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Abstract

Genes required for infection of mice by Salmonella Typhimurium can be identified by the interrogation of random
transposon mutant libraries for mutants that cannot survive in vivo. Inactivation of such genes produces attenuated S.
Typhimurium strains that have potential for use as live attenuated vaccines. A quantitative screen, Transposon Mediated
Differential Hybridisation (TMDH), has been developed that identifies those members of a large library of transposon
mutants that are attenuated. TMDH employs custom transposons with outward-facing T7 and SP6 promoters.
Fluorescently-labelled transcripts from the promoters are hybridised to whole-genome tiling microarrays, to allow the
position of the transposon insertions to be determined. Comparison of microarray data from the mutant library grown in
vitro (input) with equivalent data produced after passage of the library through mice (output) enables an attenuation score
to be determined for each transposon mutant. These scores are significantly correlated with bacterial counts obtained
during infection of mice using mutants with individual defined deletions of the same genes. Defined deletion mutants of
several novel targets identified in the TMDH screen are effective live vaccines.
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Introduction

Salmonella enterica serovar Typhimurium (S. Typhimurium)

infection of mice is well established as a model of systemic typhoid

fever in humans [1]. The system is particularly useful for identifying

the genetic determinants of Salmonella virulence, usually by

comparing the in vivo growth of mutants with their wild type

parents. If a mutant is unable to survive in the mouse model it is

inferred that the disrupted gene is important for infection. Several

such mutants have been used to induce an immune response that is

protective against subsequent infection with wild type S. Typhimur-

ium, and have subsequently been translated for use as live

attenuated vaccines in humans and food-producing animals [2].

Most often, the mouse model has been used to investigate

Salmonella infection on a gene-by-gene basis. However, recent

developments in molecular biology allow pools of many mutants to

be screened in parallel. The first example of this was signature-

tagged mutagenesis (STM), which employs transposons containing

unique sequence tags that can be amplified by PCR and identified

by Southern hybridisation. These transposons are used to generate

mixed pools of mutants, which are used to infect an animal.

Bacterial DNA recovered from the animal can be interrogated for

the presence of the tags, and compared to similar data obtained

from the inoculum to identify attenuated mutants that do not

survive in vivo. This method was developed in a study of S.

Typhimurium in the mouse model of typhoid fever [3], using input

pools of 96 tagged mutants per animal. This led to the discovery of

Salmonella pathogenicity island 2 (SPI-2), which encodes a type III

secretion system (T3SS) that is critical for systemic infection and

intracellular pathogenesis [4]. The island was so named to

distinguish it from the well-characterised SPI-1, which also
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encodes a T3SS that is important in intestinal adhesion and

invasion [5]. Morgan et al. [6] used STM to identify S.

Typhimurium genes required for colonisation of calves and chicks,

using the same STM mutant library to infect the different hosts,

hence enabling comparison of the gene sets required for infection

of different livestock species. This study showed that SPI-1 and

SPI-2 mutants that were defective in colonization of calves were

able to colonize chicks and led to further characterisation of a SPI-

4 locus, required for infection of calves, but which appeared to be

less important in the intestinal colonization of pigs in a further

STM screen with this library [7].

There are various limitations associated with STM, including

the size of mutant pools given the number of unique tag sequences

that it is practical to use, and the fact that STM may not lead to

the identification of mutations that cause only a small reduction in

fitness to survive within a host [8]. An alternative approach

employs DNA microarray technology to screen a library of

transposon mutants. The parallel nature of microarrays allows the

simultaneous screening of much larger pools of mutants than is

possible using STM. The use of a custom transposon containing

an outward facing promoter allows the in vitro production of

labelled transcripts that are homologous to the regions flanking the

sites of transposon insertion. These can be used to hybridise to the

microarray, bypassing the need for a PCR amplification step that

can lead to non-reproducible results [9].

Microarray-based screening approaches have recently been

applied to the study of S. Typhimurium infection of mice. Using

such methods, Chan et al. [10] identified S. Typhimurium mutants

that cannot survive in RAW 264.7 macrophage-like cells. Within

the population of negatively selected mutants there was a

significant overrepresentation of genes located in SPI-1 (36/395)

and SPI-2 (51/395) indicating their importance in this infection

model. Screening the same transposon library through BALB/cJ

mice similarly revealed significant overrepresentation in the

negatively selected population of SPI-2 (27/187) and genes

involved in lipopolysaccharide (LPS) biosynthesis (9/187), with

an overrepresentation of SPI-1 genes (5/187) that fell marginally

short of significance at the 5% level. In a follow-up study, Lawley et

al. [11] used similar methods to study genes required by S.

Typhimurium to survive for up to 28 days in the spleens and livers

of Nramp1r mice, a model of the carrier state in human typhoid

fever. In this model genes from SPI-1 to SPI-6 were important for

systemic infection. The involvement of SPI-1 was a novel finding

since that island had previously been thought to be involved only

in the gastrointestinal phase of infection. It is possible that SPI-1

genes may be required for S. Typhimurium to re-establish

intracellular growth during persistent infection. Other genes

important for long-term systemic infection included LPS genes,

fimbrial genes, and horizontally acquired genes on the virulence

plasmid and within prophage elements.

Here we describe transposon mediated differential hybridisation

(TMDH) [12], and its application for the simultaneous, genome-

wide identification of genes required for growth of S. Typhimur-

ium in an acute infection of BALB/c mice over 2 days. Our

method improves significantly on earlier studies through the use of

high-density tiling microarrays and a novel bioinformatics

algorithm to determine the positions of transposon insertions with

a high degree of accuracy. This has allowed the unambiguous

identification of transposon mutants within 2824 S. Typhimurium

genes. Many of these are attenuated in the mouse typhoid model,

and may encode potential targets for the development of novel

antimicrobial therapeutics. We also show that defined deletion

mutants of some of the targets identified in the TMDH screen can

act as novel live-attenuated vaccines that protect against

subsequent challenge with wild-type S. Typhimurium. The

technology we present here is generic and can be applied to any

pathogen for which there is a genome sequence, a method of

generating large numbers of insertion mutants (in this case,

transposition) and a model of infection in which to identify

mutants that are attenuated for virulence.

Materials and Methods

Transposon-Mediated Differential Hybridisation (TMDH)
The TMDH procedure is outlined in Figure 1. A library of

around 10,000 transposon mutants was generated using custom

Tn5 and Mu transposons, containing outward-facing T7 and SP6

promoters. Genomic DNA was isolated from the library, and in

vitro transcription was induced from the T7 and SP6 promoters in

the presence of fluorescently-labelled dNTPs. DNaseI was used to

remove the genomic DNA, leaving labelled RNA run-offs, which

were hybridised to high-density tiling microarrays. Analysis of the

microarray data allows the genomic position of the transposon

insertions to be determined. This process was performed for the

original library (input), and for mutant pools recovered from the

livers of duplicate intravenously (i.v.) infected mice (output).

Mutants that are present in the input pool but which are absent or

less prevalent in the output pools are inferred to be attenuated in

vivo.

Construction of Tn5 and Mu TMDH transposons for use
in S. Typhimurium

TMDH transposons were based on Tn5 and Mu transposasome

constructs from Epicentre (EZ:Tn5 R6Kcori/KAN-2 Transposon

and HyperMu R6Kcori/KAN-1 Transposon). The constructs

were adapted for use in TMDH by the addition of outward-facing

T7 and SP6 promoters, which allow the generation of both left-

and right-arm RNA products corresponding to the regions

flanking the site of transposon integration in genomic DNA [13],

and incorporation of homing endonuclease recognition sites for I-

Sce-I and PI-Psp-I. These are rare-cutting enzymes and incorpo-

ration of their recognition sites into the transposons permits the

introduction of the sites into a bacterial genome following

transposition. Following digestion of transposed genomic DNA

with the rare-cutting enzyme, a ligation-capture method can be

carried out to rescue transposon ends and obtain flanking

Author Summary

Salmonella Typhimurium infection of mice is an estab-
lished model of systemic typhoid fever in humans.
Mutations that inactivate genes that are important for
virulence produce attenuated S. Typhimurium bacteria
that have potential for use as live vaccines. To investigate
the infection process we have produced a large pool of
random insertion mutants, and developed a novel micro-
array-based technology, Transposon Mediated Differential
Hybridisation (TMDH), that allows us to determine the
gene disrupted by each insertion. Comparison of data
obtained from the mutant pool grown in laboratory
culture (input) with equivalent data produced after
passage of the pool through mice (output) enables genes
that are important for the infection process to be
determined, since they are absent or less prevalent in
the output pool. We have constructed defined deletion
mutants of several of the candidate genes identified in the
TMDH screen, and have shown that they are attenuated
for virulence and effective live vaccines.

Salmonella Infection Genes
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sequence data (see below). The Tn5 and Mu TMDH transposons

were cloned into pBAD-TOPO (Invitrogen Life Technologies)

and transformed into TOP10 E. coli chemically competent cells

according to the Invitrogen protocol, with selection on LB agar

(Sigma-Aldrich) plates supplemented with 30 mg/ml kanamycin

(Sigma-Aldrich). Colonies were picked and grown in L-Broth

(Sigma-Aldrich) and plasmids were isolated using a Qiagen

QIAprep spin miniprep kit. The Tn5 and Mu constructs were

sequenced and have been deposited into the EMBL database

(accession numbers AX828670 and FN394965). The plasmids

were transformed into electrocompetent S. Typhimurium SL1344

with selection on 30 mg/ml kanamycin. Single colonies were

picked and grown up further in order to purify the plasmids using

a Qiagen QIAfilter Mega Plasmid Prep, which produced 2 mg of

plasmid in 2 ml of TE (pH 8.5).

Construction and characterization of transposon libraries
in S. Typhimurium SL1344

Tn5 and Mu TMDH libraries of around 5,000 mutants each

were generated in S. Typhimurium SL1344. 100 mg of Tn5 or Mu

pBAD-TOPO TMDH constructs were digested overnight at 37uC
with XmnI and NcoI (New England Biolabs) in NEB buffer 2 and

BSA in a final volume of 200 ml. The entire digest was then run

out on a 0.8% agarose gel, the insert bands were cut out and the

DNA was extracted from the gel using the Qiagen QIAquick Gel

Extraction kit and eluted in 50 ml TE (pH 8.5). The purified Tn5

and Mu transposon DNA was used in the Epicentre in vivo

transposition protocol using EZ-Tn5 Transposase or HyperMuTM

MuA Transposase as appropriate. Transposon DNA was added to

transposase and glycerol in a 1:2:1 ratio and incubated at room

temperature for 1 h. The transposasome complex was then

electroporated into electrocompetent SL1344 cells using a 2 mm

cuvette, at 200 V, 25 mF and 12 kV/cm. Recovery was in 1 ml

SOC medium (Gibco) at 37uC for 1 h then the bacteria were

plated out on Tryptic Soy Agar (TSA, Oxoid), supplemented with

50 mg/ml kanamycin, and grown overnight at 37uC. Colonies

were picked and grown overnight at 37uC in 0.5 ml L-Broth

supplemented with 25 mg/ml kanamycin, in 2 ml 96-well blocks

(Fisher Scientific). Overnight cultures of 5,184 Tn5 and 5,184 Mu

TMDH transposon mutants were stored at 280uC in 20%

glycerol in L-Broth in 96-well microtitre plates.

96 of the Tn5 mutants were streaked on LB agar plates

supplemented with 100 mg/ml ampicillin to check for sensitivity.

All were sensitive, showing that there had been no carry-through

of undigested pBAD-TOPO construct into the gel-purified

transposon DNA. Tn5 mutants 1 to 50 were screened on

microscope slides for agglutination with anti-O4 antiserum (Remel

Europe Ltd.). All mutants agglutinated with the antiserum

indicating the bacteria expressed an intact O-antigen following

electroporation.

The in vivo TMDH procedure: mouse model of infection
To prepare inocula for in vivo TMDH in mice, 5,184 Tn5 and

5,184 Mu TMDH transposon mutants were grown up individu-

ally in 1 ml L-Broth in 2 ml 96-well blocks, at 37uC overnight.

Cultures were combined into 20 pools of 480 mutants and 2 pools

of 384 mutants for inoculation into mice. 3 ml of each pooled

culture was removed for measurement of OD600 in order to

estimate bacterial numbers. The remainder was used for

preparation of input-pool genomic DNA (see below). Cells from

3 ml cultures were recovered by centrifugation (43006g for

10 min), resuspended in 3 ml phosphate buffered saline, pH 7.5

(PBS) and diluted to give an appropriate number of bacteria for

the inoculum. An aliquot of the inoculum was plated on LB agar

in triplicate in order to obtain an accurate viable count. A dose of

106 colony-forming units (CFU) was chosen empirically as

sufficient to prevent random dropout of mutants, and was

inoculated in 0.2 ml PBS into the tail veins of duplicate six- to

eight-week-old BALB/c mice (Harlan). All animal procedures

were carried out in accordance with the Animals (Scientific

Procedures) Act (1986).

Recovery of organs from infected mice
Spleens and livers were recovered 2 days post-infection and

homogenised in 10 ml distilled water, then 100 ml aliquots were

plated for viable counts on LB agar. The remainder of the

homogenate was plated on three 50 ml LB agar plates and

incubated at 37uC overnight.

Preparation of genomic DNA
For each pool of mutants, genomic DNA from the input pool

and the two liver output pools was prepared. For the input pools,

bacteria were collected from 200 ml of pooled overnight culture

by centrifugation in a benchtop centrifuge at 43006g at 15uC for

10 min. For the output pools, bacteria from confluent plates were

harvested by adding 10 ml of L-Broth to each plate, then

bacterial suspensions were pooled and vortexed, and cells from a

20 ml aliquot were recovered by centrifugation at 43006g for

10 min. In each case, the pellet was resuspended in 20 ml of Tris

(10 mM, pH 8) EDTA (10 mM) (TE), then 400 ml of 10 mg/ml

lysozyme (Sigma-Aldrich) in water was added and incubated at

42uC for 30 min. 200 ml of Qiagen Proteinase K, 40 ml of Qiagen

RNaseA, and 2 ml of 10% (w/v) N-lauryl sarcosine (Sigma-

Aldrich) were added and incubated for 1 hr (input pools) or 2 hr

Figure 1. Diagrammatic representation of the TMDH process.
(A) A library of transposon mutants is obtained using a custom
transposon with outward-facing T7 and SP6 promoters. Genomic DNA
is extracted from the library and digested using a restriction
endonuclease (RsaI). Labelled RNA run-offs are obtained from the T7
and SP6 promoters by in vitro transcription. (B) The labelled RNA run-
offs are hybridised to genome-wide tiling microarrays. By examining the
distribution of microarray signals between RsaI restriction sites (vertical
black lines) it is possible to infer the location of the transposon (green
triangle). Comparison of the library grown in vitro (input) with the
library obtained after passage through a mouse (output) allows
attenuating mutants to be identified, since they give lower signals in
the output.
doi:10.1371/journal.ppat.1000529.g001
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(output pools), or until completely lysed (clear) at 50–55uC.

Lysates were extracted by adding 1 volume of buffered phenol

(Sigma-Aldrich), shaking, and centrifuging at 70006g for 10 min.

The aqueous layer was removed and extracted with 1 volume of

phenol:chloroform:isoamyl alcohol (IAA) (25:24:1), then once

more with chloroform:IAA (24:1). DNA was precipitated with 2

volumes of ethanol, recovered, washed in 70% (v/v) ethanol, then

transferred to a 1.5 ml tube containing 0.5 ml of TE and left at

4uC to dissolve. The DNA concentration and A260/A280 ratio

were measured on a NanoDrop 1000 spectrophotometer

(Thermo Scientific). Genomic DNA was also prepared similarly

from a 50 ml wild-type S. Typhimurium SL1344 culture grown

overnight at 37uC in L-Broth for use as an untransposed control

(see below).

Restriction digests and in vitro transcription
10 mg of genomic DNA from each TMDH input and output

pool, and from the untransposed control DNA, was digested using

RsaI (Promega) overnight at 37uC. Digested DNA was cleaned

using a Qiagen QIAquick PCR Purification Kit and eluted in

30 ml RNase-free water (Qiagen). The DNA concentration and

A260/A280 ratio were measured on a NanoDrop 1000 spectro-

photometer. Equal amounts of digested DNA from 2 or 3 pools of

mutants were combined to give 8 sets of 960–1440 mutants each

for microarray analysis (see Table 1). In vitro transcription (IVT)

was induced from the transposon T7 and SP6 promoters using

500 ng of genomic DNA in a 20 ml MEGAscript T7 Kit or

MEGAscript SP6 Kit reaction (Ambion Inc.), with half the UTP

replaced with 5-(3-aminoallyl)-UTP (aa-UTP; Ambion Inc.). RNA

run-offs were treated with TURBO DNase (Ambion) and purified

on Qiagen RNeasy MinElute columns. Purified RNA from input

or output pools was post-labelled with Cy5 and RNA from wild-

type (untransposed) control DNA with Cy3, using CyDye Post-

Labelling Reactive Dye Packs (GE Healthcare), and the reactions

were stopped with 4 M hydroxylamine (Sigma-Aldrich). The

resultant labelled RNA was purified again on Qiagen RNeasy

MinElute columns, and used for hybridization to DNA micro-

arrays.

Microarray methods
A set of 60-mer oligonucleotide probes was designed based on

the S. Typhimurium LT2 genome sequence (accession numbers

AE006468 and AE006471). The probes were spaced approxi-

mately every 100 bases on both strands across the whole genome,

with the exception of repetitive regions for which unique probes

could not be designed. As a different S. Typhimurium strain,

SL1344, was used for the TMDH experiment it was necessary to

identify the positions of the SL1344 genome that corresponded to

each probe. The SL1344 genome sequence and preliminary

annotation was obtained from the Wellcome Trust Sanger

Institute (http://www.sanger.ac.uk/Projects/Salmonella). Each

microarray probe sequence was used as the query in a blastn

search of the SL1344 genome sequence, and was considered to

match uniquely if the top hit showed .80% identity over .50%

of the length of the probe, and the second hit did not fulfil both

those criteria. Uniquely matching probes were used in the TMDH

analysis, with their hybridization position on the SL1344 genome

determined from the BLAST result. Any probes that contained an

RsaI restriction site within the central 30 bases were omitted from

the analysis, since the probe signal could reflect transcript from

either side of the restriction site.

