were added for 72 

hour incubation to allow two replication cycles. Growth under each condition was calculated 

relative to the average growth in untreated samples. Invasion assays were performed by 

adding parasites synchronised at the schizont stage to target erythrocytes and incubating for 

24 hours. Cathepsin G and MMP9 were either pre-incubated with the target cells overnight 

followed by four washes with RPMI to completely remove them, or they were added directly 

to the culture of schizonts with target erythrocytes for 24 hours. The same protocol was 

followed for other P. falciparum strains except Dd2, for which magnetic purification was 

used to purify schizonts61. For combined treatments, cathepsin G was added to target 

erythrocytes and MMP9 was added at the same time as schizonts.

Flow cytometry for parasitemia and erythrocyte surface receptor expression

Flow cytometry was performed using a BD LSR Fortessa machine and analysis was 

conducted using FlowJo v10 (TreeStar Inc.), and gating strategies are show in 

Supplementary Figure 5. To assess parasitemia, 1μl of sample at 50% hematocrit was stained 

with Hoechst 33342 (Sigma) and dihydroethidium (Sigma) and then fixed with 2% 
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paraformaldehyde (PFA) before flow cytometry as previously described62. Erythrocyte 

surface receptor expression was assessed by median fluorescence intensity of erythrocytes 

labelled with monoclonal antibodies or by comparison with isotype control antibodies 

(Supplementary Table 12). Briefly, erythrocytes were washed twice before resuspending at 

50% haematocrit, of which 1-2μl was stained in 100μl of antibody cocktail in FACS buffer 

(2% fetal bovine serum, 0.01% sodium azide in PBS) for 30 minutes in the dark on ice. 

Samples were washed twice in FACS buffer and then fixed in 300μl FACS buffer with 2% 

paraformaldehyde. Surface receptor loss was calculated from the difference between the 

treated and untreated sample median fluorescent intensities after the isotype control antibody 

fluorescence had been subtracted.

Whole blood stimulation and Cathepsin G and MMP9 ELISA

Whole blood was collected from 8 healthy adult donors and plated at 25% hematocrit, and 

incubated overnight with or without 1μM PMA (Sigma). Supernatant was collected to 

perform Cathepsin G (CTSG ELISA Kit-Human, Aviva Systems Biology) and MMP9 

(Legend Max Human MMP-9, Biolegend) ELISAs, and erythrocytes were collected for 

assessment of surface receptor expression. The same ELISA kits were used to measure 

cathepsin G and MMP9 in acute (day 0) plasma samples from children with malaria.

C-reactive protein, Hepcidin, and complement Factor H ELISA

Using plasma samples collected 28 days after infection, CRP was measured using the human 

Simple Step ELISA kit (Abcam) and hepcidin concentration was measured in subjects who 

had not received blood transfusion using the Hepcidin-25 bioactive ELISA kit (DRG), both 

according to the manufacturer’s instructions, with duplicate measurements when sufficient 

plasma was available. Complement Factor H assays were performed using an in-house 

ELISA as described63.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Estimating the dynamics of parasite load and host response in malaria.
(a) Conceptual model of determinants of parasite load. (b) Schematic of relationships 

between parasite load, multiplication rate (m), Pc, and parasite growth inhibition (PGI) 

derived from the longitudinal malariatherapy dataset. (c) Correlation matrix for Pc, m, 

parasite biomass, duration of illness and TNF concentrations in 2000 simulated Gambian 

children (Spearman correlation, LOWESS fit lines). (d) Performance in simulated subjects 

of the best models to predict ln Pc and m, compared with predictions made using individual 

variables only. Boxes show median and interquartile range, whiskers extend 1.5-times the 
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interquartile range or to limit of range, n=100 simulated datasets (each of 139 subjects). (e-i) 
Comparisons of parasite biomass (e), TNF (f), duration of illness (g), predicted m (h), 

predicted Pc (i), in 139 Gambian children with uncomplicated (UM, n=64) or severe malaria 

(SM1, prostration, n=36; SM2, any combination of cerebral malaria, hyperlactatemia or 

severe anemia, n=39). Box and whiskers as in d; P for Kruskal-Wallis (above plots) and 

Mann-Whitney tests (UM vs SM2, within plot). (j, k) Correlation of predicted m (j) or Pc 

