
sensors

Article

Implementation of Lightweight Convolutional Neural
Networks via Layer-Wise Differentiable Compression

Huabin Diao 1,2 , Yuexing Hao 1, Shaoyun Xu 1,* and Gongyan Li 1

����������
�������

Citation: Diao, H.; Hao, Y.; Xu, S.; Li,

G. Implementation of Lightweight

Convolutional Neural Networks via

Layer-Wise Differentiable

Compression. Sensors 2021, 21, 3464.

https://doi.org/10.3390/s21103464

Academic Editor: Dimitrios Moshou

Received: 24 March 2021

Accepted: 14 May 2021

Published: 16 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
diaohuabin@ime.ac.cn (H.D.); haoyuexing@ime.ac.cn (Y.H.); ligongyan@ime.ac.cn (G.L.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: xushaoyun@ime.ac.cn

Abstract: Convolutional neural networks (CNNs) have achieved significant breakthroughs in various
domains, such as natural language processing (NLP), and computer vision. However, performance
improvement is often accompanied by large model size and computation costs, which make it not
suitable for resource-constrained devices. Consequently, there is an urgent need to compress CNNs,
so as to reduce model size and computation costs. This paper proposes a layer-wise differentiable
compression (LWDC) algorithm for compressing CNNs structurally. A differentiable selection
operator OS is embedded in the model to compress and train the model simultaneously by gradient
descent in one go. Instead of pruning parameters from redundant operators by contrast to most of
the existing methods, our method replaces the original bulky operators with more lightweight ones
directly, which only needs to specify the set of lightweight operators and the regularization factor in
advance, rather than the compression rate for each layer. The compressed model produced by our
method is generic and does not need any special hardware/software support. Experimental results
on CIFAR-10, CIFAR-100 and ImageNet have demonstrated the effectiveness of our method. LWDC
obtains more significant compression than state-of-the-art methods in most cases, while having lower
performance degradation. The impact of lightweight operators and regularization factor on the
compression rate and accuracy also is evaluated.

Keywords: convolutional neural networks; structural compression; differentiable; layer-wise

1. Introduction

In recent years, great breakthroughs have been achieved in information retrieval,
natural language processing and computer vision due to the performance improvement
of CNNs. However, the structure of CNN also becomes more complex, which brings
large burdens of storage and computation. This greatly limits their deployment on
resource-constrained devices, such as field-programmable gate arrays (FPGAs), digital
signal processors (DSPs), cell phones and other mobile devices. Therefore, it is essential
to obtain lightweight networks. There is some recent research to get efficient models
by designing compact architectures manually, such as SqueezeNet [1], MobileNet [2–4]
and ShuffleNet [5,6]. Some specific application scenarios of light CNNs also have be pro-
posed, such as Crowd Counting [7], Bone Metastasis Classification [8] and Wheat Head
Detection [9]. In addition, searching lightweight architectures automatically by neural
architecture search [10–14] has become a research trend recently. In contrast to the afore-
mentioned method of designing compact architectures straightforwardly, compressing
the existing CNNs can also derive lightweight models. Current compression algorithms
mainly focus on pruning the structural units within the CNNs, including filters, channels
and other structural units. These compression algorithms cannot break the limitations of
the origin network and can only prune units limitedly under a fixed network structure.
In addition, they cannot achieve end-to-end compressing. Such a process is mainly di-
vided into three steps: firstly pre-training the CNN, then removing redundant structural

Sensors 2021, 21, 3464. https://doi.org/10.3390/s21103464 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4998-5803
https://www.mdpi.com/article/10.3390/s21103464?type=check_update&version=1
https://doi.org/10.3390/s21103464
https://doi.org/10.3390/s21103464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21103464
https://www.mdpi.com/journal/sensors

Sensors 2021, 21, 3464 2 of 21

units according to certain criterion and finally re-training the pruned model iteratively.
In order to address the aforementioned problems, we propose a new CNN compression
algorithm from a novel perspective. Instead of removing units from those redundant
convolutional operators, we propose to replace them with more light ones directly, which
allows us to break the limitations of original architecture. Our compression algorithm
requires initially specifying N lightweight convolutional operators and then using them
to reconstruct an over-parameterized CNN with N branches on each layer from a given
original CNN. Each branch is multiplied by a trainable mask (whose value can only be 0
or 1), and only one branch among all branches on each layer has a mask of 1. The recon-
structed CNN can be trained via gradient descent with a resource-constrained objective
function. At the end of training, the branches whose mask is 0 are removed from each layer
and thus the lightweight model is constructed by the remaining branches with a mask of 1.
Consequently, compact CNNs composed of lightweight operators are derived.

In conclusion, the proposed approach is a layer-wise differentiable compression
algorithm. Our main contributions can be summarized as follows:

• The proposed approach addresses the compression problem of CNNs from a fresh
perspective, which replaces the original bulky operators with lightweight ones directly
instead of pruning units from original redundant operators.

• Most of the existing approaches [15–19] require specifying the compression rate for
each layer or require a threshold that is used to determine which structural units to
prune. Our proposed approach does not require any such input and can automatically
search for the best lightweight operator in each layer to replace the original redundant
operator, thereby reducing the number of hyperparameters.

• The proposed approach is end-to-end trainable, which can compress and train CNNs
simultaneously using gradient descent in one go. We can obtain various compressed
lightweight CNNs with different architectures, which also inspires the future design
of CNNs.

The rest of this paper is structured as follows: Section 2 describes the related works in
CNN compression. Section 3 presents the proposed methodology. Section 4 describes the
experiment in this paper and analyzes the experimental results. In Section 5, the conclusions
are given.

2. Related Works

In the early stages, compression of CNNs focuses on fine-grained trimming. Al-
though fine-grained compression methods [19] can achieve high pruning rates, the result-
ing sparse matrices require specialized hardware and software support, making it difficult
to obtain actual acceleration. Thereby, the current CNN compression methods mainly focus
on coarse-grained trimming, and the pruned units including channels, filters and other
structural units. This paper mainly concentrates on coarse-grained compression methods,
which include the following categories:

Trimming according to certain criteria: The main process of such pruning algo-
rithms [18,20–24] includes: firstly training a CNN as usual, then pruning units from
the trained CNN according to some artificial criteria, finally fine-tuning the slimmed CNN.
Li et al. [18] rank the filters based on their norm values in each layer, removing the ones
with small norm values. Hu et al. [21] sort the filters according to the ratio of activation
values of zero (APoZ) in the feature map, pruning out the ones with larger APoZ values.
He et al. [24] argue that norm-based pruning of filters gives better compression results
only when the norm deviation of the filter is sufficiently large, so they propose a trimming
method based on the geometric median of the filter. Singh et al. [23] order the filters
by introducing an auxiliary loss function and evaluating the sensitivity of filter with re-
spect to the auxiliary loss function, pruning out those sensitive ones. The aforementioned
methods not only require a pruning criterion designed manually but also need to specify
compressing rate, which increases the complexity of algorithm.

Sensors 2021, 21, 3464 3 of 21

Sparse regularization: Sparse regularization algorithms [25–29] realize CNN compres-
sion by introducing parameter-related regularization terms in the loss function and thus
controlling the number of parameters in the network. Yoon et al. [26] add L(1,2) norms
to the parameters at each layer of the network to learn fewer but more useful features to
achieve model slimming. Ye et al. [27,29] compress CNNs by introducing the ADMM
algorithm to optimize the model under a given parameter constraint.

Low-rank decomposition: Low-rank decomposition algorithms [30–32] use a lower-
rank set instead of the original set of parameters to approximate the CNN to achieve
compression. Swaminathan et al. [31] argue that the low-rank decomposition of weight
matrices should consider influence of both input as well as output neurons of a layer.
They propose a sparse low rank (SLR) approach that sparsifies SVD matrices to obtain
better compression rate by keeping lower rank for unimportant neurons. Ruan et al. [32]
construct a compressed-aware block to minimize the rank of the weight matrix and identify
the redundant channels automatically.

Automatic pruning algorithm: He et al. [33] use a reinforcement learning method
for CNN compression, encoding the compression rate of each layer as the agent’s action,
rewarding the agent with validation accuracy, and training the agent so that it can auto-
matically determine the best compression rate used in each layer. Zhu et al. [34] set the
compression rate of the model automatically with a heuristic method, however, which
needs to determine the target compression rate of the model. Liu et al. [35] combine
Alternating Direction Method of Multipliers (ADMM) [36] with the simulated annealing
algorithm to automatically prune the network.