Custom microarrays with 26105K features per slide were

obtained from Agilent Technologies. Each Cy5-labelled RNA run-

off from an input or output pool was combined with an aliquot of

Cy3-labelled control RNA generated from the same promoter,

and fragmented at 60uC for 30 minutes using Agilent Fragmen-

tation Reagent. Fragmented RNA was then hybridised to

microarrays in Agilent Gene Expression HI-RPM hybridisation

buffer at 65uC for 17 hours in Agilent hybridisation chambers and

backings in an Agilent hybridisation oven. Following hybridisa-

tion, the arrays were washed with Agilent wash buffers 1 and 2

according to the manufacturer’s instructions, followed by one wash

in acetonitrile (Sigma-Aldrich) and drying in Agilent Stabilisation

and Drying Solution. The arrays were scanned using an Agilent

G2565BA scanner using an extended dynamic range of 10% and

100% PMT, and the images analyzed using the Agilent Feature

Extractor software version 9.3.5.1. The raw microarray data were

uploaded to ArrayExpress (accession number E-MEXP-2076).

Experimental design and microarray analysis
A separate microarray experiment was performed for each set of

960–1440 mutants. Each experiment consisted of six microarrays,

one each for the T7 and SP6 RNA run-offs from the input pool

and from the two biological replicate output pools. The IVT

product from each mutant pool was labelled with Cy5 and

hybridised to the microarray together with the Cy3 labelled IVT

product from an untransposed control strain. The untransposed

control has two purposes: it allows normalisation of the T7 and

SP6 signals without any problems associated with dye bias, and

acts as a control to allow identification of the sites of transposon

insertion in the input pool.

Microarray data were imported into R [14] using the

Bioconductor package Limma [15]. The raw signals were

normalised to account for sequence-dependent variation using

the Naef and Magnasco method [16,17], implemented in R by

Royce et al. [18]. Briefly, this procedure uses a linear model to

predict the contribution to the probe signal intensity of each

possible nucleotide at each position in the probe sequence. A

predicted log signal intensity is computed for each probe based on

the model, and subtracted from the observed log signal intensity.

Since the transcripts from each transposon promoter are likely

to influence the signal from multiple probes, the individual probe

signals cannot be treated as statistically independent. To

circumvent this problem the data from all the probes within a

single RsaI restriction fragment were summarised to give a single

data point. This procedure is illustrated in Figure 2. A single

transposon insertion within a restriction fragment is expected to

produce transcripts that will hybridise to probes 59 from the

transposon on both strands (‘‘on’’ probes). All other probes in the

Table 1. Number of mutants investigated in each array set.

Array Set Number of Mutants

Set1 960 (26480)

Set2 960 (26480)

Set3 1440 (36480)

Set4 1440 (36480)

Set5 1440 (36480)

Set6 1440 (36480)

Set7 1440 (36480)

Set8 1248 (16480, 26384)

In parentheses are the number and size of the mutant pools used to infect
individual mice. These were pooled as indicated for the microarray experiments.
doi:10.1371/journal.ppat.1000529.t001

Salmonella Infection Genes

PLoS Pathogens | www.plospathogens.org 4 July 2009 | Volume 5 | Issue 7 | e1000529



restriction fragment should produce only a background signal (‘‘off

probes’’). The most likely position of a transposon is therefore

determined as the position where the sum of the signals from the

‘‘on’’ probes minus the sum of the ‘‘off’’ probe signals is maximal,

and the summary score is calculated based on the ‘‘on’’ probe

signals. For large restriction fragments it is not appropriate to use

an average of all these signals as a summary score, since signal

intensities tend to decrease for probes that are distant from the

transposon. A sliding window approach was used, with the

geometric mean of the signals calculated for each window of three

consecutive probes. The highest value was used as the summary

score for that restriction fragment.

The situation is complicated somewhat if more than one

transposon is present within a single restriction fragment within

the same array set. It is possible to distinguish between two inserts

within the same fragment if they are in opposite orientations, since

the transcripts that correspond to the same strand will be derived

from different promoters and hence will be detected on different

arrays and not interfere with each other. For this reason each

restriction fragment is assigned two summary scores, one for each

possible transposon orientation. If multiple transposons are present

in the same orientation then the signals will interfere, and it may

be impossible to determine the location of each insert. However,

since no more than 1440 mutants were investigated on the same

array, this is unlikely to represent a significant problem for the

analysis of our data.

To determine the position of the transposon insertions present

in the input pool of each set of mutants, summary scores were

calculated for the Cy5 signals from the Input T7 and SP6 arrays,

and separately for the Cy3 (control) signals from the same arrays.

The summary scores are analogous to data derived from a

traditional expression microarray, and can be analysed in a similar

manner. To do this, the input and control summary scores were

converted to the red and green signals of a Limma RGList object

[15]. The signals were normalised using a loess curve, and

displayed on a plot of log2 signal intensity ratio (M) against log2

average signal intensity (A; see Figure 3). An M cut-off value of 2

was used to identify summary scores likely to correspond to

transposon insertions.

To compare the input and output pools, a similar procedure was

followed. In this case the untransposed control signals were used as a

standard reference to normalise between arrays, and the ratio of

sample:reference signal for each probe was used to calculate the

summary scores. This was done separately for the input and two

output pools, and the resulting scores analysed in the same manner

as single-colour Affymetrix data in Limma [15]. The scores were

normalised using a loess curve, as implemented in the Bioconductor

package affy [19], and log2 fold change (logFC) and P-values were

calculated using the linear models implemented in Limma, applying

the method of Benjamini and Hochberg [20] to account for multiple

testing. These logFC values were normalised between array sets by

dividing by the median absolute deviation. The normalised logFC

scores and P-values from each set were combined and used to assess

the in vivo survival of each of the mutants previously identified within

the input pool (see Table S1).

Experimental verification of transposon insertion
locations

As part of the TMDH development process, 50 Tn5 mutant

colonies were selected from Set6 for DNA sequencing-based

verification of the position of the transposon insertion using a

ligation capture procedure. The mutants were grown up

individually in 2 ml TSB (Oxoid) in the presence of 50 mg/ml

kanamycin overnight at 37uC and 200 rpm. 1.5 ml of each was

used to prepare chromosomal DNA using the Qiagen DNeasy

tissue kit. 5 ml of each of the fifty chromosomal preps was digested

with EcoRV (NEB) in a final volume of 20 ml, overnight at 37uC.

