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Background: Ovarian cancer (OV) is the most lethal gynecological cancer in women. We aim to develop a
generalized, individualized immune prognostic signature that can stratify and predict overall survival for ovarian
cancer.
Methods: The gene expression profiles of ovarian cancer tumor tissue samples were collected from 17 public
cohorts, including 2777 cases totally. Single sample gene set enrichment (ssGSEA) analysis was used for the
immune genes from ImmPort database to develop an immune-based prognostic score for OV (IPSOV). The signa-
ture was trained and validated in six independent datasets (n= 519, 409, 606, 634, 415, 194).
Findings: The IPSOV significantly stratified patients into low- and high-immune risk groups in the training set and
in the 5 validation sets (HR range: 1.71 [95%CI: 1.32–2.19; P= 4.04 × 10−5] to 2.86 [95%CI: 1.72–4.74; P=4.89
× 10−5]). Further, we compared IPSOV with nine reported ovarian cancer prognostic signatures as well as the
clinical characteristics including stage, grade and debulking status. The IPSOV achieved the highest mean
C-index (0.625) compared with the other signatures (0.516 to 0.602) and clinical characteristics (0.555 to
0.583). Further, we integrated IPSOVwith stage, grade and debulking, which showed improved prognostic accu-
racy than clinical characteristics only.
Interpretation: The proposed clinical-immune signature is a promising biomarker for estimating overall survival
in ovarian cancer. Prospective studies are needed to further validate its analytical accuracy and test the clinical
utility.
Fund: This work was supported by National Key Research and Development Program of China, National Natural
Science Foundation of China and Natural Science Foundation of the Jiangsu Higher Education Institutions of
China.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Ovarian cancer (OV) is the most lethal gynecological cancer among
women, with N14,000 estimated new deaths in United States, 2018
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[1]. Biomarkers especially gene expression in tumor tissues are reliably
related to cancer prognosis and survival [2–4]. Thus, identification of the
subset of patients with worse survival and higher mortality is needed
for additional clinical therapy. The availability of large-scale public
cohorts with gene expression data and the well-developed biological
database bring the opportunity to identify a more generalized prognos-
tic signature with biological background for ovarian cancer.

Immune system has been shown to be a determining factor during
cancer initiation and progression [5,6]. Various evidence have proved
that ovarian cancer are immunogenic tumors [7–9] and immunother-
apy is strongly pursued through targeting on the immune checkpoints
[10,11]. In addition, previous study has preliminary confirmed the prog-
nostic value of immune system in ovarian cancer [12]. Thus, the im-
mune based prognostic signature remains a potential to be applied in
ovarian cancer.

In this study, we integrated multiple cohorts with gene expression
which contained 2777 cases totally to develop and validate an individu-
alized gene-set based prognostic signature for ovarian cancer from
immune-related genes. With sufficient validation of 5 independent
datasets, we proved themodel stability and reliability. Further, to lever-
age the complementary value of clinical characteristics, we performed
an integrated analysis to improve the predicted accuracy for overall
survival.

2. Methods

2.1. Study population and eligibility criteria

We retrospectively collected the ovarian cancer gene expression
profiles of frozen primary tumor tissue samples from 17 publicmicroar-
ray datasets, including 16 cohorts from the Gene Expression Omnibus
(GEO) repository and 1 from The Cancer Genome Atlas ovarian cancer
(TCGA-OV) cohort. All patients had received primary debulking surgery.
Only patients with available follow-up time, status and gene expression
datawere included. Themain outcome of our studywas overall survival.
Staging was assessed in accordance to the International Federation of
Gynecology and Obstetrics (FIGO) stage system. Optimal debulking
was defined as ≤1 cm of gross residual disease while sub-optimal
debulkingwas defined asN1 cmof residual disease.Wedid not limit his-
tology type, FIGO stage, grade, debulking and neoadjuvant chemother-
apy status for sample collection. The sample quality control details
were described in Table S1.

The study characteristics of the 17 public ovarian cancer datasets
were described in Table S1. Finally, 2777 ovarian cancer cases were
included in our study. The study design and workflow were provided
in Fig. 1.

2.2. Gene expression data preprocessing

For GEO datasets, all microarray data and clinical information were
download from GEO repository (https://www.ncbi.nlm.nih.gov/geo/).
To increase the statistical power and leverage cohortswith small sample
size sufficiently, we combined the cohorts with the same microarray
platform. Only the platforms with sample size ≥ 150 were included in
the study.

For TCGA cohort, due to the samples with available RNA-Sequencing
gene expression quantification were relatively small (n=374), we col-
lectedAffymetrix HumanGenomeU133AArraymicroarray data instead
(n=519). All level-2 datawere download from theGenomicData Com-
mons Data Portal (https://portal.gdc.cancer.gov/).

Finally, six independent datasets were included according to the dif-
ferent platforms from GEO and TCGA (Table 1). Entrez IDs were used to
represent genes across different platform. In the independent validation
phase, ifmultiple probe sets correspond to the same Entrez ID in the val-
idation sets, the one with the highest mean signal was selected as the
expression level of the corresponding gene [13].
The batch effects between different datasets within the same plat-
form were adjusted by ComBat method [14]. Gene expression values
of all probes were adjusted in each dataset, respectively. We also ad-
justed the batch effects within the TCGA cohort according to the tissue
source site code. All the gene expression levels had been logarithmic
transformed before batch effects adjustment.

2.3. Immune-related genes definition

We constructed a prognostic signature from the immune-related
genes, which were downloaded from the ImmPort database (http://
www.immport.org) [15]. It includes 17 immune categories according
to different molecular function, such as antimicrobials, cytokine, inter-
leukins, T-cell receptor signaling pathway, B-cell receptor signaling
pathway, TNF family receptors.

2.4. Development of the immune-based prognostic signature for OV
(IPSOV)

We performed a three-stage strategy to develop the signature. First,
we used the TCGA cohort as the training set to screen the survival
related probes. 1905 microarray probes for 1109 immune genes were
included totally. The Cox proportional-hazards model was used to as-
sess their association with overall survival with adjustment for age,
stage, grade and debulking status. We excluded the probes with ad-
justed P values larger than 0.05.

To estimate the population specific immune infiltration, we used
single sample gene set enrichment analysis (ssGSEA) that define a en-
richment score to represent the degree of absolute enrichment of a
gene set in each sample within a given dataset [16]. Normalized enrich-
ment scores could be calculated for each immune category. The ssGSEA
analysis were performed in R package GSVA.

In the last step, we develop a prognostic signature named the
immune-based prognostic signature for OV (IPSOV) to combine the ef-
fects of each immune category in the training set. The coefficients of
each category were determined by multivariable Cox regression

model: IPSOV ¼ Pk
i¼1 βiSi, where Si is the ssGSEA score for ith immune

category.

2.5. Validation of the IPSOV

To get a uniform cutoff value to categorize the patients into low-risk
and high-risk group,we performed a normalization for the gene expres-
sion values in each dataset withmean value=0 and standard deviation
(SD)= 1. After developing the signature, the prognostic score of IPSOV
was further calculated in the 5 validation datasets, respectively. In the
multivariable Cox regression, age, FIGO stage, grade, debulking status
and study site were included as covariates.

2.6. Pathway enrichment analysis for the molecular function

To further understand the gene function in IPSOV, we performed a
pathway enrichment analysis for the genes based on Kyoto Encyclope-
dia of Genes and Genomes (KEGG) and Gene Ontology (GO) database
including biological process (BP), molecular function (MF) and cellular
component (CC). The P values were adjusted by False-Discovery Rate
(FDR)method formultiple comparison. All the analysis were performed
by R package clusterProfiler [17].

2.7. Existing prognostic signatures for comparison

To evaluate the survival classification and prediction ability of IPSOV,
we retrospectively collected 9 published prognostic signatures for com-
parison, which included from 7 genes to 300 genes (Table S7). Continu-
ous prognostic scoreswere calculated for each signature. The P values of

https://www.ncbi.nlm.nih.gov/geo
https://portal.gdc.cancer.gov
http://www.immport.org
http://www.immport.org


Fig. 1. Flowchart of the study. 17 public ovarian cancer datasets containing 2777 caseswere included and categorized into 6 independent datasets according to themicroarray platform.We
developed the IPSOV in the training set and validated in the other 5 datasets. Further, we integrated IPSOV with stage, grade and debulking status to improve the prognostic value.
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continuous scores in univariable Cox model and the overall concor-
dance statistic (C-index) were compared in the six datasets.

2.8. Statistical analysis

Continuous variables were summarized as mean ± SD, and cate-
gorized variables were described by frequency (n) and proportion
Table 1
Summary of the eight datasets included in the study.

Dataset Platform

Training set Affymetrix Human Genome U133A Array
Validation set 1 Affymetrix Human Genome U133A Array
Validation set 2 Affymetrix Human Genome U133 Plus 2.0 Array
Validation set 3 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F
Validation set 4 Operon human v3 ~35 K 70-mer two-color oligonucleotide microarray
Validation set 5 ABI Human Genome Survey Microarray Version 2

a We used ComBat to adjust the batch effects between different cohorts within the same pla
(%). In the survival analysis, associations between characteristics
and overall survival were evaluated by Cox proportional hazard
models. Kaplan-Meier survival curves were drawn and compared
among subgroups using log-rank tests. The C-index and restricted
mean survival (RMS) curve were estimated using R package survival
and survRM2, while C-index was compared by R package compareC
[18].
Sample size Included cohortsa

519 TCGA
409 GSE14764, GSE23554, GSE26712, GSE3149
606 GSE18520, GSE19829, GSE26193, GSE30161, GSE63885, GSE9891
634 GSE17260, GSE32062, GSE53963, GSE73614

s 415 GSE13876
194 GSE49997

tform. Gene expression values of all probes were adjusted in each dataset, respectively.



Fig. 2. Kaplan-Meier survival analyses of IPSOV. (a) Patients are stratified into low- (red) and high-immune (blue) risk groups with a cutoff of the median value in the training set. (b-f)
Further, the prognostic signature IPSOV is validated in five independent validation sets.

Table 2
Demographic and clinic characteristic descriptions for ovarian cancer patients in different datasets.

Characteristicsa Training set Validation set 1 Validation set 2 Validation set 3 Validation set 4 Validation set 5

Number of samples 519 409 606 634 415 194
Median survival time (month) (95% CI) 44.5 (41–48.3) 51 (45–65) 41.9 (37.8–47.8) 53 (49–62) 24 (21−30) N49b

Number of Death (%) 284 (54.9) 232 (56.7) 346 (57.1) 364 (57.1) 302 (72.7) 57 (29.3)
Age (years) 59.8 ± 11.4 – 62.9 ± 10.6 62.6 ± 11.2 57.9 ± 12.2 57.6 ± 11.8

Histology type (%)
Serous 520 (100) 96 (88.8) 516 (85.5) 534 (83.8) 415 (100) 171 (88.1)
Endometroid 0 6 (5.5) 41 (6.8) 66 (10.3) 0 0
Clear cell 0 2 (1.8) 20 (3.3) 37 (5.8) 0 0
Mucinous 0 0 9 (1.4) 0 0 0
Other 0 4 (3.7) 17 (2.8) 0 0 23 (11.8)

FIGO stage (%)
I 15 (2.9) 8 (4.1) 41 (7.4) 32 (5.0) – 0
II 25 (4.8) 2 (1.0) 111 (20.0) 23 (3.6) – 9 (4.6)
III 396 (76.7) 164 (84.1) 364 (65.8) 462 (72.6) – 154 (79.3)
IV 80 (15.5) 21 (10.7) 37 (6.6) 119 (18.7) – 31 (15.9)

Grade (%)
1 5 (0.9) 9 (4.0) 32 (5.8) 26 (4.0) – 0
2 64 (12.5) 86 (38.9) 80 (14.6) 204 (32.0) – 0
3 439 (86.2) 125 (56.5) 394 (72.0) 324 (50.8) – 143 (100)
4 1 (0.1) 1 (0.2) 41 (7.4) 83 (13.0) – 0

Debulking status (%)
Optimal 337 (73.1) 193 (54.0) 209 (66.7) 271 (51.4) – –
Sub-optimal 124 (26.9) 164 (45.9) 104 (33.2) 256 (48.5) – –

a Sum of frequency numbers may not equal to the total sample size due to missing values.
b The median survival time is incalculable due to the mortality at the last follow-up time is b50%.
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Statistical analyses were performed using R version 3.4.0 (The R
Foundation). P values were two-sided, and P b 0.05 was considered sta-
tistically significant.

3. Results

3.1. Development and definition of the IPSOV

A total of 2777 patients with ovarian cancer (mean age± SD, 59.7±
11.8; 12.8% early-stage [I, II], 87.2% late-stage [III, IV]; 43.5% optimal
debulking, 56.5% sub-optimal debulking) from 6 independent datasets
were included in the analysis (Table 2). In the training set, 156 probes
of 129 genes from 15 immune categories were associated with overall
survival among the 1905 immune-related microarray probes. Further,
we used these probes to perform the ssGSEA analysis for each patient
to calculate the immune enrichment score of each immune category.
The IPSOV was defined as the combined effect of scores in different cat-
egories using the coefficients generated from multivariable Cox regres-
sionmodel (Table S3). Themedian score in the training set (−0.23)was
used as the cutoff to stratify patients into low- and high-immune risk
group across all the datasets.

3.2. Validation of the IPSOV

The IPSOV significantly stratified patients into low- and high-
immune risk groups in the training set (hazard ratio [HR] = 1.82; 95%
confidence interval [CI]: 1.43–2.30; P = 9.19 × 10−7) and in the 5 vali-
dation sets (HR range: 1.66 [95%CI: 1.27–2.15; P=1.84 × 10−4] to 2.36
Fig. 3. IPSOV distribution with survival status in the combined dataset. Upper half panel: IPSO
indicates the patients are dead while blue color indicates survive. Lower half panel: Heatmap
immune category is normalized to mean = 0 and standard deviation = 1.
[95%CI: 1.38–4.00; P=0.001]) (Table S4). In addition, it remained as an
independent prognostic factor in the multivariable Cox model, after
adjusting for age, stage, grade and debulking status (HR range: 1.71
[95%CI: 1.32–2.19; P = 4.04 × 10−5] to 2.86 [95%CI: 1.72–4.74; P =
4.89 × 10−5]) (Fig. 2). In the meta-analysis for all datasets, the high-
immune risk group showed a 1.96-fold higher risk than the low-
immune risk group (HR = 1.96; 95%CI: 1.73–2.23; P = 2.37 × 10−25)
(Fig. S1). The IPSOV distribution with survival status in the combined
dataset was shown in Fig. 3. Significant RMS time ratio (1.24 to 1.88)
was observed in the 6 datasets, respectively (Table 3).

3.3. Subgroup and sensitivity analysis for IPSOV

To evaluate the model stability in different clinical subgroups, we
performed a sensitivity analysis according to age, histology, stage,
grade and debulking status. IPSOV was significant in most subgroups
and had a relatively stable HRs except endometrioid and early-stage pa-
tients, whichmight due to the insufficient sample size (Fig. S2). This in-
dicated IPSOV was potentially independent of clinical characteristics.

Further, we found the 129 genes weremostly involved in antimicro-
bials (33.3%), cytokine receptors (32.6%) and cytokines (29.5%) immune
process (Table S2).We calculated the corresponding subgroup immune
scores based on ssGSEA method in each immune process. The patients
with low immune scores had a significant longer median survival time
in each process (Fig. 4A).

To test the robustness of IPSOV, we randomly resampled 500 cases
for 10,000 times from the combined dataset. Only 0.17% of P values
failed to pass the 0.05 threshold (Fig. S3A). The median C-index was
V distribution with patient survival status. The X axis is sorted by IPSOV values. Red color
showing the corresponding 15 immune categories enrichment scores. The score of each



Table 3
Restricted mean survival (RMS) time ratio between low- and high-IPSOV groups in different data sets.

