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Abstract

We propose a novel heuristic to predict RNA secondary structure formation pathways that

has two components: (i) a folding algorithm and (ii) a kinetic ansatz. This heuristic is inspired

by the kinetic partitioning mechanism, by which molecules follow alternative folding path-

ways to their native structure, some much faster than others. Similarly, our algorithm RAFFT

starts by generating an ensemble of concurrent folding pathways ending in multiple meta-

stable structures, which is in contrast with traditional thermodynamic approaches that find

single structures with minimal free energies. When we constrained the algorithm to predict

only 50 structures per sequence, near-native structures were found for RNA molecules of

length� 200 nucleotides. Our heuristic has been tested on the coronavirus frameshifting

stimulation element (CFSE): an ensemble of 68 distinct structures allowed us to produce

complete folding kinetic trajectories, whereas known methods require evaluating millions of

sub-optimal structures to achieve this result. Thanks to the fast Fourier transform on which

RAFFT (RNA folding Algorithm wih Fast Fourier Transform) is based, these computations

are efficient, with complexity OðL2 log LÞ.

Author summary

The understanding of RNA’s behaviour at the molecular level is crucial for novel applica-

tions such as RNA-based vaccines or gene editing technologies. As proteins, RNA mole-

cules fold into complex molecular structures dictated by their sequence of nucleotides.

Identifying relevant molecular structures of the folding processes is essential but computa-

tionally challenging. Whereas classical approaches predict a single molecular structure, we

propose a method that predicts folding trajectories by leveraging the fast Fourier trans-

form algorithm to identify structural fragments quickly. We showed that the folding tra-

jectories predicted reflect complementary information to classical methods while allowing

us to identify biologically relevant structures.

This is a PLOS Computational Biology Methods paper.
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Introduction

The function of noncoding RNAs is largely determined by their three-dimensional structure

[1]. For instance, the catalytic function of ribozymes can often be analyzed in terms of basic

structural motifs, such as hammerhead or hairpin structures [2]. Other RNAs, like ribos-

witches, involve changes between alternative structures [3]. Understanding the relation

sequence and structure is therefore a central challenge in molecular biology. Because measur-

ing the structure of RNAs through X-ray crystallography or NMR is difficult and expensive,

computational approaches have played a central role in the analysis of natural RNAs [4, 5],

and also in the design of synthetic RNAs [6].

Three levels of structures are used to describe RNA molecules: (1) the primary structure, that

is, the nucleotide sequence itself; (2) the secondary structure formed by Watson-Crick (or wob-

ble) base pairings; (3) the tertiary structure represents the molecule shape in three-dimensional

space. Unlike proteins, RNA structures are usually formed hierarchically; the secondary structure

is formed first, followed by the tertiary structure [7]. This separation of time scales justifies focus-

ing on the prediction of secondary structures; evidence from molecular mechanical stretching

experiments [8] suggests that the resulting tertiary structures (as well as the kinetic bottlenecks

towards their formation) are indeed largely determined by the RNA’s secondary structure.

Although base pairs can be formed with various configurations [9], we only consider here

the canonical interactions: G-C, A-U, and G-U. Moreover, while various subtleties are

involved in the definition of the secondary structure, we use here the formal definition called

pseudoknot-free [10]. In the rest of this work, ‘structure’ refers specifically to this notion of

RNA secondary structure.

The thermodynamic stability ΔGs of a structure s is the free energy difference with respect

to the completely unfolded state. To predict biologically relevant structures, most computa-

tional methods search for structures that minimize this free energy. To this aim, structures are

decomposed into components called loops, such that using the additivity principle [11], the

free energy of a structure can be approximated by the sum of its constituent loops free ener-

gies. Many models allow to compute the free energies of those constituent loops, but the domi-

nant one is the nearest-neighbor loop energy model [12]. This model associates tabulated free

energy values to loop types and nucleotide compositions; the Turner2004 [13] is one of the

most widely used set of parameters. This structure decomposition allows an efficient dynamic

programming algorithm that can determine the minimum free energy (MFE) structure of a

sequence in the entire structure space [14].

The MFE structure is commonly used in free-energy based predictions; however, it repre-

sents one structural estimate among many others, including the maximum expected accuracy

(MEA).

Several existing tools implement the Zuker dynamic programming algorithm [14], e.g.

RNAfold [15], Mfold [16], or RNAstructure [17]. While these methods were found to

predict RNA structures accurately, as shown in recent benchmarks [18, 19], the additivity

principle is expected to break down when structures are too large. Moreover, thermodynamic

models tend to ignore pseudoknot loops, which can sometimes limit their biological relevance.

Recently, machine learning (ML) approaches were investigated and seemed to overcome

some of these shortcomings. ML-based structure prediction tools provide substantial improve-

ments [18, 20]. However, in addition to some over-fitting concerns [21], these approaches can-

not give dynamical information, as few data are available on structural dynamics. In addition,

ML methods do not follow from first principles: structural training data are mostly obtained

through phylogenetic analyses. Consequently, the predictions from those methods may be

biased, e.g. due to in vivo third-party elements.

PLOS COMPUTATIONAL BIOLOGY RAFFT: Efficient prediction of RNA folding pathways using the fast Fourier transform

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010448 August 26, 2022 2 / 18

Funding: MS is funded by Sofja Kovalevskaja

Award endowed by the German Federal Ministry of

Education and Research, and by the Human

Science Frontier Program Organization through a

Young Investigator Award grant RGY0077/2019.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1010448


From the dynamical standpoint, the RNA molecule navigates its structure space by follow-

ing a free energy landscape. Three rate models describing elementary steps in the structure

space are currently used to study RNAs folding dynamics: (1) the base stack model uses base

stacks formations and breaking as elementary moves [22]; (2) the base pair model as imple-

mented in kinfold [23] gives the finest resolution with base pair steps, but at the cost of

computation time; (3) the stem model [24] provides a coarse-grained description of the

dynamics, where free energy changes due to stem formation guide the folding process. The lat-

ter makes a notable assumption: transition states (or saddle points) involved in the formation

of a stem are not considered [25]. An alternative approach, implemented in kinwalker [26],

used the observation that folded intermediates are generally locally optimal conformations.

In folding experiments, