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ABSTRACT

Recent technological advances have enabled the
generation of large amounts of data consisting of
RNA sequences and their functional activity. Here,
we propose a method for extracting secondary struc-
ture features that affect the functional activity of RNA
from sequence–activity data. Given pairs of RNA se-
quences and their corresponding bioactivity values,
our method calculates position-specific structural
features of the input RNA sequences, considering
every possible secondary structure of each RNA. A
Ridge regression model is trained using the struc-
tural features as feature vectors and the bioactivity
values as response variables. Optimized model pa-
rameters indicate how secondary structure features
affect bioactivity. We used our method to extract in-
tramolecular structural features of bacterial trans-
lation initiation sites and self-cleaving ribozymes,
and the intermolecular features between rRNAs and
Shine–Dalgarno sequences and between U1 RNAs
and splicing sites. We not only identified known
structural features but also revealed more detailed in-
sights into structure–activity relationships than pre-
viously reported. Importantly, the datasets we ana-
lyzed here were obtained from different experimental
systems and differed in size, sequence length and
similarity, and number of RNA molecules involved,
demonstrating that our method is applicable to vari-
ous types of data consisting of RNA sequences and
bioactivity values.

INTRODUCTION

Intra- and intermolecular RNA secondary structures can
have various roles, including as sensors of specific molecules
(1), sequence-specific binding sites (2) and autocatalytic

enzymes (3), and are involved in various biological pro-
cesses, including transcriptional termination (4), splicing
(5), translation initiation (6), plasmid maintenance (7) and
responses to cellular conditions (8). To both understand the
molecular mechanisms of these biological processes and ar-
tificially control them, it is important to accurately under-
stand the roles of RNA secondary structures. Recent sub-
stantial advances in DNA sequencing and synthesis tech-
nologies have enabled the creation of datasets consisting
of RNA sequences and their activities. For example, Cam-
bray et al. examined data on 244 000 mRNA sequences
(around translation start sites) and their corresponding pro-
tein expression levels in E. coli (9). Wong et al. measured
the splicing activity for all possible 9-mer sequences around
GU/GC donor sites in humans (10). Kobori et al. measured
self-cleavage activity of >10 000 twister ribozyme mutants
(11). However, there is no general method for extracting sec-
ondary structure features that affect the activity of targeted
biological processes from such datasets. Currently, combi-
nations of secondary structure prediction algorithms and
tailormade statistical analyses are used for the analysis of
such data.

RNA secondary structures are expected to behave
stochastically inside cells. In situations where the stochastic
behavior affects biological activity, it is necessary to con-
sider fluctuations in RNA secondary structure. Indeed, we
have shown that secondary structural features inferred by
taking into account all possible secondary structures are
the most accurate predictors of protein abundance in Es-
cherichia coli (12). It has also been shown that the accuracy
of RNA secondary structure prediction can be improved by
considering a probabilistic distribution of RNA secondary
structures (13,14).

In this study, we propose a method for extracting rele-
vant structural features from datasets consisting of RNA
sequences and their activity values, which was implemented
as the software QRNAstruct (https://github.com/gterai/
QRNAstruct). Given pairs of RNA sequences and their
corresponding bioactivity values, our method first calcu-
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lates position-specific structural features of the input RNA
sequences while considering the stochastic fluctuation of
RNA secondary structures. Then, a Ridge regression model
is trained using the structural features and bioactivity data
values as training data. Optimized model parameters allow
us to determine the structural features that increase or re-
duce bioactivity. Ridge regression serves a crucial function
because it deals well with correlations among the position-
specific features. It should also be mentioned that the sec-
ondary structures of RNA are not included in the input but
implicitly considered as a probability distribution.

Various types of tools for the analysis of RNA secondary
structures have been proposed, including secondary struc-
ture prediction (13,15), alignment of secondary structures
(16), homology search considering secondary structures
(17,18), and RNA gene discovery (19). However, no special-
ized method for analyzing the relationship between RNA
sequences and bioactivity values has yet been reported.

Here, we first describe an overview of our method and
then present the results of its application to the analy-
sis of bacterial translation initiation sites, self-cleaving ri-
bozymes, rRNA–Shine–Dalgarno (SD) sequence interac-
tions, and U1 RNA–donor site interactions. We show that
our method successfully extracted detailed structural fea-
tures affecting the activity of targeted biological processes.
Then, we discuss possible extensions of our method that
should be examined and implemented in the future.

MATERIALS AND METHODS

In our method, the parameters of a regression model for
bioactivity values are optimized using training data, and
the optimized parameters represent how secondary struc-
ture features affect bioactivity. The regression model is de-
fined as follows:

t(x) =
∑

φ

P(φ|x) f (φ,w), (1)

where t(x) is the predicted bioactivity value of an RNA se-
quence x (or a pair of interacting RNA sequences, in which
case x is substituted with two RNA sequences, x, y), φ is
a secondary structure formed by x, and w is a vector of
parameters to be optimized. P(φ|x) is the probability of
the structure φ, and it represents the stochastic behavior of
the RNA secondary structures formed by x. In this study,
we used the conditional log-linear model developed by Do
et al. (the CONTRAfold model) (13) as P(φ|x). We used
the CONTRAfold model because in our previous study, it
showed higher accuracy than did the widely used Turner
model in predicting translation efficiency in prokaryotes
(12).