(k) with age, P for Spearman correlation, n=139.
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Fig 2. Contribution of parasite load dynamics to severe malaria phenotype.
(a, b) Comparison of predicted and actual hemoglobin (a, n=136) and IL-10 (b, n=139) 

concentrations in the Gambian children. Pearson correlation, shaded region, 95% CI of 

regression line. (c-i) Comparisons of m, Pc, parasite biomass, days of illness, plasma TNF, 

plasma IL-10, and plasma TNF:IL-10 ratio, in Gambian children with cerebral malaria (CM, 

n=12) and simulated Gambian infants with severe anemia (SA, n=24). Boxes show median 

and interquartile range, whiskers extend 1.5-times the interquartile range or to limit of range.
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Fig 3. The protective effect of platelets is revealed by estimating parasite growth inhibition.
(a,b) Comparisons of PGI (a) and platelet count (b) in 139 Gambian children with 

uncomplicated (UM, n=64) or severe malaria (SM1, prostration, n=36; SM2, any 

combination of cerebral malaria, hyperlactatemia or severe anemia, n=39 (platelet data 

missing from 4 subjects)). (c) Correlation between platelet count and PGI (n=135) shows 

that low platelet count is associated with greater parasite growth inhibition. Boxes show 

median and interquartile range, whiskers extend 1.5-times the interquartile range or to limit 

of range; P for Kruskal-Wallis (above plots) test (a, b) and for Spearman correlation (c).
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Fig. 4. Transcriptional correlates of parasite growth inhibition
(a) Volcano plot showing association between gene expression and parasite growth 

inhibition after adjustment for leukocyte mixture in a linear model. Log fold change (log 

FC) is the coefficient of log adjusted gene expression vs. parasite growth inhibition. Positive 

log FC indicates that increasing gene expression is associated with increasing parasite 

growth inhibition. Negative log FC indicates that increasing gene expression is associated 

with decreasing parasite growth inhibition. P calculated using two-sided likelihood ratio test, 

adjusted for multiple testing using the Benjamini-Hochberg method: false discovery rate 
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adjusted P <0.05 (FDR) is considered significant (above dashed line, colored circles). The 

10 significant genes with greatest positive and negative log FC are labelled. Analyses based 

on data from n=24 subjects. (b,c) Primary networks derived from the genes significantly 

associated with PGI, with positive (b, n=26) and negative (c, n=25) log FC.
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Fig. 5. Effects of cathepsin G and MMP9 on parasite growth and expression of erythrocyte 
invasion receptors
(a) Effect of cathepsin G (18μg/mL, n=5) and MMP9 (16μg/mL, n=3) or no treatment (n=8) 

on in vitro growth of P. falciparum 3D7 (n are biological replicates, results representative of 

two independent experiments). (b) Effect of cathepsin G (18μg/mL) and MMP9 (18μg/mL) 

on erythrocyte invasion of P. falciparum 3D7 when added directly to schizonts and donor red 

cells, or when pre-incubated (PT) with donor red cells before washing and adding to 

schizonts (n=3 biological replicates per condition, representative of two independent 

experiments). (a, b) Show mean (95% CI) and P for two-sided unpaired t-test. (c) Cathepsin 

G and MMP9 concentrations in plasma from healthy donor whole blood (n=8) unstimulated 
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or stimulated with 1μM PMA, and from Gambian children with P. falciparum malaria 

(n=34). Bars show median, P for two-sided Wilcoxon matched pairs test. (d-e) Dose effects 

on growth inhibition by MMP9 against P. falciparum 3D7 (d), and invasion inhibition by 

cathepsin G pre-treatment against four parasite strains (e) (n=3 biological replicates per 

dose, mean (95% CI) and P for linear trend, each result representative of two independent 

experiments). (f) Additive effect of Cathepsin G 1μg/mL and MMP9 1μg/mL against P. 
falciparum 3D7 invasion (n=4 biological replicates per condition, mean (95% CI) and P for 

ANOVA, representative of three independent experiments). (g) Dose response for 

erythrocyte surface receptor cleavage by cathepsin G (n=3 biological replicates per dose, 

mean +/- standard error, asymmetric 5-parameter logistic regression fit lines, representative 

of two experiments). (h) Effect of PMA stimulation of healthy donor (n=8) whole blood on 

erythrocyte surface receptor expression assessed by fluorescence intensity (P for two-sided 

Wilcoxon matched pairs test). (i) Comparison of proportion of erythrocytes with detectable 

receptor expression in acute (day 0) and convalescent (day 28) samples from Gambian 

children with malaria (n=6, P for one-sided Wilcoxon matched pairs test).
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Figure 6. Parasite gene expression modules associated with predicted multiplication rate.
(a,b) Violin plots showing comparison of mutation insertion scores (a) and mutation fitness 

scores (b) between modules associated with predicted multiplication rate (PF3D7_1136000, 

n=138 genes; PF3D7_1238300 n=42 genes) and all other genes (n=3421). (Violin plots 

indicate distribution of data (kernel density estimates) and median (red circle); P for 

comparison between each module and all other genes using a two-sided Mann-Whitney 

test).
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