Dataset NLow-IPSOV NHigh-IPSOV RMSLow-IPSOV (95%CI)a RMSHigh-IPSOV (95%CI)a RMS ratio (95%CI)b P

Training set 258 258 57.58 (52.61–62.55) 42.73 (39.02–46.45) 1.35 (1.19–1.52) b0.001
Validation set 1 196 213 84.51 (72.62–96.41) 61.82 (52.53–71.11) 1.37 (1.11–1.67) 0.003
Validation set 2 185 412 60.52 (54.77–66.28) 46.40 (42.95–49.84) 1.31 (1.15–1.47) b0.001
Validation set 3 413 223 92.42 (83.49–101.35) 60.77 (51.99–69.56) 1.52 (1.27–1.81) b0.001
Validation set 4 179 236 70.18 (60.61–79.75) 37.17 (31.17–43.18) 1.88 (1.52–2.33) b0.001
Validation set 5 109 85 40.50 (37.80–43.20) 32.75 (29.00–36.51) 1.24 (1.08–1.41) 0.002

a RMS time: months.
b RMS ratio = RMSLow-IPSOV/ RMSHigh-IPSOV.
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0.624 with a SD of 0.017, which showed its stable predictive power
(Fig. S3B).
3.4. Pathway enrichment analysis

Enrichment analysis for the 129 unique genes identified 85 signifi-
cant KEGG pathways (Padjust b 0.05), such as Cytokine-cytokine receptor
interaction,MAPK signaling pathway, Ras signalingpathway, B/T cell re-
ceptor signaling pathway and PI3K-Akt signaling pathway (Table S6).
Further, pathway analysis based on Gene Ontology identified various
significant pathways, including 1034 biological process (BP) pathways,
44 molecular function (MF) pathways and 77 cellular component (CC)
pathways,which revealed the abundantbiological function background.
Fig. 4. (a) Immune scores are calculated based on the coefficients of IPSOV in antimicrobials, cyto
high-immune risk group by the median value. Median survival time is compared using log-ran
value comparison of IPSOV and 9 reported signatures. Red block indicates the model is signific
3.5. Comparison with other signatures and clinical characteristics

We comparedmodel predictive accuracy of IPSOVwith clinical char-
acteristics including stage, grade and debulking as well as 9 reported
ovarian cancer prognostic signatures. Continuous prognostic scores
were calculated from each signature to compare among different
datasets. Of the 13 survival predicted factors, IPSOV had a highest
mean C-index (0.625) compared with stage (0.564), grade (0.555),
debulking (0.583) and other signatures (0.516 to 0.602) (Table S5,
Fig. 4B).

In addition, we also compared the P-values of continuous prog-
nostic scores in the univariable Cox model. IPSOV was significant
in all datasets, outperforming other signatures (from 0/6 to 5/6)
(Fig. 4C).
kines and cytokine receptors immuneprocesses.Wedichotomize the scores into low- and
k test. (b) Mean C-index of IPSOV, stage, grade, debulking and 9 reported signatures. (c) P
ant (P ≤ 0.05) while black indicates unsignificant (P N 0.05).
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3.6. Integrate IPSOV with clinical characteristics

In addition to IPSOV, clinical characteristics including tumor stage,
grade and debulking status were also independent prognostic factors,
suggesting their complementary value. To further improve predict accu-
racy, we integrated IPSOV (continuous score) with them using the coef-
ficients generated from the multivariable Cox regression model in the
training set as: integrated model = 1.119 × IPSOV+0.335 × stage
+0.368 × grade-0.501 × debulking. The integrated model was further
validated in validation set 1, 2, 3 where full clinical information in the
model was available. Significantly improved estimation of survival
was achieved by the continuous score of integrated model relative to
clinical characteristics only (C-index: 0.65 vs 0.59 in training set, P =
0.002; 0.73 vs 0.62 in validation set 1, P=0.047; 0.70 vs 0.64 in valida-
tion set 2, P=0.017; 0.71 vs 0.62 in validation set 3, P=0.019) (Fig. 5).

4. Discussion

Patients suffering fromovarian cancer often display a heterogeneous
clinical outcome spanning b5months to beyond10 years [19]. In this re-
spect, treatment options are lacking with all the patients being treated
with similar drugs. Thus, a prognostic signature with a broad scope of
application is needed to accurately identify those cases with refractory
disease and worse survival. In this study, using multiple well-
established public ovarian cancer cohorts, we developed a prognostic
signature based on gene set enrichment and validated it in 5 indepen-
dent validation datasets which covered most common microarray plat-
forms. The IPSOV could further stratify clinically defined groups of
Fig. 5. Integration of IPSOV and clinical characteristics. (a) Training set. (b) Validation set 1. (c)
integratedmodel. In addition,we provided the C-index comparison of themodel with clinical ch
two models in term of C-index.
patients (e.g. debulking status, FIGO stage and age) into subgroups
with different survival outcomes.