In Equation (1), f (φ,w) is a function that evaluates the
effect of the structure φ on bioactivity. We defined the func-
tion f(φ, x) as follows.

f (φ,w) = wT · cφ, (2)

where w is a vector of parameters to be optimized and cφ is
a vector of indicator functions, each of which takes a value
of 1 or 0. Each parameter ws(s = 1, 2, ...|w|) represents the
contribution of a certain position belonging to a specific
structural component such as a hairpin, bulge, or internal

loop. The indicator function cφ,s(s = 1, 2, ...|w|) is 1 if the
position belongs to the structural component in the struc-
ture φ or 0 otherwise. For example, when ws represents the
contribution of position i in a bulge loop, cφ, s is 1 if a base
in position i is in a bulge loop in structure φ or 0 otherwise.

By inserting Equation (2) into Equation (1), we can ob-
tain the following representation.

t(x) =
∑

φ

P(φ|x) · wT · cφ, (3)

= wT ·
∑

φ

P(φ|x) · cφ, (4)

= wT · EP(φ|x)[cφ ]. (5)

We can employ any linear regression algorithm to op-
timize w using EP(φ|x)[cφ ], the vector expectation of cφ ,
as a feature vector and t(x) as the response value. In this
study, we use Ridge regression (20) to optimize w because
EP(φ|x)[cφ ] contains correlated values, as described below.
When regression analyses are conducted, the presence of
feature variables that are highly related to each other can
cause instability in the analytical calculations, exhibiting
a phenomenon called multicollinearity. Ridge regression is
appropriate for constructing a regression model when mul-
ticollinearity is present (20). It optimizes w by minimizing
the following loss function.

Loss =
∑

x

(
o(x) − t(x)

)2
+ αwTw, (6)

where o(x) is an observed bioactivity value and � is the so-
called regularization parameter, which controls the relative
importance of the first (objective) term versus the second
(regularization) term in Equation (6). The use of a posi-
tive alpha value reduces overfitting by penalizing w as it be-
comes too large.

We normalize the observed bioactivity values from 0 to 1
as follows.

o = (oraw − omin)
(omax − omin)

, (7)

where oraw is the raw (unnormalized) activity value and omin

and omax are the minimum and maximum raw values in
the training data, respectively. Before conducting regression
analyses, o is further normalized by subtracting the mean
value of o from it.

Definition of model parameters

Let x(i) be the ith base in RNA sequence x. For an in-
tramolecular RNA secondary structure formed by x af-
fecting bioactivity, we used the six types of parameters de-
scribed below.

wL
i : contribution of x(i) in the left side of a base pair

wR
i : contribution of x(i) in the right side of a base pair

wH
i : contribution of x(i) in a hairpin loop

wB
i : contribution of x(i) in a bulge loop

wI
i : contribution of x(i) in an internal loop
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Figure 1. Examples of RNA secondary structures. RNA secondary struc-
tures formed by (A) a single RNA sequence and (B) two short RNA se-
quences are shown. Circles represent bases, while their numbers and col-
ors indicate the base position and the type of loop to which a base belongs,
respectively. Black lines represent base pairings.

wE
i : contribution of x(i) in an external loop

Figure 1A shows an example RNA secondary structure
formed by a single molecule. There are six base pairs in
this structure, where x(2), x(3), x(5), x(6), x(8) and x(9) are
bases on the left side of base pairs and x(14), x(15), x(16),
x(17), x(19) and x(20) are bases on the right side of base
pairs. Additionally, x(10), x(11), x(12) and x(13) are con-
tained in a hairpin loop, x(7) is contained in a bulge loop,
and x(4) and x(18) are contained in an internal loop. Lastly,
x(1), x(21), and x(22) are contained in an external loop. In
this case, the effect of the secondary structure on bioactivity
is calculated as f (φ,w) = wL

2 + wL
3 + wL

5 + wL
6 + wL

8 +
wL

9 + wR
14 + wR

15 + wR
16 + wR

17 + wR
19 + wR

20 + wH
10 + wH

11 +
wH

12 + wH
13 + wB

7 + wI
4 + wI

18 + wE
1 + wE

21 + wE
22. In this

study, we defined an external loop as a single-stranded
region that is not included in a hairpin, bulge, or internal
loop. (We also treated multi-loops as a kind of external
loop in this study.) We used different sets of parameters
for RNA secondary structures between two short RNA
sequences affecting bioactivity. We denote the two RNA
sequences as x and y and the i-th bases in RNA x and y
as x(i) and y(i), respectively. In this case, we used the four
types of parameters described below:

wP
i, j : contribution of a base pair between x(i) and y(j)

wB
s(i ): contribution of s(i) in a bulge loop (s ∈ {x, y})

wI
s(i ): contribution of s(i) in an internal loop (s ∈ {x, y})

wE
s(i ): contribution of s(i) in an external loop (s ∈ {x, y})

Figure 1B shows an example RNA secondary struc-
ture between x and y. There are five base pairs in
this structure. In this case, the effect of the sec-
ondary structure on bioactivity is calculated as
f (φ,w) = wP

2,3 + wP
3,4 + wP

5,5 + wP
6,6 + wP

8,8 + wB
x(4) +

wI
x(7) + wI

y(7) + wE
x(1) + wE

x(9) + wE
y(1) + wE

y(2) + wE
y(9). We

assume that the formation of intra-molecular base pairs
can be ignored when two RNA sequences are short.
This assumption is appropriate when an RNA is part
of a protein–RNA complex, and hence intramolecular
structural bendability is spatially restricted.

Calculation of feature vectors and correlations between fea-
ture values

In the analysis of single RNA sequences, a feature vector
consisting of the expectation of cφ, s corresponding to wL

i ,
wR

i , wH
i , wB

i , wI
i and wE

i , can be calculated using the CapR
algorithm (21). We modified the CONTRAfold program
(13) such that it calculates these expectations according to
the CapR algorithm and used it to identify feature vec-
tors. As an example, we calculated the mean of the expec-
tations of cφ, s for each column of the alignment of purine
riboswitch (RF00167) in the Rfam database (22), and ob-
served that the profiles of mean expectations are in good
agreement with the annotation of the consensus secondary
structure in the database, as shown in Supplementary Fig-
ure S1. In rendering this figure, the mean expectations for
the alignment columns with more than 50% gaps were ex-
cluded.

In the analysis of two RNA sequences, we developed an
algorithm for calculating a feature vector corresponding to
wP

i, j , wB
x(i ), wI

x(i ), wE
x(i ), wB

y(i ), wI
y(i ) and wE

y(i ). The algorithm
uses the score parameters developed by (13) to evaluate the
feature vector, assuming that two input RNA sequences
have no intra-molecular base pairs. We describe the algo-
rithm in the Supplementary Methods.

It is important to note that the expected values of the
above parameters are not independent, and hence some val-
ues in the feature vector are correlated. For example, as
consecutive base pairs are energetically stable, neighboring
bases tend to belong to base pairs at the same time. A hair-
pin loop usually has a length of at least 3 nt. Thus, if a par-
ticular base is in a hairpin loop, neighboring bases are also
more likely to be in the hairpin loop. Therefore, the expecta-
tions of cφ, s corresponding to the same type of parameters
tend to be correlated among the neighboring positions. In
addition, the sum of expectations of cφ, s involving a partic-
ular position is 1. For example, at position k, the sum of ex-
pectations of cφ, s corresponding to wL

k , wR
k , wH

k , wB
k , wI

k and
wE

k is 1. This imposes anticorrelation on the expected values
of cφ, s at a particular position. Thus, values in the feature
vector exhibit position-wise correlation and type-wise anti-
correlation.

Our vector representation of the RNA secondary struc-
ture for a single RNA is conceptually similar to that used
in the forgi (https://github.com/ViennaRNA/forgi) which is
a Python library focused on secondary structure elements.

https://github.com/ViennaRNA/forgi
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Table 1. Summary of the training data

Dataset
Number of
data points

Sequence
length (nt)

Sequence
identitya (%) Activityb Reference Running time

Regularization
parameter �c

Translation initiation 242 269 120 47.3 0.49 (9) 54 min 23.6 s 104

Twister ribozymes 5778 57 93.3 0.30 (11) 8.6 s 103

Shine–Dalgarno 3070 20 77.9 0.29 (30) 3.4 s 103

GU donor sites 16 216 15 65.0 0.04 (10) 12.0 s 104

GC donor sites 972 15 65.1 0.04 (10) 1.0 s 104

a Mean pairwise identities between RNA sequences. b Mean bioactivity values normalized from 0 to 1. c � values used for obtaining results shown in the
main text.

Figure 2. Flowchart of our method.

While the forgi uses the vector representation obtained from
a single secondary structure (such as the MFE structure),
our method uses the vector representation that takes into
account the distribution of all possible secondary struc-
tures.

Software and flowchart of our method

Our method has been implemented as the program QR-
NAstruct, which is available at the aforementioned URL.
Figure 2 shows the flowchart of QRNAstruct from in-
put to output data. The user inputs RNA sequences and
their activity values. In Step 1, the position-specific features
(i.e. EP(φ|x)[cφ ] in Equation 5) for each RNA sequence are
calculated and integrated with the activity value data to

create a single series of tabular data. The user can retrieve
these tabular data and use them for various analyses. In Step
2, Ridge regression is used to calculate the weights of the
position-specific features. The optimized weights are output
as textual data and a visually pleasing heatmap. Step 1 can
be time consuming if the amount of data is large, so Step
2 can be conducted independently based on the results al-
ready created in Step 1. For more information, see the soft-
ware tutorial.

Computational environment

We used an Intel Xeon W-2195 2.30 GHZ CPU with 18
cores to measure the running times of our calculation.

RESULTS

We applied our method to datasets on bacterial translation
initiation sites, twister ribozyme mutants, rRNA–SD inter-
actions, and U1 RNA–donor site interactions. Table 1 sum-
marizes the training data used in this study. The number of
data points differs by a factor of >100 between the training
data for translation initiation sites and those for GC donor
sites. RNA sequences in the training data for translation ini-
tiation sites were highly variable, whereas those of twister
ribozyme mutants were highly similar. For donor site data,
mean bioactivity values are very low. This is because most of
the RNA sequences in the donor site data have no splicing
activity. All the datasets listed in Table 1 are available from
GitHub (https://github.com/gterai/QRNAstruct). Supple-
mentary Figure S2 shows the distribution of activity values
for each dataset.

As the most time-consuming step of our method is cal-
culating the feature vectors, we measured its calculation
time for each dataset (Table 1). For large datasets, such as
the translation initiation dataset, calculation of the feature
vectors required approximately 1 hour using 18 CPUs (36
threads).

Secondary structural features near translation initiation sites

It is known that RNA secondary structures near the start
codon have a significant effect on translation initiation in E.
coli (6,12,23,24). RNA secondary structures near the start
codon inhibit protein expression, probably by blocking the
approach of ribosomes. Cambray et al. evaluated the pro-
tein expression levels of 244 000 synthetic sequences in E.
coli (9). We applied our method to this dataset to investi-
gate the relationship between secondary structural features

https://github.com/gterai/QRNAstruct
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near the start codon and protein expression levels. We used
90-nt regions downstream of start codons and 30-nt regions
upstream as the training data. The expression system used
by Cambray et al. contains an upstream ORF that is sta-
bly translated by ribosomes and hence inhibits the forma-
tion of secondary structures beyond the 30-nt upstream re-
gions. Indeed, Cambray et al. used up to 30-nt upstream
regions to investigate secondary structural features in their
own analysis (9). Therefore, the use of 30-nt regions is ap-
propriate for the investigation of secondary structural fea-
tures in this dataset. (However, we also show results using
longer upstream and downstream regions; see below).

Figure 3A shows the optimized parameters of w using the
training data. The columns of this matrix are the positions
of the translation initiation sites relative to the start codon
(where the first base of the start codon is 0). The rows indi-
cate the types of parameters (i.e. wL

i , wR
i , wH

i , wB
i , wI

i , wE
i ).

Here, we used � = 104, and the effect of using different �
values is discussed in the last part of this section.

The wE
i value of the region from −12 to +18 is higher,

which indicates that the protein expression level is higher
when bases in this region are within an external loop. This
region overlaps with the SD sequence motif that is compli-
mentary with the 3′ end of ribosomal RNA (rRNA) and is
important for translation initiation. The length of this re-
gion is about 30 nt, which corresponds well with the length
of the region occupied by ribosomes in ribosome profile ex-
periments (25). The wI

i value in the same region also tends
to be high, which suggests that a large internal loop struc-
ture containing a SD sequence and start codon, such as the
structure in Figure 3B, does not significantly lower the pro-
tein expression level.

The wL
i value in the region from −11 to −7 is low. This

region overlaps with the SD sequence. Therefore, when the
SD sequence is on the left side of the base pair, the protein
expression level is reduced. Additionally, the wR

i values in
the region from +4 to +10 are low. Therefore, a hairpin loop
structure, such as the one shown in Figure 3C, lowers the
expression level significantly.

The wL
i values in the region from +4 to +18 are low.

Therefore, when this region forms a base pair with the
downstream region, the expression level is reduced (Fig-
ure 3D). In the region downstream from +30 and beyond,
the parameters have relatively small absolute values. This
indicates that the RNA secondary structure in this region
does not affect the protein expression level.

Next, we investigated the results obtained by Lasso (26),
another widely used linear regression algorithm (Supple-
mentary Figure S3). As expected, the obtained parameter
values were sparse, but they were also difficult to inter-
pret. It is possible that complex correlations between the
position-specific features prevent the Lasso algorithm from
extracting interpretable parameters.

We also investigated the effect of using longer upstream
and downstream regions on optimized parameter values.
For this purpose, we included 150-nt regions downstream
of start codons and 90-nt regions upstream as the train-
ing data. Supplementary Figure S4 shows a comparison of
the optimized parameters with � = 104 using the longer
RNA sequences (240 nt) and those with the original length
(120 nt). Overall, the results were quite similar. Parameter

values corresponding to all the RNA secondary structures
discussed above were found even when we used the longer
RNA sequences. However, we observed an additional hair-
pin structure in the region from −40 to −3 only when the
longer RNA sequences were used. The hairpin structure
may have been falsely detected because, as described above,
RNA secondary structures overlapping with >30-nt up-
stream regions are continuously disrupted in the expression
system of Cambray et al. (9).

Finally, to investigate the impact of biases in datasets,
we applied our method to three types of datasets consisting
of 5% of the translation initiation dataset. The first dataset
consists of RNA sequences with the top 2.5% and bottom
2.5% of activity. The second consists of the top 1.0% and
bottom 4.0% of activity. The third consists of the top 4.0%
and bottom 1.0% of activity. Interestingly, the results (with
� = 103) were similar to those obtained using the whole
dataset (with � = 104), regardless of the bias in the distribu-
tion of activities (Supplementary Figure S5). These results
suggest that our method is robust against biases in datasets
and can be used for RNAs classified into two classes such
as active/inactive.

Secondary structural features of twister ribozyme mutants

The twister ribozyme is a type of ribozyme with self-
cleavage catalytic activity. Figure 4A shows the experi-
mentally determined secondary structure of the twister ri-
bozyme. This ribozyme has two characteristic pseudoknot
structures (indicated by arrows in Figure 4A). These pseu-
doknots play an important role in the activity of this ri-
bozyme (27).

Kobori et al. measured the self-cleavage activity for
10,296 different mutants of the twister ribozyme (11). All
of these mutants are either single or double mutants of the
wild type. We used these data to extract secondary struc-
tural features that affect self-cleavage activity. The authors
have already shown in detail the effect of mutations in the re-
gions forming base pairs of the pseudoknots (colored circles
in Figure 4A). Thus, we tried to extract new insights on sec-
ondary structural features using data from 5,778 mutants
that had base mutations in regions other than the pseudo-
knots.

Figure 4E shows the optimized parameter values with
� = 103; the values for wL

26 and wR
33 are particularly low.

Thus, the activity of the ribozyme is greatly reduced when
the bases at positions 26 and 33 are on the left and right sides
of the base pair, respectively. We extracted two mutants, mu-
tants B and C, from the training data in which positions 26
and 33 are predicted to form a base pair. Figure 4B and
C show their predicted RNA secondary structure. In these
two mutants, the upper part of the secondary structures has
changed, which probably inhibits the formation of the pseu-
doknots, resulting in a decrease in self-cleavage activity.