The EcoRV was heat inactivated at 80uC for 20 minutes. The

20 ml digest was then re-ligated in 100 ml final volume using Gibco

T4 DNA ligase for 48 hours at 4uC. Each re-ligation was then

individually cleaned up using a Qiagen gel extraction spin column

and eluted in 50 ml water. 4 ml of cleaned up, re-ligated, EcoRV-

digested chromosomal DNA from each mutant was electroporated

into 40 ml of electrocompetent pir+ cells using a 1 mm cuvette,

100 V, 25 mF and 20 kV/cm, outgrowth was in 1 ml SOC

Figure 2. Diagrammatic representation of the TMDH scoring
system. The most likely position of the transposon is inferred from the
microarray data, and the probes that would detect the signals from a
transposon in that position are identified. To summarize the signals of
these probes into a single data point, a sliding window approach is
used. The geometric mean of the signals is determined for each
consecutive set of 3 probes. The highest such value is used to represent
the signal for that restriction fragment.
doi:10.1371/journal.ppat.1000529.g002

Figure 3. Sample MA plot comparing microarray signals
derived from transposed and untransposed DNA. Plot shows
log2 signal intensity ratio (M) against log2 average signal intensity (A)
for the summary scores derived from RNA run-offs obtained from
transposed and untransposed DNA. An M value of 2 was used as the
cut-off to infer the presence of a transposon within a restriction
fragment.
doi:10.1371/journal.ppat.1000529.g003
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medium (Gibco) at 37uC for 1 h, each of the 50 transformations

was then recovered by centrifugation and the pellet resuspended in

50 ml L-Broth and plated out on LB agar supplemented with

30 mg/ml kanamycin, and incubated overnight at 37uC. From

each plate where colonies grew, one colony was picked and grown

up in 5 ml L-Broth plus 30 mg/ml kanamycin at 37uC overnight.

46 Qiagen minipreps were carried out and 10 ml plasmid DNA

was sequenced according to the Beckman CEQ protocol using a

transposon-specific primer. Salmonella sequence data was obtained

for 37 of the mutants.

Additionally, 13 transposon mutants (see Table S2) were

selected from Set1 and Set3 based on the results of the microarray

analysis. For each mutant, the region flanking the transposon was

amplified by PCR, using a transposon-specific primer and a gene-

specific primer. The gene-specific primer was designed to anneal

,200 bp from the approximate position of the transposon as

predicted during the automated microarray analysis. PCR was

performed using the Expand High Fidelity PCR System (Roche)

on a Biometra T3000 thermocycler. Reactions contained 0.5 mM

dNTPs (Bioline), 1 mM each primer (Sigma-Genosys), 100 ng

template DNA, 16 Expand PCR buffer and 0.75 ml of Expand

polymerase mix in a total volume of 50 ml. Bands matching the

expected products were excised from a 0.8% agarose (Invitrogen)

gel, extracted with a QIAquick Gel Extraction kit (Qiagen),

purified further with a QIAquick PCR Purification kit (Qiagen),

and then sequenced directly using the transposon-specific primer

by the Department of Biochemistry DNA Sequencing Facility at

the University of Cambridge.

The sequence data were examined using FinchTV v 1.4.0

(Geospiza), then used as queries in blastn searches against a

database containing the SL1344 genome, together with the

sequences of the Mu and Tn5 transposons. For each mutant,

the transposon could be identified as Mu or Tn5 based on which

of those sequences gave a higher scoring BLAST hit. The position

of the highest-scoring alignment with the SL1344 genome allowed

the insertion location and orientation of the transposon to be

determined.

Investigation of attenuation in defined deletion mutant
strains

Defined deletion mutants of S. Typhimurium were constructed

by a modification of the ET-cloning procedure [21]. Genes to be

deleted were replaced with a kanamycin resistance cassette from

pUC4Kan (Amersham). PCR was used to amplify the antibiotic

resistance cassette with 59 and 39 60 bp homology arms

complementary to the flanking regions of the gene to be deleted.

PCR products were electroporated into S. Typhimurium LB5010

[22] containing the plasmid pBADlred expressing the phage

lambda genes exo, bet and gam under an inducible arabinose

promoter, having induced these cells with 0.2% (w/v, final

concentration) arabinose (Sigma-Aldrich) prior to making them

electrocompetent. Candidate mutant colonies were selected on LB

agar plates supplemented with 25 mg/ml kanamycin. Verification

of allelic replacement was carried out by a test PCR using primers

designed to regions 150 bp upstream and downstream of the gene

of interest. The PCR products were then TA-cloned into

pCRH2.1-TOPO (Invitrogen-Life Technologies) following the

manufacturer’s instructions, and the resultant plasmids were

sequenced to confirm the DNA sequence at the junction of the

antibiotic resistance cassette and the disrupted gene. The

mutations generated in S. Typhimurium LB5010 were transduced

using bacteriophage P22 [23] into strain SL1344 for in vivo

virulence studies [24]. Transductants were selected on LB agar

supplemented with 25 mg/ml kanamycin and were screened for

agglutination with anti-O4 serotype-specific antiserum (Remel

Europe Ltd.) in addition to verifying the presence of the mutation

by PCR and sequencing, as described above.

Six- to eight-week-old BALB/c mice (Harlan) were used for

infection studies using the individual defined deletion mutants.

Bacteria were inoculated into L-Broth, supplemented with 25 mg/

ml kanamycin if appropriate, and left to stand overnight at 37uC.

Bacteria were harvested and re-suspended in PBS and adjusted as

appropriate (usually 56103 CFU ml21 for i.v. infections) and the

viable count of the inoculum was confirmed by plating serial

dilutions on LB agar. Mice were inoculated with 0.2 ml of the

appropriate dilution of the bacterial suspension via the tail vein.

Three or four mice per group were killed by cervical dislocation at

each time-point post-infection. The spleens and livers of infected

mice were removed and placed in 10 ml sterile distilled water and

homogenised using a StomacherH 80 Lab System (Seward). Viable

mutants were quantified by plating various dilutions of homoge-

nised organs in LB agar.

For protection experiments, six- to eight-week old BALB/c mice

(Harlan) were immunised i.v. with 1.06105 CFU per mouse of the

defined deletion mutant, grown as above, and 4 months later

challenged i.v. with 104 CFU per mouse of the virulent parent

strain, SL1344. One day prior to the challenge two mice per group

were culled and spleens and livers were plated on LB agar to assess

the pre-challenge bacterial counts in the organs. When no bacteria

were present in these pre-challenge counts, the challenge

experiment was undertaken. Non-immunised, age-matched mice

were challenged with the same dose of virulent bacteria at the

same time as the immunised mice. Three to eight mice per group

were killed at each time-point post-challenge and organs plated for

viable counts of bacteria as above.

Results

Identification of transposon insertion sites using TMDH
A list of the transposon mutants identified from the microarray

data, together with normalised log2-fold change (attenuation)

scores and P-values is shown in Table S1. In the table and below,

all SL1344 genes are referred to using the name of their LT2

homologue. The list is also available as an online database at

http://www-tmdh.vet.cam.ac.uk. This database includes a facility

to inspect manually the normalised microarray data and its

relationship to the genome sequences of S. Typhimurium SL1344

and LT2 (see Figure 4). This provides a powerful tool to confirm

the position of transposons determined by the automated

algorithm.

A graphical representation of the distribution of attenuation

scores is shown in Figure 5. The majority of transposon insertions

do not affect virulence in this mouse model and show an

attenuation score not significantly different from 0. Of the

mutants that significantly differ between the input and output

pools, the majority are attenuated and under-represented in the

output, with an attenuation score of ,0. We infer that these

mutants have a transposon that disrupts a gene important for

infection. A few mutants are over-represented in the output pool

relative to the input, suggesting that they may have a mutation

that leads to an increase in competitiveness during the infection

process. The TMDH analysis procedure allows the positions of

transposons to be determined to within a region of around

200 bp. From a total of 10368 mutants, the position of the

transposon insertion could be identified using TMDH for 8533.

Of these, 6108 could be unambiguously mapped to 2824 different

S. Typhimurium genes.
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Verification of transposon insertion sites predicted by
TMDH

To support the accuracy of the algorithm used to predict

transposon insertion sites from the microarray data, sequence data

from the regions flanking 50 transposons were obtained (see

Methods). 13 of these were selected for sequencing as there was a

clear indication of the location of the transposon from the

microarray data. This set was chosen to include several mutants

that appeared to be attenuated in vivo. The other 37 mutants

chosen for sequencing were selected randomly from set 6. BLAST

searches against the SL1344 genome using the obtained sequence

data allowed the position and orientation of the transposon to be

accurately determined. The results of this analysis are shown in

Table S2. From the 50 transposons investigated, the positions of

46 were within the range predicted by the TMDH analysis. The

remaining 4 were situated in positions that did not allow their

detection using TMDH, due to the distribution of RsaI restrictions

sites and microarray probes (see Discussion).

Investigation of defined deletion mutants of targets
selected by TMDH

Defined deletion mutants were constructed in SL1344 for 47

different genes. These genes were selected to include a

representative range of attenuation scores. The in vivo growth of

Figure 4. Example of TMDH data displayed using the online database. The database is available at http://www-tmdh.vet.cam.ac.uk.
doi:10.1371/journal.ppat.1000529.g004

Figure 5. Curve showing the ordered attenuation scores for the
8533 mutants identified by TMDH. Error bars indicate 95%
confidence intervals. Red error bars indicate mutants that significantly
deviated from 0 (P,0.05), grey indicates genes that did not significantly
change in the output.
doi:10.1371/journal.ppat.1000529.g005
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each of these was assessed by i.v. infection of BALB/c mice, and

compared to infection with the parental SL1344 as a control (see

Table S3). Figure 6 shows a plot of the mean bacterial viable

counts in the mouse organs on day 3 post-infection, as a function

of the mean attenuation score for all the transposon mutants that

were unambiguously identified as being within that gene. This plot

shows a significant correlation (R2 = 0.54, P = 1.761029).

Immunisation with attenuated mutants identified by
TMDH and protection against challenge with the virulent
parent strain

SL1344 trxA and SL1344 atpA were chosen from the TMDH

screen as live-attenuated vaccine candidates. BALB/c mice were

immunised i.v. with 1.06105 CFU per mouse of SL1344 trxA or

SL1344 atpA. SL3261, an aroA mutant of SL1344 which is a well-

characterised live-attenuated vaccine strain [24], was used as a

control. After 4 months, these mice and age-matched, un-

immunised controls were challenged with an i.v. dose of 16104

CFU SL1344 per mouse. Figure 7 shows bacterial loads in spleens

and livers following this intravenous challenge with SL1344. The

bacterial counts are represented as the geometric means and

standard errors of one representative experiment from two with

similar results. Immunisation with SL1344 trxA and SL1344 atpA

resulted in protection of mice against i.v. challenge with the

virulent parent strain, as shown by the fact that the viable counts

in the organs of immunised animals were lower by several fold

than the viable counts in the control un-immunised animals.

Infections in un-immunised mice were only allowed to proceed to

day 4 before mice were too ill to survive and were culled. In

contrast, immunised mice were still well 14 days after challenge

with SL1344 showing that atpA and trxA mutants when delivered

intravenously can be used as live-attenuated vaccine strains to

protect against a subsequent intravenous challenge. We also

investigated the potential of a tolA mutant to protect against

virulent challenge. tolA was selected from the TMDH screen, and

encodes part of the Tol-Pal complex in the inner membrane of

Gram negative bacteria. SL1344 tolA was attenuated in mice via

the oral and i.v. routes and i.v. immunisation with SL1344 tolA

provided significant protection against subsequent challenge with

SL1344, delivered i.v or orally [25].

Discussion

Comparative in vivo TMDH
We have developed TMDH, a microarray-based screen that

exploits customised transposons with outward-facing promoters

[13] to allow identification of the disrupted genes in pools of

transposon mutants [12]. High-density tiling microarrays and a

novel bioinformatic algorithm are used to locate the site of

transposon insertion with high resolution. This technology is

Figure 6. Plot of mean colony counts for individual defined mutant infections against mean TMDH attenuation score. Colony counts
were obtained 3 days after infection with defined deletion mutants (103 CFU per mouse). Mean values were calculated for at least three mice per
mutant, and compared with the mean TMDH attenuation score for the same gene. The plot shows a significant correlation, demonstrating that TMDH
is an effective screen for identifying genes that are important for infection.
doi:10.1371/journal.ppat.1000529.g006
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generic with many potential applications. One possibility is the use

of large transposon pools to saturate potential sites of insertion,

and hence infer genes essential for survival and replication as those

which do not contain transposons [26].

An alternative application is comparative in vivo TMDH,

which exploits the TMDH method to compare a pool of mutants

harvested from an infection model with the same pool grown in

vitro, to identify mutants that are attenuated in vivo. Again this is a

generic technology and could be applied to the study of any

bacterial pathogen for which a genome sequence, a suitable

transposon and a reproducible model of infection are available.