Knowledge distillation: Knowledge distillation [37–44] uses a complex CNN model
with a large number of parameters to train a network with a small number of parame-
ters to obtain a lightweight network. Wu et al. [42] propose a multi-teacher knowledge
distillation framework to compress CNN. Prakosa et al. [43] explore that knowledge dis-
tillation can be integrated to pruning methodologies to improve accuracy of the pruned
model. Ahmed et al. [44] propose a framework that leverages knowledge distillation and
customizable block-wise optimization to learn a lightweight CNN architecture.

Most of the existing compression approaches can only prune a few redundant struc-
tural units from the fixed structure of the original network, which results in a low compres-
sion rate. In addition, they require specifying how many structural units from each layer
to prune, which generates a lot of hyperparameters. In addition, the compression process
requires pruning and retraining iteratively, which cannot be done in one go.

3. Methodology
3.1. Overview

The compression algorithm this paper proposed consists of three stages: the recon-
structing stage, the searching stage and the fine-tuning stage. In the reconstructing stage,
N lightweight convolutional operators are used to reconstruct an over-parameterized CNN
with N branches on each layer from any given original CNN. Each branch multiplies a
trainable mask (whose value can only be 0 or 1) and only one branch among all branches
on each layer has a mask of 1. The construction of the mask is described in Section 3.3.2.
In the searching stage, the reconstructed CNN is trained via gradient descent with a
resource-constrained objective function introduced in Section 3.3.3. At the end of training,
the branches whose mask is 0 are removed from each layer in this reconstructed CNN,
thus a lightweight CNN is constructed by the remaining branches with a mask of 1. In the
fine-tuning stage, the lightweight CNN is fine-tuned to obtain a performance improvement.

3.2. The Reconstructing Stage

In the reconstructing stage, an over-parameterized CNN with multiple branches on
each layer is reconstructed from any given original CNN. The lightweight CNN can be
obtained by training this reconstructed CNN. Figure 1 shows one convolutional layer
(left) in the original CNN and its corresponding layer (right) in the reconstructed CNN.

Sensors 2021, 21, 3464 4 of 21

Each convolutional layer (or pooling layer) is expanded into N parallel branches in the
corresponding layer of the reconstructed CNN.

...

OHα(0)

OHα(i)

...

Input tensor

(3 channels)

Output tensor

(3 channels)

Input tensor

(3 channels)

Output tensor

(3 channels)

OHα(N-1)

...

OHα(0)

OHα(i)

...

Input tensor

(3 channels)

Output tensor

(3 channels)

Input tensor

(3 channels)

Output tensor

(3 channels)

OHα(N-1)

Figure 1. Reconstruction of the original CNN. We expand each layer (convolution layer or pooling layer) into N parallel
branches and multiply a trainable mask to each branch. In this figure, OHα is a one-hot mask vector generated by α. Each
element of OHα can only be 0 or 1 and only one element can be 1. OHα can be trained using gradient descend. α is defined
as architecture parameter. The layer index of α is omitted which should be αl for the lth layer. The blue squares represent
input or output tensors (with 3 channels for better presentation) and the green squares represent weights of convolution
layers. Only three operators are presented in the figure, and more lightweight operators are shown in Appendix A.

The operators chosen in the branches are lightweight that have fewer parameters and
floating-point operations (FLOPs) than the corresponding operators in the original CNN,
such as group convolution [5,6], depthwise separable convolution [2,3] and CReLU convo-
lution [37] (replacing ReLU with CReLU can save half of the channels). We experiment not
only with these simple lightweight operators but also with other more complex lightweight
convolutional modules, such as the Fire module [1], the module with residual connec-
tions [45]. We can also combine these different features to form new lightweight operators,
e.g., combining the group feature with the CReLU, or the depthwise separable feature.
More details are shown in Appendix A, including the detailed structure, the number of
parameters, and the FLOPs of these lightweight operators.

The output tensors from multiple branches are integrated into the final output tensor
of this layer in the reconstructed CNN. We use weighted sum as the integration strategy and
the weights are represented as OHα(·) in Figure 1. OHαl is a one-hot mask vector generated
by αl , and its construction is described in detail in Section 3.3.2. l is the layer index.
The convolutional operator for each branch is denoted as OPi, i = 0, 1, . . . , N − 1. For ease
of description, we define the convolutional operator corresponding to the reconstructed
layer containing multiple branches as the selection operator OS, and then obtain

OSl(·) =
N−1

∑
i=0

OHαl (i) ·OPi(·) (1)

3.3. The Searching Stage

In this section, a trainable gate function is constructed firstly, then a continuous approx-
imation for the discrete one-hot mask vector OHα is performed based on the gate function.
Next, the resource-constrained objective function is described and the reconstructed CNN

Sensors 2021, 21, 3464 5 of 21

is trained using it. In the searching stage, the value of mask vector OHα is simultaneously
learned with the parameters of the convolutional operators of each layer. Additionally,
there is only one branch per layer with a mask of 1, and only the branch with a mask of
1 works, as shown in Figure 2.

3.3.1. Trainable Gate Function

The gate function TG(ω) is defined as

TG(ω) =

{
1 ω > 0
0 ω ≤ 0

(2)

The derivative of TG(ω) at any point except for the ω = 0 is 0, so the function is
not suitable for the gradient optimization process. It is necessary to approximate the
gradient of TG(ω) so that it can be used for gradient descent. Kim et al. [46] directly use
1 to approximate the gradient of TG(ω), which called identity approximation. It can be
observed from Figure 3a that such approximation is very rough, which brings a large
error due to the gradient mismatch. We introduce an asymptotic approximation function,
denoted A(ω), which is inspired by the Error Decay Estimator (EDE) method proposed
in [47], namely,

TG(ω) ≈ A(ω) = k · (tanh(t ·ω) + 1) (3)

where t = Tmin10
i
N×log(T max

T min), k = 1
2 max

(
1
t , 1
)

, and Tmin = 0.1, Tmax = 10. In addition, N
denotes all the epochs required for training, i represents the current epoch, k and t control
the variation of A(ω) during the training process. Thus, the gradient of TG(ω) can be
approximated as

∂TG(ω)

∂ω
≈ ∂A(ω)

∂ω
= k · t ·

(
1− tanh(t · w)2

)
(4)

...

0

...

Input tensor

(three channels)

Output tensor

(three channels)

0

1

...

0

...

Input tensor

(three channels)

Output tensor

(three channels)

0

1

Figure 2. Illustration of the searching stage. In the searching stage, the mask of each branch OHαl (i)
can be simultaneously learned with the parameters of convolutional operators. If OHαl (i) = 0 in
the current training step, it means the ith branch does not work at this moment, and vice versa.
The reconstructed CNN is equivalent to the child CNN formed by the branches whose mask is 1 in
each training step.

Sensors 2021, 21, 3464 6 of 21

Figure 3. Illustration of the asymptotic approximation function. (a) The comparison between the
identity approximation and the original function TG(ω), where the gray shaded part indicates the
approximation error, indicating a large error in the identity approximation. (b–d) Different stages of
asymptotic approximation, which gradually approximates TG(ω) as training proceeds. In the early
stage of training, as shown in (b), the approximation error is large, but the updated parameters have
a wide range; in the middle and later stages of training, as shown in (c,d), the approximation error
gradually decreases, and the updated parameters are gradually concentrated around zero.

In conclusion, we construct a gate function that can be trained using gradient descent.
By approximating the gate function TG(ω) asymptotically, the error can be reduced without
sacrificing the ability of updating parameters.

3.3.2. Continuous Approximation for Discrete One-Hot Vector

In this section, a continuous one-hot mask vector OHαl (l is the layer index) is con-
structed based on TG(ω). The convolutional operator for each branch is defined as OPi
and the length of OHαl is equal to the number of branches. To construct OHαl , addi-
tional dlog2Ne parameters (d·e means upward rounding) need to be introduced, which
are named architecture parameters αl and expressed as [αl

0, αl
1, . . . , αl

dlog2 Ne−1]. Then, OHαl

can be constructed using Equations (5) and (6), where OHαl (i) represents the ith element
of OHαl .