Another set of prominent features in the optimized pa-
rameters is the high values of wI

9 and wI
10, indicating that

self-cleavage activity is high when the bases at positions 9
and 10 belong to an internal loop. Positions 9 and 10 are
located next to the cleavage site. When these bases are sin-
gle stranded, cleavage may be likely to occur. Conversely,
when these bases are double stranded, self-cleavage may be
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Figure 3. Secondary structural features of bacterial translation initiation sites. (A) Optimized parameter values for bacterial translation initiation sites.
Columns represent the relative position from the start codon. Rows represent the type of parameter: L, wL

i ; R, wR
i ; H, wH

i ; B, wB
i ; I, wI

i ; E, wE
i . The

sequence pattern in the training data is shown above the heatmap, where N represents any base. The Shine–Dalgarno (SD) sequence and start codon are
indicated by the green and red boxes, respectively. (B–D) The secondary structures discussed in the main text. The green and red bases represent the SD
sequence and start codon, respectively. (B) An internal loop containing an SD sequence and start codon. (C) Hairpin structure around a start codon. (D)
Partial secondary structure in which the bases from +4 to +18 are in the left side of base pairs.

less likely to occur. Figure 4D shows an example of a mu-
tant, mutant D, in which the bases at positions 9 and 10
are predicted to be double stranded. The normalized self-
cleavage activity of mutant D was low, possibly because the
base changes at positions 9 and 10 result in stable base pair-
ing around the cleavage site and inhibit self-cleaving. The
changes in RNA secondary structure shown in Figure 4B–
D and their effects on self-cleavage activity were reasonable
but were not reported by Kobori et al. (11). The predicted
RNA secondary structures shown in Figure 4B–D were ob-
tained using the CONTRAfold program (13) with the op-
tional argument ‘–gamma 1.’

Interactions between rRNAs and Shine–Dalgarno sequences

In addition to the intramolecular RNA secondary
structures around the translation initiation site, the in-
termolecular structures between the 3′ end of the rRNA
and the SD sequences immediately upstream of the initia-
tion codon are known to play important roles in translation
initiation (28,29). In general, the stronger this interaction
is, the higher the protein expression level will be.

We extracted secondary structural features of rRNA–SD
interactions from data obtained by Bonde et al. (30). They
comprehensively measured the effect on protein expression
of all possible base changes in six defined positions in the re-

gion upstream of the start codon. The sequence pattern they
investigated was 5′-UUAAAGNNNNNNAAUACUAG-
3′, where N represents any base. They ultimately determined
the expression level for 3070 types of upstream sequences
out of 46 = 4096 possible sequence variants in their experi-
mental design. We applied the proposed method to the 3070
sequences and their protein expression levels in order to de-
termine which secondary structural features affect protein
expression levels.

Figure 5 shows the optimized values of w with � = 103,
arranged in three matrices; the i and j components of ma-
trix P are the values of wP

i, j . Matrix X shows the values of
wE

x(i ), w
I
x(i ), and wB

x(i ), and matrix Y shows the values of wE
y(i ),

wI
y(i ) and wB

y(i ), where x and y represent the rRNA and up-
stream sequences, respectively. Each row of matrices X and
P represents a single rRNA position, and each column of
matrices Y and P represents the relative position in the re-
gion upstream of the start codon.

The large wP
i, j values clustered around the center of ma-

trix P indicate that base pairs between the middle parts of
rRNA and upstream sequences increase protein expression.
Bases 2 to 7 of rRNA sequences (UCCUCC) are comple-
mentary with the typical SD sequence (AGGAGG). It has
been reported that the position of the SD sequence is not
strictly fixed but allows for some deviation (31). This is re-
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Figure 4. Secondary structural features of twister ribozyme mutants. (A–D) RNA secondary structure of a wild-type twister ribozyme and three mutants.
Circles represent bases. Black lines represent base pairs. Colored circles indicate regions forming pseudoknots. Pairs in regions shown in the same color
interact with each other and form pseudoknots. Arrowheads indicate cleavage sites of the ribozyme. The numbers associated with bases indicate the base
positions. (A) RNA secondary structure of a wild-type twister ribozyme experimentally determined by Liu et al. (27). Double and dotted lines represent
trans Watson–Crick and cis-Hoogsteen:sugar edge base pairs, respectively. Arrows indicate pairs of regions forming a pseudoknot structure. (B–D) The
predicted RNA secondary structure of three mutants. Mutated bases are shown in red letters. Values in parentheses are the self-cleavage activities normalized
from 0 to 1. The shaded areas shown in the dashed boxes indicate the locations of a change in RNA secondary structure of the mutants compared with the
wild-type twister ribozyme. (E) Optimized parameter values for twister ribozyme mutants. Each column represents a base position. Each row represents a
different type of parameter: L, wL

i ; R, wR
i ; H, wH

i ; B, wB
i ; I, wI

i ; E, wE
i . The RNA sequence of the wild-type twister ribozyme is shown above the heatmap.

Boxes above the heatmap indicate regions forming pseudoknots. The base changes in the three mutants are indicated above the wild-type RNA sequence.

Figure 5. Optimized parameter values for the interaction between rRNAs
and Shine–Dalgarno sequences. Matrix P shows wP

i, j values. The rows and
columns of this matrix correspond to the rRNA positions and the up-
stream region positions relative to the start codon, respectively. The letters
associated with the row and column of matrix P are the rRNA and up-
stream sequence patterns, respectively, where N represents any base. Ma-
trix X shows the values of wE

x(i ), wI
x(i ) and wB

x(i ), and matrix Y shows the

values of wE
y(i ), wI

y(i ) and wB
y(i ), where x and y represent the rRNA and up-

stream sequences, respectively. Each row of matrix X represents the posi-
tion of a base in a rRNA sequence, and each column of matrix Y represents
the relative position of a base in the sequence upstream of the start codon.

flected in our value of wP
i, j ; the positive wP

i, j values scattered
around the center of the matrix indicate that there are mul-
tiple possible locations inside the upstream region where
rRNA (UCCUCC) interacts and promotes protein expres-
sion.

There is a strong trend in the parameters of external bases
(wE). The values of wE

x(4), wE
x(5) and wE

x(6) are very low. This
means that rRNA bases 4 to 6 are especially important and
that the protein expression level is greatly reduced if even
one of the three bases is within an external loop.