In the work presented here we have used TMDH to investigate

genes important for S. Typhimurium SL1344 infection of BALB/

c mice.

Comparison of TMDH with earlier microarray-based
methods

There are several previous examples of the use of DNA

microarrays to investigate the distribution of transposon insertions

in bacteria. The majority of these employ large PCR-product

microarrays, with a small number of probes for each gene [9,10,27–

31]. The use of high density tiling microarrays offers a significant

improvement over these methods, allowing sub-genic resolution of

individual transposon insertion sites. An additional advantage of

tiling arrays derives from having probe coverage of the entire

genome. This removes the reliance on annotated genome features,

reduces the possibility that transposons will be in regions not

covered by the microarray, and allows intergenic regions that may

be of interest to be determined. One previous study has reported the

use of genome tiling microarrays to identify the position of

transposons within a bacterial genome [32]. However, the analysis

procedure used in that study was a straightforward examination of

the microarray signals using arbitrary signal-strength cut-offs and

manual inspection. This sort of analysis would not be suitable for

interrogation of large pools of mutants such as those screened in the

current work. Our analysis method is more sophisticated, allowing

an unbiased quantitative measure of the relative fitness of each

transposon mutant to be determined.

Prediction and verification of sites of transposon
insertion

In total, 10368 transposon mutants were obtained and

investigated using TMDH. From these, 8533 (82.3%) putative

insertion sites were identified during the automated microarray

analysis. The remainder includes transposons that could not be

located as they were inserted in regions of the SL1344 genome not

covered by the microarray (including repetitive regions and

plasmids or strain-specific islands not present in LT2). Other

undetected transposons include those that inserted within small

RsaI restriction fragments, and some that could not be unambig-

uously located due to the presence of two or more transposons in

the same orientation within the same restriction fragment. It

would be possible to increase the recovery rate by repeating the

TMDH procedure using additional restriction enzymes and

alternative microarray designs.

The locations of the transposon insertion sites were indepen-

dently verified by obtaining DNA sequence data from the

regions flanking the insert for 37 randomly selected mutants.

BLAST searches of the SL1344 genome using the sequence data

allowed the location and orientation of each of the transposons

to be unambiguously determined. 33 (89.1%) of these were in

positions within the range identified by the automated TMDH

analysis. The analysis of the remaining 4 insertion events

highlights some of the limitations inherent in the method: two

were incorrectly identified due to the presence of additional

transposons in the same orientation within the same restriction

fragment, one was not identified as the insertion was within a

small restriction fragment, and one gave a low signal that did

not exceed the threshold value used to filter false positives from

the dataset. Nevertheless, the correct location of a high

percentage of the transposons suggests that the technology is

suitable for use as a screening method.

Additional support was obtained by PCR amplification of the

regions flanking 13 transposons, using a transposon-specific primer

and one designed to be adjacent to the insertion position predicted

by the automated analysis. Again, sequence data were obtained

using a transposon-specific primer and the position of the

transposon relative to the SL1344 genome was determined using

Figure 7. Use of attenuated mutants identified by TMDH as live vaccines. Growth curves for intravenous challenge of mice with SL1344 (104

CFU per mouse), 4 months after intravenous immunisation with SL1344 trxA, SL1344 atpA or SL3261 (105 CFU per mouse). Bacterial load in (A) spleens
and (B) livers of immunised and age-matched un-immunised mice is shown as mean log10 CFU per organ. Error bars indicate standard error (n = 3–8).
doi:10.1371/journal.ppat.1000529.g007
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BLAST. For this set, all 13 transposons were located within the

range predicted by the automated analysis.

Identification of attenuated S. Typhimurium SL1344
mutants

The TMDH analysis procedure distils the microarray data into

a form equivalent to a standard expression microarray, and allows

the direct comparison of the input and output signals to give a

fold-change. This is expressed as a log2 value and referred to as an

‘‘attenuation score’’. Negative values indicate that the mutant is

attenuated, while positive values suggest that the mutant has a

competitive advantage in vivo. Use of replicate mice additionally

allows the estimation of a P-value. The data for all 8533 mutants

are available in Table S1, ordered by attenuation score.

Importantly, the top (most attenuated) end of the list includes

many genes that have well established roles in virulence. These

include numerous genes that encode structural components of the

SPI-2 T3SS or associated regulators, chaperones and secreted

effector proteins. The requirement of this system for S.

Typhimurium infection and persistence is well established [4],

and virtually all the transposon mutants within this region are

highly attenuated (see Figure 8). Interestingly, transposon

insertions within the other SPI regions present in S. Typhimurium

are not identified as strongly attenuating in our screen (see

Figure 9) – this is probably a consequence of the chosen mode of

infection (i.v.) and the use of the mouse as the model species.

Beside SPI-2, other well established virulence-related genes that

are identified in our dataset include: the aromatic amino acid

biosynthesis (or pre-chorismate) pathway genes aroA, aroC and

aroD, mutants of which are prototype live attenuated Salmonella

vaccines [24,33,34]; the purine biosynthesis genes purA, purD, purF,

purG, purH, guaA and guaB [3,35,36]; LPS core biosynthesis genes

[37]; O-antigen biosynthesis genes [38]; and the virulence plasmid

spv genes [39]. Presumably because of the requirement for the spv

operon, plasmid partitioning is required for virulence, and both

parA and parB mutants are attenuated. The latter is surprising since

parB was described as being dispensable for partitioning in pSLT

[40].

As might be expected, bacteria with mutations in many genes

previously associated with resistance to acid, high temperature and

oxidative stress are unable to survive in vivo. Some of these are

known to be involved in virulence, including slyA [41,42], htrA

(degP) and degS [21,43,44]. Other genes that have been associated

with stress responses but not previously demonstrated to be

attenuated in vivo include the tRNA base modification gene miaA

[45]. The fatty acid biosynthesis gene fabF (atrB) is associated with

the acid tolerance response in S. Typhimurium LT2, but previous

investigation of a mutant in the SL1344 background did not find

Figure 8. TMDH data obtained from array set 6 for SPI-2 and the surrounding regions. Genes are coloured according to their GC content
as indicated by the scale bar. The region of SPI-2 that encodes a type-III secretion system can be identified by its low GC content. The TMDH signals
within this region are abolished in the output datasets, indicating that transposon insertions in this region are attenuating. Insertions in the flanking
regions give comparable signals in the input and output datasets.
doi:10.1371/journal.ppat.1000529.g008
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any significant effect on acid tolerance or virulence [46]. In

contrast, our results suggest that transposon insertions within this

gene are attenuating. This may indicate that the fabF mutation

leads to a mild effect on virulence that is only evident in

competitive assays. DNA recombination and repair is also

important, with our data confirming the importance of dam [47],

recA [48] and recG [49] for virulence. Mutations in the genes recD,

and to a lesser extent recF, recJ and recQ also appear to be

attenuating from our data, however previous studies have not

found recD, recF and recJ mutants to be attenuated during

individual infection assays [50,51].