OHαl (i) =
dlog2 Ne−1

∏
j=0

(
Bj · TG

(
αl

j

)
+
(
1− Bj

)
·
(

1− TG
(

αl
j

)))
(5)

Bj =


⌊

i
2dlog2 Ne−1

⌋
, j = 0⌊

i%2dlog2 Ne−1%...%2dlog2 Ne−j

2dlog2 Ne−1−j

⌋
, 1 ≤ j ≤ dlog2Ne − 1

(6)

In the above equation, b·c, % and ∏ represent downward rounding, remainder op-
eration and multiplication operation, respectively. Next, the gradient of the architecture
parameters αl will be analyzed. Supposing the input tensor of the lth layer is xl and the
output tensor is yl , which can be expressed as yl = OSl

(
xl
)
= ∑N−1

i=0 OHαl (i) ·OPi

(
xl
)

Then, the gradient of αl
j is

∂yl

∂αl
j
=

N−1

∑
i=0

∂OHαl (i)
∂αl

j
·OPi

(
xl
)

, j ∈ {0, 1, . . . , dlog2 Ne − 1} (7)

where

∂OHαl (i)
∂αl

j
=
(
2Bj − 1

)
·

∂TG
(

αl
j

)
∂αl

j

dlog2 Ne−1

∏
g=0,g 6=j

(
Bg · TG

(
αl

g

)
+
(
1− Bg

)
·
(

1− TG
(

αl
g

)))
.

In the backpropagation process, αl can be updated using the gradient obtained above.
In conclusion, we construct a continuous one-hot mask vector OHαl using the architecture
parameters αl and derive the gradient of αl to update αl and OHαl .

Sensors 2021, 21, 3464 7 of 21

3.3.3. Resource-Constrained Objective Function

The objective function is described as

arg min
θ,α

L(θ, α) + λ · R(α) (8)

θ and α indicate the parameters of convolutional operators and architecture parame-
ters, respectively. L(θ, α) is the cross-entropy loss function used to measure the classification
error of the model during the training process. R(α) is a regularization term used to mea-
sure the number of model parameters and FLOPs, which is only related to α. λ is the
corresponding regularization factor.

In the following, we compute the regularization term R(α) for the reconstructed CNN.
For the ith operator OPi in the lth layer, the number of parameters and FLOPs can be
represented as PSl

i and FPl
i . Detailed equations are shown in Appendix A. Then, the total

number of parameters and FLOPs of lth layer can be expressed as PSl = ∑N−1
i=0 OHαl (i) ·

PSl
i and FPl = ∑N−1

i=0 OHαl (i) · FPl
i , respectively. So far, the corresponding regularization

term Rl(αl) of the lth layer can be denoted as Rl
(

αl
)
= 1

2

(
log
(

PSl
)
+ log

(
FPl
))

. The

total regularization term R(α) is equal to the sum of Rl(αl) over all layers, and L is the
number of CNN layers, we can obtain R(α) = ∑L

l=1 Rl
(

αl
)

.

3.4. The Fine-Tuning Stage

When the training in the searching stage is completed, all the branches with masks of
0 in the reconstructed CNN will be removed, only leaving the branch with a mask of 1 in
each layer, as shown in Figure 4. Such behavior does not degrade the model performance,
because those branches do not work. However, due to the potential problem of inadequate
training in the searching stage, we perform the fine-tuning process on the pruned CNN to
further improve performance. After the fine-tuning stage, the lightweight CNN is obtained.

Input tensor

(three channels)

Output tensor

(three channels)
Input tensor

(three channels)

Output tensor

(three channels)

Figure 4. Illustration of the fine-tuning stage. Leaving only the branch with a mask of 1 in each layer
and fine-tuning the compressed CNN for several epochs.

4. Experiments
4.1. Dataset

Cifar-10 [48]: The dataset has 60,000 images, each of which is an RGB three-channel
image with a size of 32× 32. It has 10 categories, with 6000 images per category. The dataset
is divided into a training set and a validation set containing 50,000 and 10,000 images,
respectively.

Cifar-100 [48]: The dataset also has 60,000 images, each of which is an RGB three-
channel image with a size of 32 × 32. It has 100 categories with 600 images per category.
The dataset is also divided into a training set and a validation set containing 50,000 and
10,000 images, respectively.

ImageNet-160-120 [49,50]: The dataset is built from ImageNet 16 × 16 [49], which is a
down-sampled variant of ImageNet. The spatial resolution of ImageNet 16 × 16 is 16 × 16,
and ImageNet-160-120 is constructed by selecting all images with label ∈ [1, 120] from

Sensors 2021, 21, 3464 8 of 21

ImageNet 16 × 16. Chrabaszcz [49] has proved that down-sampling images in ImageNet
can significantly reduce computation costs for solving the optimal hyper-parameters of
some classical models while maintaining similar search results. In summary, ImageNet-
160-120 contains 151.7 K training images and 6 K testing images with 120 classes.

4.2. Evaluation Metrics

We use the compression rate and TOP1 accuracy as evaluation metrics. The param-
eters compression ratio (PCR) and FLOPs compression ratio (FCR) are used to measure
compression degree of a CNN model. PCR indicates the ratio of the number of parameters
in the original CNN to the number of parameters in the compressed one and FCR indicates
the ratio of the FLOPs in the original CNN to the FLOPs in the compressed one. The larger
the PCR is, the smaller the model size will be. The larger the FCR is, the faster the model
can be computed.

The formula for PCR and FCR are:

PCR =
Paramsoriginal

Paramscompressed
(9)

FCR =
FLOPsoriginal

FLOPscompressed
(10)

4.3. Results on Cifar

We compress ResNet20, ResNet56, VGG16 on Cifar-10 and ResNet18 on Cifar-100. For
those CNNs, we do not compress the first convolutional layer and the last fully connected
layer. The compression metrics, such as PCR and FCR, are calculated over all layers except
the first convolutional layer and the last fully connected layer. The number of channels per
convolutional layer for those CNNs is shown in Table 1.

The parameters θ of convolutional operators are optimized using the SGD optimizer
with momentum, where the initial learning rate is 0.1, the momentum is 0.9 and the
weight decay is 3× 10−4. The learning rate is set using the CosineAnnealingLR scheme
in Pytorch [51]. The architecture parameters α are optimized using Adam optimizer with
an initial learning rate of 0.01 and a weight decay of 10−3, with the learning rate decaying
by a factor of 0.3 every 40 epochs. Batch size is 256, and the total training epochs are 150.
The architecture parameter α was randomly initialized using a normal distribution with
mean 0 and variance 0.01. The parameters θ and α are jointly trained.

Table 1. The number of channels in ResNet20, ResNet56, VGG16 and ResNet18.

ResNet20

Conv conv1-6 conv7-12 conv13-18
Channel 16 32 64

ResNet56

Conv conv1-18 conv19-36 conv37-54
Channel 16 32 64

VGG16

Conv conv1-2 conv3-4 conv5-7 conv8-13
Channel 64 128 256 512

ResNet18

Conv conv1-4 conv5-8 conv9-12 conv13-16
Channel 64 128 256 512

Sensors 2021, 21, 3464 9 of 21

ResNet20 on Cifar-10: In ResNet20, convolutional operators with strides 1 and 2 are
reconstructed to selection operators with strides 1 and 2, respectively. Different SOPs
are used in compression experiments, and detailed information about SOPs is shown in
Appendix C. ResNet20 is already a compact CNN, so there are few compression experi-
ments on it. Therefore, we compare it directly with the baseline results. We use SOP1 and
SOP2 to perform compression experiments on ResNet20, and set λ to 0 and 1.5−3 respec-
tively. Simple operators are used in SOP1 and SOP2, and the meanings of the operators
can be found in Appendix A. SOP2 is more lightweight than SOP1. In the case of the same
λ, it can be seen that the lighter the SOP is, the higher the compression degree of CNN will
be, but the more the accuracy will drop. When using the same set of operators, the larger
the λ is, the higher the compression degree and accuracy drop will be, as shown in Table 2.
It is consistent with common sense. The MA column in Table 2 represents the architecture
of the compressed lightweight CNN, which can be found in Figures 5–7.

1 3 5 7 9 11 13 15 17 19
Layer Index

N_3x3(1)
C_3x3(2)

N_3x3_2(2)
C_3x3_2(4)
N_3x3_4(4)

Sep_7x7(5.1)
Sep_5x5(6.48)
Dil_5x5(6.48)
Sep_3x3(7.9)
Dil_3x3(7.9)
C_3x3_4(8)
N_3x3_8(8)

N_3x3_16(16)

Se
le

ct
ed

 O
pe

ra
to

r

C.1
C.2
C.3

Figure 5. The operator of each layer in compressed ResNet20. The layers in the figure do not include
the first convolutional layer and the last fully connected layer. From bottom to top on the vertical
axis, the operators are increasingly lightweight. The float number in (·) represents the lightness of
operator, the higher the value is, the lighter the operator is. The model located in the upper part of
the figure is more lightweight.