Interactions between U1 RNAs and 5′ splice sites

The interaction between U1 RNAs and 5′ splice sites in pre-
mRNAs is essential for mRNA splicing in eukaryotes. The
5′ splice (i.e. donor) sites are most often GU, but there are a
few variants, including GC donor sites. Wong et al. compre-
hensively measured the splicing activity for all seven possi-
ble bases surrounding the 5′ splice site (10). Specifically, they
measured the splicing activity for the sequence pattern 5′-
AUANNNGUNNNNUUA-3′, which contains the canon-
ical GU donor site, and 5′-AUANNNGCNNNNUUA-3′,
which contains the non-canonical GC donor site (N repre-
sents any base in both patterns). As both patterns contain
seven N bases, they measured the splicing activity for 74 =
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Figure 6. Optimized parameter values for interactions between U1 RNAs and donor sites. (A and B) Parameter values for GU and GC donor sites,
respectively. Matrix P shows wP

i, j values; the rows and columns of this matrix correspond to the U1 RNA and donor site positions, respectively. The letters
associated with the rows and columns of matrix P are the U1 RNA and donor site sequence patterns, respectively, where N represents any base. Matrix
X shows the values of wE

x(i ), wI
x(i ) and wB

x(i ), and matrix Y shows the values of wE
y(i ), wI

y(i ) and wB
y(i ), where x and y represent U1 RNA and donor site

sequences, respectively. Each row of matrix X represents a U1 RNA base position, and each column of matrix Y represents a donor site position. (C, D)
RNA secondary structures between U1 RNAs and donor sites predicted to have splicing activity. Donor sites (GU or GC) are indicated by black circles.
Arrowheads indicate possible cleavage sites. (C) One RNA secondary structure between U1 RNA and GU donor site sequences associated with high
splicing activity. (D) One secondary structure between U1 RNA and GC donor site sequences, in which the cleavage site is likely to be located two bases
upstream of the GC site. (E) Another secondary structure between U1 RNA and GC donor site sequences.

16 384 different sequences (including about 1% of sequences
for which the efficiency could not be measured). We used
these data to analyze the secondary structural features of
U1 RNA–donor site interactions.

Figure 6A shows w values optimized using the GU splice
site data with � = 104, arranged in three matrices. The rows
of matrices P and X represent the U1 RNA positions. The
columns of matrices P and Y represent the donor site po-
sitions. In matrix P, one diagonal line with high wP

i j values
can be seen, which corresponds to the nine consecutive base
pairs shown in Figure 6C. The closer the position of a base
pair is to the GU donor site, the greater its wP

i j value is. Thus,
our method detected the expected trend in which base pairs
closer in position to the GU splice sites are more important.

In the GC donor site data, only about 1% of the sequences
had splice activity. Therefore, we used 162 sequences from
among those with the top 1% of splice activity values and
162 × 5 sequences randomly selected without replacement
from the remaining sequences as the training data, in con-
sideration of the relative number of positive and negative
data points. Figure 6B shows optimized w values for the
GC splice site data with � = 104. In matrix P, two diago-
nal lines are visible, although the right diagonal line is not
particularly obvious. The presence of these two lines sug-
gests that there are two types of RNA secondary structures
that promote splicing activity. Indeed, we found that the two
secondary structures shown in Figure 6D and E, which cor-
responded to the left and right diagonal lines, respectively,
showed high splicing activity in the training data. The struc-

ture shown in Figure 6D indicates a two-base upstream shift
of the donor site may occur, and the GU site, which is im-
mediately upstream of the GC site and complementary with
the CA in the middle of U1 RNA, may function as a donor
site. In Figure 6E, the C in the GC donor site belongs to an
internal loop but can still function as a splice site.

The effect of the regularization parameter �

Supplementary Figures S6– S10 show optimized values of w
obtained with various � values (from 0 to 106) for the trans-
lation initiation, twister ribozyme, SD, GU donor sites,
and GC donor sites datasets, respectively. As expected, the
smaller � was, the larger the absolute values of the opti-
mized parameters became. When � ≤ 1, optimized parame-
ters were more dispersed and less interpretable. On the other
hand, use of � ≥ 104 tended to give similar and interpretable
results. However, in the translation initiation dataset, the
secondary structure shown in Figure 3D could not be ob-
tained when � = 106 (Supplementary Figure S6). In the SD
dataset, the contribution of base pairs between rRNA and
SD sequences could not be detected when � = 106 (Supple-
mentary Figure S8).

In general, � is determined based on cross-validation
tests. Table 2 shows the prediction accuracy (Pearson’s r)
obtained by 10-fold cross-validation tests in which all data
were randomly divided into 10 bins, and one bin was used
as test data, with the remaining 9 bins used as training data.
As shown in Table 2, the prediction accuracy was the high-
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Table 2. Prediction accuracy of cross validation

Dataset

� TIS Ribo SD GU GC

0 0.79 (0.73) 0.74 0.89 0.85 0.80a

1 0.78 (0.72) 0.73 0.86 0.83 0.80b

101 0.78 (0.72) 0.69 0.85 0.80 0.77
102 0.78 (0.72) 0.64 0.83 0.76 0.70
103 0.77 (0.72) 0.53 0.79 0.68 0.63
104 0.75 (0.72) 0.36 0.75 0.63 0.60
105 0.70 (0.68) 0.29 0.72 0.62 0.59
106 0.65 (0.63) 0.25 0.70 0.62 0.59

Values shown are Pearson’s correlation coefficient r. The best accuracy for
each dataset is shown in bold. � = 0 means that we did not use the regu-
larization term. r values in parenthesis were obtained by cross validation
considering sequence similarity (see the main text for details). TIS, trans-
lation initiation; Ribo, twister ribozymes; SD, Shine–Dalgarno; GU, GU;
GC, GC donor sites. a 0.795, b 0.802.

est when � = 0 or 1, which are values much smaller than
we used in this study (the last column in Table 1). Even if
we divided all data such that similar RNA sequences were
not included in both test and training data, as in the cross-
validation tests used previously (12), the best performing �
was 0 for the translation initiation dataset (parentheses in
Table 2). As described above, the optimized parameters w
obtained with � ≤ 1 were more disordered and difficult to
interpret than those obtained with larger � values. Thus, the
� values determined by the cross-validation tests did not
produce results with clear interpretability, although they
showed high prediction accuracy.