To date, numerous studies have developed gene expression signa-
tures to stratify ovarian cancer survival based on different cohorts. How-
ever, none of them has been incorporated into clinical practice might
due to several limitations. First, the sample size was usually small that
lacked sufficient validation to prove model stability. Second, most of
them used specific genes to generate the prognostic score, which easily
leaded to overfitting and ignored other casual genes [20]. In this study,
we performed ssGESA analysis to determine the population specific im-
mune infiltration based on immune pathway gene set level, which is
more generic than the normal signature.

Accumulating evidence indicates innate and adaptive immune sys-
tems make a crucial contribution to cancer initiation and development
[21–23]. Moreover, cancer immunotherapy has made a great process
and is moving fast that IPSOV may hold great promise for identifying
novel molecular targets for it [24]. From the ImmPort database, we
found most genes of IPSOV were involved in antimicrobials, cytokines
and cytokine receptors processes. Recent pre-clinical and clinical trials
demonstrate that adjuvant antimicrobial therapy is beneficial in cancer
treatment. Antimicrobial agents can benefit cancer patients by killing
oncogenic-related microorganisms and protecting from recurring
immunosuppression-induced infection through their direct antiprolif-
erative and cytotoxic effects [25]. Cytokines and cytokine receptors pro-
cesses play important roles in inflammatory, angiogenesis and
chemotaxis processes [26]. They can function to inhibit tumor develop-
ment and progression [27] and also are proved to be effective in the
treatment of cancer [28].
Validation set 2. (d) Validation set 3. Restricted mean survival (RMS) curve for IPSOV and
aracteristics only and the integratedmodel. P-value represents the difference between the
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Further, the pathway enrichment analysis adds the evidence for its
association with cancer and the clinical application potential. Ras-
MAPK signaling pathway is considering playing an important role in
multiple cancers and inhibitors for it have shown effectiveness in clini-
cal trials [29]. Inhibitor of PI3K-Akt signaling pathway prevent the
growth of ovarian cancer xenografts and potentiate the cytotoxic effects
of paclitaxel and cisplatin [30]. In addition, other pathways such as ki-
nase activity [31,32], growth factor [33,34] and ERK1/ERK2 cascade
[35] were also involved in cancer cell growth, proliferation, invasion
and metastasis and played important roles in ovarian cancer.

Our study has several strengths. First, the sample size is much larger
than the studies before, which gives the signature sufficient validation
and makes it more robust and reliable. Second, compared with the
models screened from the whole genome that contain many genes
with unknown function or a single candidate gene which shows less
prognostic value than an aggregated model [36,37], the immune-
related genes of IPSOV have a strong biological background, making it
practicable to be applied in clinical adjuvant treatment. Third, IPSOV
has a promising survival prediction ability through comparing with
other signatures and clinical characteristics.

How high of a C-index is needed for a useful prognostic tool depend
on the clinical context [38]. Although the absolute value of IPSOV
C-index is not very high, it outperforms the traditional clinical factors
and improves significantly in the integrated model. Thus, the utility of
these tools could better estimate patient prognostic information and
stratify into different subgroups to benefit from different treatment.

We acknowledge some limitations. First, we tried to include asmany
cohorts as possible to get amore sufficient validation of our biomarkers.
However, gene expression values are subject to sampling bias due to
different platforms. Second, themissing rate for the clinical characteris-
tics was high, which decreased the statistical power in multivariable
Cox regression analysis and the integrated prognostic model. Third,
IPSOV is developed by numerous genes, where further biological exper-
iments are warranted to validate their functions in ovarian cancer.
5. Conclusion

IPSOV is a promising prognostic biomarker in ovarian cancer which
could be used to distinguish and predict patients' survival outcome. Pro-
spective studies are needed to further validate its analytical accuracy for
estimating prognoses and to test its clinical utility in individualized
management of ovarian cancer.
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