1 3 5 7 9 11 13 15 17
Layer Index

N_3x3(1)
C_3x3(2)

N_3x3_2(2)
Sep_res_5x5(3.24)
Dil_res_5x5(3.24)

C_3x3_2(4)
N_3x3_4(4)

Fire(6)
C_3x3_4(8)

C_3x3_8(16)
Sep_res_5x5_8(16.9)
Dil_res_5x5_8(16.9)

Se
le

ct
ed

 O
pe

ra
to

r

C.11
C.12
C.13
C.14

Figure 6. The operator of each layer in compressed ResNet18. The layers in the figure do not
include the first convolutional layer and the last fully connected layer. The vertical axis has the same
meanings as Figure 5.

Sensors 2021, 21, 3464 10 of 21

Table 2. Results of compressing ResNet20, ResNet56, VGG16 on Cifar-10 and ResNet18 on Cifar-100.
SOP represents the set of operators used in the reconstructed CNN. TOP1 refers to the TOP1 accuracy
of the model on the test set. MA is the architecture of the compressed model, as shown in Figures 5–7.
Paras represents the number of parameters in the CNN, containing the number of parameters of all
convolutional layers except the first convolutional layer and the last fully connected layer.

Model Method SOP λ PCR FCR Paras TOP1 (%) MA

ResNet20

He. [45] - - 0 0 0.27 M 91.25 -

Ours
SOP2 0 2.87 2.56 0.11 M 91.6 C.1
SOP1 1.5× 10−3 4.91 4.19 0.06 M 90.35 C.2
SOP2 1.5× 10−3 6.48 5.61 0.047 M 90.15 C.3

ResNet56

He. [45] - - 0 0 0.85 M 93.03 -
Li. [18] - - 1.16 1.38 - 93.06 -

Dug. [52] - - - 2.12 - 92.72 -

Ours

SOP3 0 3.51 3.09 0.24 M 93.75 C.7
SOP1 0 4.4 3.37 0.19 M 92.5 C.6
SOP1 1.5× 10−3 5.25 5.96 0.17 M 91.96 C.5
SOP2 1.5× 10−3 6.59 7.94 0.14 M 91.22 C.4

VGG16

Simon. [53] - - 0 0 16.3 M 93.25 -
Li [18] - - 2.78 1.52 - 93.4 -

Dug. [52] - - 17.12 3.15 - 92.85 -

Ours
SOP5 0 2.82 3.71 5.79 M 94.65 C.8
SOP4 0 3.85 2.61 4.23 M 93.95 C.9
SOP6 1.5× 10−3 15.1 15.6 1.08 M 92.35 C.10

ResNet18

He. [45] - 0 0 11 M 75.05 -

Ours

SOP7 0 2.39 2.23 4.61 M 74.5 C.11
SOP7 1.5× 10−3 2.44 2.31 4.5 M 74.2 C.12
SOP8 0 5.27 2.97 2.08 M 74.85 C.13
SOP8 1.5× 10−3 4.66 3.98 2.36 M 73.6 C.14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
Layer Index

N_3x3(1)
C_3x3(2)

N_3x3_2(2)
Sep_res_5x5(3.24)
Sep_res_3x3(3.95)

C_3x3_2(4)
N_3x3_4(4)

Sep_7x7(5.1)
Fire(6)

Sep_5x5(6.48)
Dil_5x5(6.48)
Sep_3x3(7.9)
Dil_3x3(7.9)
C_3x3_4(8)
N_3x3_8(8)

N_3x3_16(16)

Se
le

ct
ed

 O
pe

ra
to

r

C.4
C.5
C.6
C.7

Figure 7. The operator of each layer in compressed ResNet56. The layers in the figure do not include the first convolutional
layer and the last fully connected layer. The vertical axis has the same meanings as Figure 5.

ResNet56 on Cifar-10: The reconstruction of over-parameterized CNN for ResNet56
is similar to ResNet20. We use SOP1, SOP2 and SOP3 to perform compression experiments
on ResNet56, and set λ to 0 and 1.5−3, respectively. Complex operators have been added to
SOP3, including the Fire module, the Sep_res_3× 3 module and the Sep_res_5× 5 module.
The meanings of these operators can be found in Appendix A. When using SOP1 with λ
set to 1.5−3, PCR and FCR of compressed model are 5.25 and 5.96, respectively, with TOP1

Sensors 2021, 21, 3464 11 of 21

accuracy being 91.96, as shown in Table 2. Keeping λ constant, PCR and FCR increase to
6.59 and 7.94, respectively, when using a lighter SOP2, while TOP1 accuracy drops to 91.22.
When using SOP1 with λ reduced to 0, PCR and FCR decrease to 4.4 and 3.37 and TOP1
accuracy rises to 92.5, respectively. It can be seen that the larger the λ is, the higher the
compression degree of the model will be, but the more the accuracy will drop. When using
SOP3 with complex operators, model accuracy of 93.75 can be achieved, indicating that
the SOP is critical to the compression. For two operators of similar lightness, the complex
operator is superior to the single operator.

VGG16 on Cifar-10: The convolutional operator in VGG16 is reconstructed to the
selection operator with stride 1 and the pooling operator is reconstructed to the selection
operator with stride 2. We use SOP4, SOP5 and SOP6 to perform compression experiments
on VGG16. The meanings of the complex operators added in SOP4 and SOP5 can be found
in Appendix A. SOP5 sets the group number of the group convolution in the complex
operator to 1, which has more parameters relative to the complex operator in SOP4. When
using SOP5 with λ set to 0, the compressed model can achieve PCR and FCR of 2.82
and 3.71, respectively, with TOP1 accuracy being 94.65. To further improve the degree of
compression, the 1×1 convolutional operator in the complex operators such as Sep_res_3×
3, Sep_res_5 × 5, Dil_res_3 × 3 and Dil_res_5 × 5 is modified to a group convolution
operator with the group number of 4 to construct SOP4. As a result that these complex
operators consist of depthwise separable convolution and 1 × 1 convolution operators,
the 1 × 1 convolution operator plays a dominant role in the number of parameters and
FLOPs in these complex operators when the number of convolution channels is large. When
SOP4 is used to compress VGG16, PCR and FCR increase to 3.85 and 2.61, respectively,
while TOP1 accuracy decreases to 93.95. PCR and FCR can even increase to 15.1 and 15.6
when using lighter SOP6, however, TOP1 accuracy drops to 92.35.

ResNet18 on Cifar-100: The reconstruction of over-parameterized CNN for ResNet18
is similar to ResNet20. We use SOP7 and SOP8 to perform compression experiments on
ResNet18, and set λ to 0 and 1.5−3, respectively. Compared to SOP7, SOP8 uses two more
lightweight operators C_3× 3_4 and C_3× 3_8. The compressed model can achieve PCR
and FCR of 2.39 and 2.23 by using SOP7 with λ set to 0 and the TOP1 accuracy is 74.3,
the obtained model architecture is shown in Figure 6.C.11. When increasing λ to 1.5−3,
PCR, FCR and TOP1 accuracy are 2.44, 2.34 and 74.2. To further improve the degree of
compression, we use SOP8 and set λ to 0. The PCR and FCR of the compressed model are
5.27 and 2.97, and surprisingly the TOP1 accuracy is 74.85. When λ is set to 1.5−3, PCR,
FCR and TOP1 accuracy are 4.66, 3.98 and 73.6, as shown in Table 2.

4.4. Results on ImageNet

We compress DenseNet121 [54], MobileNetV2 [3] on ImageNet-16-120. Since the spa-
tial resolution of ImageNet16×16 is 16×16, we reserve only one downsampling layer with
a stride 2 in these two models. In addition, we revise the classification layer from 1000D
fully-connected to 120D fully-connected. We present their architectures in Tables 3 and 4,
respectively. For DenseNet121, we only compress 3× 3 convolutional operators in Dense
Block. For MobileNetV2, we only compress those 1× 1 convolutional operators in bot-
tleneck. We do not compress the first convolutional layer and the last fully connected
layer too. The experimental hyperparameters are the same with the experiments on Cifar,
except that the batch size is modified to 512.

Sensors 2021, 21, 3464 12 of 21

Table 3. DenseNet121 architectures for ImageNet-16-120.