In addition, we also examined the prediction accuracy
when we used the position-specific structural features ob-
tained from the minimum free energy structure. The cross-
validation procedure is the same as that used to generate
the results summarized in Table 2. For all the datasets, the
prediction accuracy decreased (Supplementary Table S1).
The decrease in the prediction accuracy was especially pro-
nounced for the translation initiation dataset. It is possi-
ble that the secondary structure prediction based on the
minimum free energy structure did not work well when the
length of RNAs was long, as in the translation initiation
dataset, for example. The minimum free energy structures
were obtained using the Vienna RNA package (32).

Incorporating chemical probing data

The development of chemical probing experiments such as
icSHAPE and DMS-seq enabled us to obtain information
on secondary structure of many RNAs simultaneously. The
result of these experiments is typically represented by reac-
tivity values assigned to each base. High reactivity indicates
a base does not interact with other bases. By incorporat-
ing these data, the prediction of RNA secondary structure
should be more accurate.

We incorporated the chemical probing data into the QR-
NAstruct framework by calculating the position-specific
structural features that take into account the probing reac-
tivity values. We adopted the approach proposed by Deigan
et al. (33) to incorporate the SHAPE probing data. Briefly,
the SHAPE reactivity value of each base is converted to the

Figure 7. Comparison of optimized parameter values with and without
SHAPE reactivity data. RNA sequences around the start codon and their
translation efficiency in E.coli were used to optimize parameters. The top
and bottom matrix show parameter values optimized (A) with and (B)
without the SHAPE reactivity data, respectively. Columns represent the
relative position from the start codon. Rows represent the type of param-
eter: L, wL

i ; R, wR
i ; H, wH

i ; B, wB
i ; I, wI

i ; E, wE
i .

pseudo-free energy and incorporated into the calculation
of the position-specific features. The pseudo-free energy is
applied twice to internal base pairs, and once to edge base
pairs. We modified the CapR program (21) such that it could
calculate the position-specific structural features consider-
ing the reactivity values and integrated it to the QRNAs-
truct.

As an example, we applied our method to the data ob-
tained by Mustoe et al. (34). They conducted the SHAPE
experiment to transcriptome in E.coli and obtained the
reactivity data for 407 protein coding genes. RNA sec-
ondary structure around the start codon has shown to affect
translation efficiency. Therefore, we used RNA sequences
around the start codon (from upstream 30 nt to down-
stream 90 nt) of the 407 genes as input RNA sequences and
their translation efficiency data measured by Li et al. (35)
as bioactivity values. The ‘slope’ and ‘intercept’ parameters
for the pseudo-free energy calculation were set to 1.8 and
−0.6 kcal/mol, respectively, according to (34).

Figure 7 compares the optimized parameters with and
without the SHAPE reactivity data (� = 104). The values
of wE around the start codon (from −30 to +25) have high
positive values (Figure 7A), indicating that translation effi-
ciency becomes high when the region is in external loops.
This structural tendency is consistent with that found in
Figure 3. If we did not use the SHAPE reactivity data, we
found that the optimized parameter values were more dis-
persed and their interpretation was difficult (Figure 7B).
The pearson’s correlation coefficients based on the 10-fold
cross-validation were 0.37 and 0.05 with and without the
SHAPE data, respectively. The low correlation coefficient of
0.37 even with the use of the SHAPE reactivity data can be
attributed to the use of data on endogenous genes that are
individually regulated and the integration of two sets of data
obtained under different experimental conditions (i.e. those
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of Mustoe et al. (34) and Li et al. (35)). Importantly, how-
ever, by using the SHAPE data, we succeeded in obtaining
plausible trends in RNA secondary structure.

DISCUSSION

We have proposed a method for extracting secondary struc-
tural features from RNA sequence and bioactivity data that
considers the thermodynamic fluctuation of the underlying
secondary structure. As shown in Equation (1), the pro-
posed regression model consists of two functions, P(φ|x)
and f (φ,w). P(φ|x) represents the stochastic behavior of
the RNA secondary structure formed by RNA sequence
x, while f (φ,w) is a function that evaluates the effect of
structure φ on bioactivity and is learned from the training
data. Computational prediction of RNA secondary struc-
tures has a long history, having been developed and used
since the 1980s (13,15,36). Previous studies have shown that
nearest neighbor models are useful for predicting RNA sec-
ondary structures (13,15). By using a previously developed
nearest neighbor model as the function P(φ|x), our method
can incorporate the accumulated knowledge of parameters
used to predict RNA secondary structures as prior knowl-
edge for learning the structure–activity relationship.

In this study, we applied our method to different types
of biological data and revealed more detailed insights into
structure–activity relationships than previously reported.
For example, in the analysis of translation initiation sites, we
extracted the specific shapes of RNA secondary structures
that inhibit or promote protein expression. In our previ-
ous study, we showed that the accessibility around the start
codon (i.e. the probability that the region around a start
codon is single-stranded) has a significant impact on the
protein expression level (12). In the current analysis, we were
able to find more specific secondary structures, as shown in
Figure 3B–D. In the analysis of twister ribozyme mutants,
we were able to identify changes in RNA secondary struc-
ture that significantly reduce self-cleavage activity but have
not been previously noted. In the analysis of the interaction
between U1 RNAs and GC donor sites, our method clar-
ified that there are two types of secondary structures that
promote splicing in training data (Figure 6D,E).