Other systems that are important for infection and persistence

in our model include carbon metabolism, with attenuating

mutants found in a number of genes involved in glycolysis (pgm,

ptsG, crr and tpiA), the TCA cycle (sucABC and sdhABC), mannose

utilisation (mtlA, mtlD, rfbM and manA) and oxidative phosphory-

lation (the nuo locus, atpABFI, cyoAB and cydA [52]). Zinc transport

(znuABC) [53] and phosphate transport (pstABCS) are also

important for virulence, as is pyrimidine metabolism (pyrBCDE,

and carAB). Mutants of two genes involved in the thioredoxin

system, trxA and trxB, are identified as attenuating by TMDH. Of

these trxA is known to be important for infection of mice [54]. trxB

mutants are not attenuated in individual infections [54] but do

show reduced intracellular proliferation, which may account for

their attenuation in the TMDH competitive infection screen.

Genes identified in our screen that had not previously been

associated with Salmonella virulence include components of the Tol-

Pal system that contributes to membrane stability (tolA and tolB)

[25]; yqiC, which encodes a putative cytoplasmic protein with no

functionally characterised homologues; the putative regulator

encoded by STM4030; ychK, which encodes a patatin-like lipolytic

enzyme; and ybjT, which encodes a putative nucleoside-diphos-

phate-sugar epimerase. Interestingly, the patatin-like ExoU is a

type III-secreted cytotoxin and virulence factor of Pseudomonas

aeruginosa [55], and the E. coli O157:H7 homologue of ybjT is

induced during human infection [56].

Although the TMDH screen is primarily intended to identify

attenuating mutants, it also may identify mutants that perform

better in vivo than in vitro, with attenuation scores significantly

greater than 0. The genes disrupted in these ‘‘hypercompetitive’’

mutants may impair the infection process in wild-type strains.

There are fewer examples of such mutants in our dataset than

attenuating mutants (see Figure 5) – intuitively it is easier to see

how the infection process may be disrupted than enhanced – and

many of the genes at this end of the list have poor P-values.

Nevertheless a few plausible candidate hypercompetitive mutants

are identified. These include several genes involved in flagellar

biosynthesis (flgCEFKI, flhB and fliFHIJKRT), mutants of which are

known to display enhanced virulence [57]; the global transcrip-

tional regulator gene fnr, mutants of which show enhanced entry

into and proliferation within HEp-2 epithelial cells [58]; dsdA,

which encodes a positive regulator of D-serine deaminase and

which when mutated enhances the ability of uropathogenic E. coli

to infect the bladder and kidneys of mice [59]; and araH, the loss of

which is associated with virulence in Burkholderia mallei [60]. There

are also several putative hypercompetitive mutants associated with

Type II secretion (hofQ, hofC, hopD and ppdA).

Validation of targets selected by TMDH
47 of the genes identified in the TMDH screen were subjected

to further investigation by generating defined deletion mutants and

performing single mutant infection assays. The set of 47 genes was

chosen to reflect a range of attenuation scores, and to include a

number of potential live vaccine candidates. It should be noted

that some mutants may be attenuated in parallel infection screens

such as TMDH due to their inability to compete with the other

mutants in the pool, but not show any evidence of attenuation

during a single mutant infection. The reverse is also possible, since

Figure 9. TMDH data obtained for SPI-1, 3, 4, 5, 6 and 9. Transposon inserts within all of these regions result in similar microarray signals in the
input and output datasets, suggesting that these regions are not important for infection in our model.
doi:10.1371/journal.ppat.1000529.g009

Salmonella Infection Genes

PLoS Pathogens | www.plospathogens.org 11 July 2009 | Volume 5 | Issue 7 | e1000529



a mutant may be able to overcome its deficiency in the presence of

other genotypes, for example through the uptake of a compound

secreted by the other bacteria. Also, within the TMDH screen,

different transposon mutants within the same gene are not

necessarily comparable. The transposon may be inserted in a

different position within the gene, or a mutant may perform

differently in the context of a different pool of mutants. Despite

these caveats, Figure 6 demonstrates a significant correlation

between the average attenuation score and the average log10

colony counts from day 3 of the single mutant infection

experiments. This indicates that TMDH attenuation scores

accurately reflect the levels of attenuation seen when defined

deletion mutants are generated and investigated individually.

TMDH therefore represents an effective screen for genes that are

important for infection.

Some of the attenuating mutants selected by TMDH were

investigated further for their ability to elicit an immune response

that would be protective against subsequent challenge with a wild

type strain. atpA and trxA defined deletion mutants protected

against wild-type challenge (Figure 7) and further details of similar

experiments for another promising candidate, tolA, have recently

been published [25]. This demonstrates the power of TMDH as a

screen for identifying mutants that act as novel live-attenuated

vaccine strains.

Supporting Information

Table S1 TMDH attenuation scores for 8533 transposon

mutants. Predicted transposon locations, attenuation scores and

P-values for 8533 transposon insertions identified using TMDH.

The list is ordered by attenuation score.

Found at: doi:10.1371/journal.ppat.1000529.s001 (10.39 MB

XLS)

Table S2 Transposon locations confirmed by sequencing.

Transposon insertion locations predicted by TMDH and con-

firmed by sequencing for 37 randomly chosen mutants from Set6,

and 13 mutants chosen from Set1 and Set3 based on the

microarray data.

Found at: doi:10.1371/journal.ppat.1000529.s002 (0.03 MB XLS)

Table S3 In vivo attenuation of defined deletion mutants. Mean

day 3 colony counts per liver for mice infected i.v. with wild type

SL1344 or defined deletion mutants. P-value indicates probability

that the mean day 3 count obtained for the mutant differs from

that of wild type SL1344, as determined using an unpaired

Student’s t-test.

Found at: doi:10.1371/journal.ppat.1000529.s003 (0.03 MB XLS)
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