Layers Output Size Stride Densenet121

conv 16 × 16 1 3 × 3 conv

Dense Block (1) 16 × 16 1 [3 × 3 conv] × 6

Transition Layer (1) 16 × 16 1 1 × 1 conv
2 × 2 average pool

Dense Block (2) 16 × 16 1 [3 × 3 conv] × 12

Transition Layer (2) 16 × 16 1 1 × 1 conv
2 × 2 average pool

Dense Block (3) 16 × 16 1 [3 × 3 conv] × 24

Transition Layer (3) 8 × 8 2 1 × 1 conv
2 × 2 average pool

Dense Block (4) 8 × 8 1 [3 × 3 conv] × 16

Classification
Layer 1 × 1 - 8 × 8 average pool

120D fully-connected

DenseNet121 on ImageNet-16-120: In DenseNet121, those 3× 3 convolutional oper-
ators in Dense Block are reconstructed to selection operators with stride 1. We select the
set of lightweight operators SOP9 for Densenet121 and then compress the model using
different λ. The model size can be compressed by 3.42 times with a 0.23% decrease in
accuracy when λ is set to 0. It is surprising that as λ increases to 1.5× 10−4, not only does
the compression rate increase to 5.13, but the accuracy also increases by 0.13%. As λ keeps
growing, the compression rate will continue to rise, along with more serious performance
degradation. Furthermore, if λ is smaller than 1.5× 10−3, a significant reduction in model
size can be obtained by raising λ. However, once λ exceeds 1.5× 10−3, the compression
effect gained by increasing λ will no longer be remarkable. More results are shown in
Table 5.

MobileNetV2 on ImageNet-16-120: In MobileNetV2, we only compress those 1× 1
convolutional operators in bottleneck, as the contribution of 3× 3 depthwise separable
convolution to model size is negligible. The lightweight operator set we used is SOP10,
which consists of 1× 1 group convolution, Fire, 3× 3 group convolution and 3× 3 CReLU
group convolution. The detailed operators are given in the Appendix C. It is worth to
notice that all the operators except the 1 × 1 group convolution in SOP10 have more
parameters than the original N_1× 1 convolution. For instance, the parameter volumes
of Fire and N_3× 3_8 are 1.5 and 1.12 times larger than N_1× 1, respectively, with the
same channel dimension. Hence, the model can achieve being compressed only when
λ is sufficiently large. As shown in Table 5, when λ is 0 and 1.5× 10−4, although the
accuracy of the obtained model is improved, the size is also larger than the original one.
The model compression rate increases to 1.48 when λ increases to 5× 10−4, and the accuracy
also improves to 49.87. Similarly, with increasing λ, there will be worse performance,
although the model compression rate will continue to increase. As λ proceeds to rise
beyond 5× 10−3, the additional compression gain will be negligible.

Sensors 2021, 21, 3464 13 of 21

Table 4. MobileNetV2 architectures for ImageNet-16-120. In the table, bottleneck is
[1× 1 conv, 3× 3 dw− conv, 1× 1 conv], where 3× 3 dw−conv indicates 3× 3 depthwise separable
convolution. The meaning of Expansion Ratio can be seen from [3].

Layers Output
Size Stride Channels Expansion

Ratio MobilenetV2

conv 16 × 16 1 32 - 3 × 3 conv

Block (1) 16 × 16 1 16 1 bottleneck × 1

Block (2) 16 × 16 1 24 6 bottleneck × 2

Block (3) 16 × 16 1 32 6 bottleneck × 3

Block (4) 16 × 16 1 64 6 bottleneck × 4

Block (5) 16 × 16 1 96 6 bottleneck × 3

Block (6) 8 × 8 2 160 6 bottleneck × 3

Block (7) 8 × 8 1 320 6 bottleneck × 1

conv 8 × 8 1 1280 - 1 × 1 conv

Classification
Layer 1 × 1 - - - 8 × 8 average pool

120Dfully-connected

Table 5. Results of compressing DenseNet121 and MobileNetV2 on ImageNet-16-120.

Model Method SOP λ PCR Paras TOP1 (%) MA

DenseNet121

Huang. [54] - - 0 9.84 M 48.83 -

Ours

SOP9 0 3.42 2.88 M 48.6 C.15
SOP9 1.5× 10−4 5.13 1.92 M 48.73 C.16
SOP9 5× 10−4 5.50 1.79 M 47.92 C.17
SOP9 1.5× 10−3 5.96 1.65 M 47.9 C.18
SOP9 5× 10−3 6.0 1.64 M 47.83 C.19
SOP9 1.5× 10−2 6.09 1.617 M 47.67 C.20
SOP9 5× 10−2 6.31 1.56 M 47.5 C.21
SOP9 1.5× 10−1 6.47 1.52 M 47.2 C.22

MobileNetV2

sandler. [3] - - 0 2.21 M 49.2 -

Ours

SOP10 0 0.45 4.89 M 49.3 C.23
SOP10 1.5× 10−4 0.71 3.12 M 49.4 C.24
SOP10 5× 10−4 1.48 1.49 M 49.87 C.25
SOP10 1.5× 10−3 2.48 0.89 M 49.06 C.26
SOP10 5× 10−3 2.91 0.76 M 48.95 C.27
SOP10 1.5× 10−2 2.83 0.78 M 48.96 C.28
SOP10 5× 10−2 3.05 0.725 M 48.75 C.29
SOP10 1.5× 10−1 3.06 0.723 M 48.68 C.30

4.5. Ablation Study

Operation selection analysis: To evaluate the effectiveness of different lightweight
operators in our method, experiments using different SOPs are performed without chang-
ing λ, and the results are shown in Tables 2 and 5. We can find that using the lighter SOP
yields a more compact model, for example, C.6 with SOP1 located above C.7 with SOP3
in Figure 7 since SOP1 is lighter than SOP3. The same conclusion can be derived from
Figures 5 and 6. In addition, to study the performance of different operators, we per-
form multiple experiments with the same SOPs and different λ. It can be visualized from
Figure 8 that N_3× 3_8 is used most frequently in the compressed model, indicating that
it is more effective, followed by Sep_3× 3 and Sep_5× 5. In addition, N_3× 3_g1 has the

Sensors 2021, 21, 3464 14 of 21

same lightness compared with C_3× 3_g2 (g1 = 2g2), however, N_3× 3_g1 is more likely
to be selected during training, suggesting that N_3× 3_g1 is more effective. Compared
with simple operators, complex operators are more effective, such as Fire [1], Sep_res_5× 5
and Dil_res_5× 5, as shown in Figure 9.

From Figure 6 to Figure 7, it is interesting to see that the operators with higher lightness
(e.g., N_3× 3_16) tend to appear in the shallower layers (close to the input of models), while
the operators with lower lightness (e.g., N_3× 3) tend to appear in the deeper layers (close
to the output of models). In our opinion, it is mainly due to the fact that shallow feature
maps have higher resolution which leads to more redundant information, while deep
feature maps have lower resolution and thus less redundant information. In addition, there
is an alternation between operators of different lightness. The operators of higher lightness
are often followed by several operators of lower lightness. We assume that appropriate
redundancy is useful for training convergence. If the operators are too lightweight to
extract sufficient information, it will tend to follow the less lightweight operators to regain
more information, thus compensating for the model performance.

Effect of λ: The compression rate is influenced by both SOP and λ. Once SOP has been
selected, the maximum achievable compression rate is determined. As can be seen from
Figure 10, the compression rate gradually grows as λ increases, however, once λ reaches
a certain threshold, the improvement of compression rate will be insignificant. In this
case, the compression rate is close to the maximum achievable value and the only choice
to further raise the compression rate is to select a lighter SOP. Moreover, the threshold is
related to the SOP, the lighter the SOP is, the smaller the threshold will be. From Figure 10,
it is evident that the threshold is 1.5× 10−3 for Densenet121 and 5× 10−3 for MobileNetV2
since SOP9 is more lightweight than SOP10. λ can prevent over-fitting, which is similar to
what dropout does. It is clear that when λ is relatively small, not only does the compression
rate rise as λ increases, but the accuracy of the model is also elevated. After λ arrives at a
critical value, the compression rate will continue to grow as λ keeps increasing, but the
model accuracy will begin to drop. Likewise, the critical value is also related to SOP,
the lighter the SOP is, the smaller the critical value will be. The critical value of λ is
1.5× 10−4 for Densenet121 and 5× 10−4 for MobileNetV2.