In previous studies, the position-specific structural fea-
tures employed here were used to investigate structural
propensities around protein binding sites (21,37). We ex-
tended their study and showed that these features can be
used to clarify the structural features affecting bioactivity
by combining them with Ridge regression. Ridge regression
was found to handle multicollinearity among the position-
specific features well and provided highly interpretable re-
gression models.

In general, the regularization parameter � can be deter-
mined based on cross-validation tests. However, � values
determined by cross-validation tests did not provide results
with clear interpretability. In general, computational mod-
els inevitably have some disparity from reality. Ridge re-
gression strives to limit such differences by forcibly adjust-
ing model parameters. We infer that this can somewhat in-
crease the prediction accuracy, while sometimes reducing
interpretability of the model parameters. Therefore, we sug-
gest that in order to obtain good interpretability, � values

larger than those determined based on the cross-validation
accuracy should be used.

A previous study has shown that the sites involved in
RNA intermolecular and intramolecular interactions can be
predicted from RNA sequence alignments (38). Two other
studies have proposed methods to predict the interface of
interactions with other molecules in RNA by combining
RNA sequence alignment with RNA 3D structure infor-
mation (39) or with the structural probing data from RNA
mutants (40). Although the methods used in these studies
use algorithms and input data that are different from ours,
they share the same goal of finding functionally important
sites in RNA sequences. Therefore, these methods are com-
plementary to ours, and there is value in comparing their
results with ours.

Variation and extension of position-specific parameters

There are many possible variations of the position-specific
parameters that we have proposed in this study. For ex-
ample, we can use a new parameter to estimate the con-
tribution of two consecutive base pairs in a specific posi-
tion to bioactivity, reminiscent of the stacking energy of
the Turner model (41,42). We can also introduce parame-
ters corresponding to bases in the left and right side of a
bulge or internal loop and estimate their contributions sep-
arately. In this study, we have considered the position of a
base and its type of RNA secondary structure, but not the
type of base (i.e. A, C, G or U). However, we can consider
types of bases by setting different parameters for different
bases. For example, it is possible to set different parameters
for each type of base pair and estimate their contributions
separately. This could be useful, for example, in the analysis
of microRNA binding sites, because GU base pairs in mi-
croRNA binding sites are known to reduce the inhibitory
effect of microRNAs (43). However, by setting different pa-
rameters for each type of base, the number of parameters in-
creases. As the number of parameters increases, more train-
ing data should be required. Additionally, the interpreta-
tion of the optimized parameter values may become more
complicated. When considering the types of bases, a balance
must be struck between the negative impact of increasing
the number of parameters and the positive impact of mak-
ing the regression model more precise.

Future works

Our method, as it is, cannot be used for the analysis of struc-
tural features that are not position specific. However, it can
be extended for the analysis of features that are not position
specific, provided that their expected occurrences can be cal-
culated. For example, suppose that the existence of the kink-
turn motif, a common RNA structural motif, is expected to
affect bioactivity. In such a case, we can use a parameter rep-
resenting the contribution of the motif located anywhere in
each RNA sequence and investigate its effect on bioactiv-
ity. However, we need to develop a new algorithm to calcu-
late the expected occurrences of the motif anywhere in each
RNA. The use of non-position specific features is an impor-
tant future direction, because it enables us to analyze RNA
sequences that are of different lengths and unaligned and
thus expand the applicability of our method.
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Currently, our method does not consider the presence
of pseudoknot structures. Therefore, the accuracy of the
analysis of RNA sequences with pseudoknots is likely re-
duced. However, in our analysis of twister ribozyme mu-
tants, we were able to extract biologically interpretable and
thus plausible structure–bioactivity relationships. There-
fore, our method could be used to analyze RNA sequences
with pseudoknots as long as secondary structures other
than pseudoknots were correctly predicted, as in the case of
twister ribozyme mutants. However, our method could po-
tentially incorporate a probability distribution of RNA sec-
ondary structures considering pseudoknots. Although such
a probability distribution is currently difficult to obtain, its
incorporation would make our method more accurate for
the analysis of RNA sequences with pseudoknots.

As noted above, our method does not take into account
the intramolecular base pairing of a pair of interacting
RNAs. For longer RNAs, it may be important to con-
sider the competition between intra- and intermolecular
base pair. If these two types of interactions are considered
simultaneously, O(L6) computational time is required to ob-
tain the position-specific structural features (where L is the
length of RNA). However, we should be able to reduce the
computational complexity by imposing constraints on the
secondary structure to be considered.

In our method, we adopted the CONTRAfold model,
but other RNA-folding models can be used as well. We
have examined the effect of using the widely used Turner
model. However, we have not obtained better prediction
accuracy in cross-validation tests than that obtained with
CONTRAfold model. Although the results so far suggest
that CONTRAfold model is a better choice between the two
models, further analyses are needed to obtain more reliable
conclusion.

CONCLUSION

In this study, we have proposed a new method for extracting
position-specific secondary structural features from RNA
sequence and bioactivity data that considers all possible
secondary structures formed by each RNA sequence in
training data. By applying our method to translation ini-
tiation, twister ribozyme, SD, and GU and GC donor
site datasets, we were able to reveal more detailed insights
into the structure–activity relationships than previously re-
ported. The datasets analyzed here vary in size, diversity,
and the RNA molecules involved. Thus, the results obtained
here demonstrate that our method can be used to analyze
various types of data consisting of RNA sequences and
bioactivity values.
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