0 5 10 15 20 25 30
The number of Operators

N_3x3(1)
C_3x3(2)

N_3x3_2(2)
C_3x3_2(4)
N_3x3_4(4)

Sep_5x5(6.48)
Dil_5x5(6.48)
Sep_3x3(7.9)

C_3x3_4(8)
N_3x3_8(8) C.5

C.6

Figure 8. The distribution of operators in SOP1 when compressing resnet56 on Cifar10. C.5 and C.6
correspond to λ of 1.5−3 and 0, respectively. N_3× 3_8 appears the most times in this experiment,
indicating that N_3× 3_8 has a better effectiveness. As λ increases, the algorithm tends to select the
more lightweight operators, with blue histograms located in the upper part of the figure.

Sensors 2021, 21, 3464 15 of 21

0 2 4 6 8
The number of Operators

N_3x3(1)
C_3x3(2)

N_3x3_2(2)
Sep_res_5x5(3.24)
Dil_res_5x5(3.24)

C_3x3_2(4)
N_3x3_4(4)

Fire(6) C.11
C.12

Figure 9. The distribution of operators in SOP7 when compressing resnet18 on Cifar100. C.11 and
C.12 correspond to λ of 0 and 1.5−3, respectively. Compared to simple operators, complex operators
are more likely to be selected in compression training, indicating that complex operators are more
effective, such as Fire, Sep_res_5× 5 and Dil_res_5× 5.

0
0.00015 0.0005 0.0015 0.005 0.015 0.05 0.15

47.5

48.0

48.5

49.0

49.5

50.0

TO
P1

 A
cc

ur
ac

y
(%

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Th
e

nu
m

be
r o

f P
ar

am
et

er
s (

10
6)

DenseNet121/TOP1
MobileNetV2/TOP1
DenseNet121/Parameters
MobileNetV2/Parameters

Figure 10. The effect of λ on model size and TOP1 accuracy. For ease of visualization, the λ-axis is
displayed with a uniform scale.

Algorithm extensibility: Our proposed differentiable selection operator is similar to
common convolutional operator that can be trained using gradient descent directly. It not
only can be embedded in a classification CNN, but also in a detection or segmentation
CNN. Thus, our proposed compression algorithm is task-independent, and it not only
can be applied to classification tasks but also to other vision tasks such as detection and
segmentation. Furthermore, besides CNN, our proposed differentiable selection operator
can be embedded in any networks that can be optimized by gradient descent, such as
recurrent neural networks (RNN), generative adversarial networks (GAN), etc. From an
intrinsic perspective, we propose a continuous approximation method for discrete one-hot
vectors, which can be used not only for the model compression presented in this paper,
but also for the network architecture search (NAS). In addition, the method can also be
used for model quantization. If we use operators with different quantization bit widths to
construct the selection operator, then we can obtain a mixed-precision quantization model
after training.

Algorithm complexity: Selecting suitable operators manually to form a differentiable
selection operator is the key point of our proposed compression algorithm. Fortunately,
many lightweight operators are available for us. Once the selection operator is constructed,
we can directly replace the original operator in the network to be compressed with it to
construct an over-parameterized network. Then, we can train the network as we train
a normal one. In addition, once the lightweight operators are selected, we only need to

Sensors 2021, 21, 3464 16 of 21

modulate λ to achieve different levels of compression without setting the compression
rate separately for each layer. Therefore, the algorithm is easy to implement. Compared
to the original network, the over-parameterized network takes more time and memory
to train, since each selection operator in it has N branches. Fortunately, we can alleviate
the aforementioned problem. From the perspective of forward propagation, the output of
selection operator is y = OS(x) = ∑N−1

i=0 OHα(i) ·OPi(x). Since the mask vector OHα is a
one-hot vector, y is equal to the output of the branch OPi corresponding to OHα(i) = 1,
irrelevant to all other branches. From the perspective of back propagation, the update
of architecture parameter αj is only related to those branches with ∂OHα(i)

∂αj
6= 0 according

to Equation (7). Thus, we only need to compute those branches with OHα(i) = 1 or
∂OHα(i)

∂α 6= 0 at each step. When there are 8 branches, only 4 branches are calculated on
average at each step. This reduces memory consumption and training time significantly.
For smaller models on Cifar, the compression process usually takes only 3–4 GPU hours,
while for larger models on ImageNet, it usually takes 8–10 GPU hours.

5. Conclusions

A differentiable algorithm is proposed in this paper for CNN compression. Different
from previous methods that prune redundant units from bulky convolutional operators,
our method addresses the CNN compression problem from a completely new perspective
by directly replacing the original bulky convolutional operators with more lightweight ones.
The proposed approach is an end-to-end compression method that only requires control λ
to achieve different levels of compression, without specifying the compression rate for each
layer. Specifically, our method can break the constraints of fixed operators in the network
and obtain a higher compression rate without significant performance degradation. For
example, the compressed ResNet20 and ResNet56 retain only 0.11 M and 0.24 M parameters,
respectively, but their performance still outperforms the original network. A thorough
comparison with several state-of-the-art compression methods proved the superiority of
our proposed methodology on several highly competitive datasets. Overall, the proposed
approach shows a unique potential for using gradient descent to seek the best lightweight
operator for each layer to achieve compression, thus facilitating the application of CNNs
on mobile and embedded devices.

Author Contributions: Conceptualization, H.D. and Y.H.; methodology, H.D.; software, S.X.; vali-
dation, H.D., Y.H. and S.X.; formal analysis, H.D.; investigation, H.D.; resources, G.L.; data curation,
H.D.; writing—original draft preparation, H.D.; writing—review and editing, H.D.; visualization,
Y.H.; supervision, G.L.; project administration, G.L.; funding acquisition, G.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by National Key R&D Program of China (No. 2018YFD0700300),
and Chinese Academy of Sciences Engineering Laboratory for Intelligent Logistics Equipment System
(No. KFJ-PTXM-025).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Operators

We experiment with different operators, and Table A1 lists the specific settings of the
different operators and the corresponding number of parameters and FLOPs.

The description of simple symbols:

Ci: Number of input channels; Co: Number of output channels; S: stride; P: padding;
G: Number of groups; d: dilation; A: activation function; K: kernel size; PS: Number of
parameters; Flops: floating-point operations; H,W: The height and width of the input tensor.

Sensors 2021, 21, 3464 17 of 21

N_3× 3_g denotes a normal convolutional operation, where the number of groups g can be
1, 2, 4, 8, 16, 32, . . . , and the group convolution is followed by the channel shuffle operation;
N_1 × 1_g is similar to N_3 × 3_g, except that the kernel size is 1;
skip_connect denotes a shortcut that directly connects two nodes with the same input
and output;
avg_pool_3× 3 denotes average pooling;
max_pool_3 × 3 denotes maximum pooling;
Sep_k × k denotes a depthwise separable convolution consisting of two convolutional
layers, the first being a depthwise separable convolution with a convolutional kernel of k
× k and the second being a 1 × 1 convolution;
Dil_k × k: denotes a dilated convolution consisting of two convolutional layers, the first
of which is a depthwise separable dilated convolution with a convolutional kernel of k × k
and the second of which is a 1 × 1 convolution;
C_3× 3_g is similar to N_3× 3_g, except that the activation function is replaced by CReLU
from ReLU, where the number of groups can be 1,2,4,8, 16, 32, ..., the group convolution is
followed by the channel shuffle operation;

The description of complex symbols:

Fire: Using the Fire module in SqueezeNet, which consists of a squeeze layer with a
convolutional kernel of 1× 1 and two expand layers with a convolutional kernel of 1× 1
and 3 × 3, respectively, where the number of input channels in the squeeze layer is Cin and
the number of output channels is Csqueeze; the number of input channels in the expand layer
is Csqueeze. The number of output channels is Cout

2 , and the output of the Fire concatenates
the outputs of the two expand layers together before outputting them. Here, we define
Csqueeze as min(Cout

4 , 64);
Sep_res_k × k_g: Connect the two Sep_k × k convolutional operators using residuals,
and that the 1× 1 convolution layer in Sep_k × k uses group convolution with a group
number of g, followed by the operation of channel shuffle;
Dil_res_k × k_g: Connect the two Dil_k × k convolutional operators using residuals,
and that the 1× 1 convolution layer in Dil_k × k uses group convolution with a group
number of g, followed by the operation of channel shuffle.

Table A1. Different operators used in our experiments.

Name Ci Co S P G d A k PS Flops

N_3 × 3_g Ci Co S 1 g 1 ReLU 3 × 3 9·Ci ·Co
g PS · H ·W

N_1 × 1_g Ci Co S 1 g 1 ReLU 1 × 1 Ci ·Co
g PS · H ·W

skip_connect Ci Ci - - - - - - 0 0
avg_pool_3 × 3 Ci Ci S 1 1 1 ReLU 3 × 3 0 9 · Ci · H ·W
max_pool_3 × 3 Ci Ci S 1 1 1 ReLU 3 × 3 0 9 · Ci · H ·W

Sep_3 × 3 Ci Co S 1 Ci 1 ReLU 3 × 3 9 · Ci + Ci · Co PS · H ·W
Sep_5 × 5 Ci Co S 2 Ci 1 ReLU 5 × 5 25 · Ci + Ci · Co PS · H ·W
Sep_7 × 7 Ci Co S 3 Ci 1 ReLU 7 × 7 49 · Ci + Ci · Co PS · H ·W
Dil_3 × 3 Ci Co S 2 Ci 2 ReLU 3 × 3 9 · Ci + Ci · Co PS · H ·W
Dil_5 × 5 Ci Co S 4 Ci 2 ReLU 5 × 5 25 · Ci + Ci · Co PS · H ·W
C_3 × 3_g Ci

Co
2 S 1 g 1 CReLU 3 × 3 9·Ci ·Co

2·g PS · H ·W

Fire Ci Co S 1 1 1 ReLU 3 × 3 C2
i

4 + 5·Ci ·Co
4 PS · H ·W

Sep_res_3 × 3_g Ci Co S 1 g 1 ReLU 3 × 3 C2
i +Ci ·Co

g + 18 · Ci PS · H ·W

Sep_res_5 × 5_g Ci Co S 1 g 1 ReLU 5 × 5 C2
i +Ci ·Co

g + 50 · Ci PS · H ·W

Dil_res_3 × 3_g Ci Co S 2 g 2 ReLU 3 × 3 C2
i +Ci ·Co

g + 18 · Ci PS · H ·W

Dil_res_5 × 5_g Ci Co S 1 g 1 ReLU 5 × 5 C2
i +Ci ·Co

g + 50 · Ci PS · H ·W

Sensors 2021, 21, 3464 18 of 21

Appendix B. More Detailed Experimental Results

In this section, the lightweight architectures of VGG16, DenseNet121 and MobileNetV2
after being compressed are presented in detail.

1 3 5 7 9 11 13 15 17
Layer Index

N_3x3(1)
C_3x3(2)

N_3x3_2(2)
Sep_res_5x5(3.24)
Dil_res_5x5(3.24)

Sep_res_3x3(3.95)
Dil_res_3x3(3.95)

C_3x3_2(4)
N_3x3_4(4)

fire(6)
Sep_res_5x5_4(7.02)
Dil_res_5x5_4(7.02)

C_3x3_4(8)
Sep_res_3x3_4(11.5)
Dil_res_3x3_4(11.5)

C_3x3_8(16)
N_3x3_16(16)

Sep_res_5x5_8(16.9)
Dil_res_5x5_8(16.9)

Sep_5x5_8(17.4)
Dil_5x5_8(17.4)

C_3x3_16(32)

Se
le

ct
ed

 O
pe

ra
to

r
C.8
C.9
C.10

Figure A1. The operator of each layer in compressed VGG16. The layers in the figure do not include
the first convolutional layer and the last fully connected layer. The vertical axis have the same
meanings as Figure 5.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
Layer Index

N_3x3(1)
N_3x3_2(2)
N_3x3_4(4)

fire(6)
Sep_5x5(6.48)
Dil_5x5(6.48)
Sep_3x3(7.9)
Dil_3x3(7.9)

Se
le

ct
ed

 O
pe

ra
to

r

C.15
C.16
C.17
C.18
C.19
C.20
C.21
C.22

Figure A2. The operator of each layer in compressed DenseNet121. The layers in the figure do not include the first
convolutional layer and the last fully connected layer. The vertical axis has the same meanings as Figure 5.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Layer Index

N_3x3_4(0.44)
fire(0.67)

N_3x3_8(0.89)
C_3x3_4(0.89)

N_1x1(1)
N_1x1_2(2)
N_1x1_4(4)
N_1x1_8(8)

Se
le

ct
ed

 O
pe

ra
to

r

C.23
C.24
C.25
C.26
C.27
C.28
C.29
C.30

Figure A3. The operator of each layer in compressed MobileMetV2. The layers in the figure do not include the first
convolutional layer and the last fully connected layer. The vertical axis has the same meanings as Figure 5.

Sensors 2021, 21, 3464 19 of 21

Appendix C. Different Sets of Operators in the Branches of Reconstructed CNN (SOP)

Table A2. Different sets of operators in the branches of reconstructed CNN.

SOP1

N_3 × 3 N_3 × 3_2 N_3 × 3_4 N_3 × 3_8 Sep_3 × 3

C_3 × 3 C_3 × 3_2 C_3 × 3_4 Dil_5 × 5 Sep_5 × 5

SOP2

N_3 × 3 N_3 × 3_2 N_3 × 3_4 Sep_5 × 5 Dil_3 × 3

N_3 × 3_8 N_3 × 3_16 Sep_3 × 3 Sep_7x7 Dil_5 × 5

SOP3

N_3 × 3 N_3 × 3_2 N_3 × 3_4 Sep_res_3 × 3 Sep_3 × 3

Fire C_3 × 3 C_3 × 3_2 Sep_res_5 × 5 Sep_5 × 5

SOP4

Fire C_3 × 3_2 Sep_res_3 × 3_4 Sep_res_5 × 5_4

C_3 × 3_4 N_3 × 3 Dil_res_3 × 3_4 Dil_res_5 × 5_4

SOP5

N_3 × 3 N_3 × 3_2 N_3 × 3_4 Sep_res_3 × 3 Dil_res_3 × 3

Fire C_3 × 3 C_3 × 3_2 Sep_res_5 × 5 Dil_res_5 × 5

SOP6

Fire C_3 × 3_16 Sep_res_5 × 5_8 Sep_5 × 5_8

C_3 × 3_8 N_3 × 3_16 Dil_res_5 × 5_8 Dil_5 × 5_8

SOP7

N_3 × 3 N_3 × 3_2 N_3 × 3_4 Dil_res_5 × 5

Fire C_3 × 3 C_3 × 3_2 Sep_res_5 × 5

SOP8

N_3 × 3 N_3 × 3_2 N_3 × 3_4 Dil_res_5 × 5_8

Fire C_3 × 3_4 C_3 × 3_8 Sep_res_5 × 5_8

SOP9

N_3 × 3 N_3 × 3_2 N_3 × 3_4 Dil_3 × 3

Fire Dil_5 × 5 Sep_3 × 3 Sep_5 × 5

SOP10

N_1 × 1 N_1 × 1_2 N_1 × 1_4 N_1 × 1_8

C_3 × 3_4 N_3 × 3_4 N_3 × 3_8 Fire

References
1. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. Squeezenet: Alexnet-level accuracy with 50x fewer

parameters and <0.5 mb model size. arXiv 2016, arXiv:1602.07360.
2. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
3. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4510–4520.

Sensors 2021, 21, 3464 20 of 21

4. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching
for mobilenetv3. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019;
pp. 1314–1324.

5. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.

6. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

7. Wang, P.; Gao, C.; Wang, Y.; Li, H.; Gao, Y. Mobilecount: An efficient encoder-decoder framework for real-time crowd counting.
Neurocomputing 2020, 407, 292–299. [CrossRef]

8. Ntakolia, C.; Diamantis, D.E.; Papandrianos, N.; Moustakidis, S.; Papageorgiou, E.I. A lightweight convolutional neural network
architecture applied for bone metastasis classification in nuclear medicine: A case study on prostate cancer patients. Healthcare
2020, 8, 493. [CrossRef]

9. Khaki, S.; Safaei, N.; Pham, H.; Wang, L. Wheatnet: A lightweight convolutional neural network for high-throughput image-based
wheat head detection and counting. arXiv 2021, arXiv:2103.09408.

10. Liu, H.; Simonyan, K.; Yang, Y. Darts: Differentiable architecture search. arXiv 2018, arXiv:1806.09055.
11. Xie, S.; Zheng, H.; Liu, C.; Lin, L. Snas: Stochastic neural architecture search. arXiv 2018, arXiv:1812.09926.
12. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710.
13. Dai, X.; Yin, H.; Jha, N.K. Nest: A neural network synthesis tool based on a grow-and-prune paradigm. IEEE Trans. Comput. 2019,

68, 1487–1497. [CrossRef]
14. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized evolution for image classifier architecture search. Proc. AAAI Conf. Artif.

2019, 33, 4780–4789. [CrossRef]
15. Ding, X.; Ding, G.; Han, J.; Tang, S. Auto-balanced filter pruning for efficient convolutional neural networks. AAAI 2018, 3, 7.
16. He, Y.; Kang, G.; Dong, X.; Fu, Y.; Yang, Y. Soft filter pruning for accelerating deep convolutional neural networks. arXiv 2018,

arXiv:1808.06866.
17. He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1389–1397.
18. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710.
19. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and

huffman coding. arXiv 2015, arXiv:1510.00149.
20. Guo, Y.; Yao, A.; Chen, Y. Dynamic network surgery for efficient dnns. arXiv 2016, arXiv:1608.04493.
21. Hu, H.; Peng, R.; Tai, Y.W.; Tang, C.K. Network trimming: A data-driven neuron pruning approach towards efficient deep

architectures. arXiv 2016, arXiv:1607.03250.
22. Luo, J.H.; Wu, J.; Lin, W. Thinet: A filter level pruning method for deep neural network compression. In Proceedings of the IEEE

International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5058–5066.
23. Singh, P.; Kadi, V.S.; Verma, N.; Namboodiri, V.P. Stability based filter pruning for accelerating deep cnns. In Proceedings of the

2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 7–11 January 2019; pp. 1166–1174.
24. He, Y.; Liu, P.; Wang, Z.; Hu, Z.; Yang, Y. Filter pruning via geometric median for deep convolutional neural networks acceleration.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 4340–4349.

25. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in deep neural networks. arXiv 2016, arXiv:1608.03665.
26. Yoon, J.; Hwang, S.J. Combined group and exclusive sparsity for deep neural networks. In Proceedings of the International

Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 3958–3966.
27. Zhang, T.; Ye, S.; Zhang, K.; Tang, J.; Wen, W.; Fardad, M.; Wang, Y. A systematic dnn weight pruning framework using alternating

direction method of multipliers. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018; pp. 184–199.

28. Ma, Y.; Chen, R.; Li, W.; Shang, F.; Yu, W.; Cho, M.; Yu, B. A unified approximation framework for compressing and accelerating
deep neural networks. In Proceedings of the IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI),
Portland, OR, USA, 4–6 November 2019; pp. 376–383.

29. Ye, S.; Feng, X.; Zhang, T.; Ma, X.; Lin, S.; Li, Z.; Xu, K.; Wen, W.; Liu, S.; Tang, J.; et al. Progressive dnn compression: A key to
achieve ultra-high weight pruning and quantization rates using admm. arXiv 2019, arXiv:1903.09769.

30. Gusak, J.; Kholiavchenko, M.; Ponomarev, E.; Markeeva, L.; Blagoveschensky, P.; Cichocki, A.; Oseledets, I. Automated multi-stage
compression of neural networks. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Seoul,
Korea, 27–28 October 2019.

31. Swaminathan, S.; Garg, D.; Kannan, R.; Andres, F. Sparse low rank factorization for deep neural network compression.
Neurocomputing 2020, 398, 185–196. [CrossRef]

32. Ruan, X.; Liu, Y.; Yuan, C.; Li, B.; Hu, W.; Li, Y.; Maybank, S. Edp: An efficient decomposition and pruning scheme for
convolutional neural network compression. IEEE Trans. Neural Netw. Learn. Syst. 2020. [CrossRef]

http://doi.org/10.1016/j.neucom.2020.05.056
http://dx.doi.org/10.3390/healthcare8040493
http://dx.doi.org/10.1109/TC.2019.2914438
http://dx.doi.org/10.1609/aaai.v33i01.33014780
http://dx.doi.org/10.1016/j.neucom.2020.02.035
http://dx.doi.org/10.1109/TNNLS.2020.3018177

Sensors 2021, 21, 3464 21 of 21

33. He, Y.; Lin, J.; Liu, Z.; Wang, H.; Li, L.J.; Han, S. Amc: Automl for model compression and acceleration on mobile devices. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 784–800.

34. Zhu, M.; Gupta, S. To prune, or not to prune: Exploring the efficacy of pruning for model compression. arXiv 2017,
arXiv:1710.01878.

35. Liu, N.; Ma, X.; Xu, Z.; Wang, Y.; Tang, J.; Ye, J. Autocompress: An automatic dnn structured pruning framework for ultra-high
compression rates. AAAI 2020, 34, 4876–4883. [CrossRef]

36. Boyd, S.; Parikh, N.; Chu, E. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers; Now
Publishers Inc.: Delft, The Netherlands, 2011.

37. Shang, W.; Sohn, K.; Almeida, D.; Lee, H. Understanding and improving convolutional neural networks via concatenated
rectified linear units. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June
2016; pp. 2217–2225.

38. Bhardwaj, K.; Suda, N.; Marculescu, R. Dream distillation: A data-independent model compression framework. arXiv 2019,
arXiv:1905.07072.

39. Koratana, A.; Kang, D.; Bailis, P.; Zaharia, M. Lit: Learned intermediate representation training for model compression. In
Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 3509–3518.

40. Wang, J.; Bao, W.; Sun, L.; Zhu, X.; Cao, B.; Philip, S.Y. Private model compression via knowledge distillation. Proc. AAAI Conf.
Artif. 2019, 33, 1190–1197. [CrossRef]

41. Wang, Z.; Lin, S.; Xie, J.; Lin, Y. Pruning blocks for cnn compression and acceleration via online ensemble distillation. IEEE Access
2019, 7, 175703–175716. [CrossRef]

42. Wu, M.C.; Chiu, C.T. Multi-teacher knowledge distillation for compressed video action recognition based on deep learning. J.
Syst. Archit. 2020, 103, 101695. [CrossRef]

43. Prakosa, S.W.; Leu, J.S.; Chen, Z.H. Improving the accuracy of pruned network using knowledge distillation. Pattern Anal. Appl.
2020, 1–12. [CrossRef]

44. Ahmed, W.; Zunino, A.; Morerio, P.; Murino, V. Compact cnn structure learning by knowledge distillation. In Proceedings of the
2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021.

45. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

46. Kim, J.; Park, C.; Jung, H.J.; Choe, Y. Plug-in, trainable gate for streamlining arbitrary neural networks. AAAI 2020, 34, 4452–4459.
[CrossRef]

47. Qin, H.; Gong, R.; Liu, X.; Shen, M.; Wei, Z.; Yu, F.; Song, J. Forward and backward information retention for accurate binary
neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 2250–2259.

48. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; University of Toronto: Toronto, ON, Canada, 2009.
49. Chrabaszcz, P.; Loshchilov, I.; Hutter, F. A downsampled variant of imagenet as an alternative to the cifar datasets. arXiv 2017,

arXiv:1707.08819
50. Dong, X.; Yang, Y. Nas-bench-201: Extending the scope of reproducible neural architecture search. arXiv 2020, arXiv:2001.00326.
51. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32; Wallach, H.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Dutchess County, NY, USA,
2019; pp. 8024–8035.

52. Duggal, R.; Xiao, C.; Vuduc, R.; Sun, J. Cup: Cluster pruning for compressing deep neural networks. arXiv 2019, arXiv:1911.08630.
53. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
54. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

http://dx.doi.org/10.1609/aaai.v34i04.5924
http://dx.doi.org/10.1609/aaai.v33i01.33011190
http://dx.doi.org/10.1109/ACCESS.2019.2957203
http://dx.doi.org/10.1016/j.sysarc.2019.101695
http://dx.doi.org/10.1007/s10044-020-00940-2
http://dx.doi.org/10.1609/aaai.v34i04.5872

	Introduction
	Related Works
	Methodology
	Overview
	The Reconstructing Stage
	The Searching Stage
	Trainable Gate Function
	Continuous Approximation for Discrete One-Hot Vector
	Resource-Constrained Objective Function

	The Fine-Tuning Stage

	Experiments
	Dataset
	Evaluation Metrics
	Results on Cifar
	Results on ImageNet
	Ablation Study

	Conclusions
	Operators
	More Detailed Experimental Results
	Different Sets of Operators in the Branches of Reconstructed CNN (SOP)
	References

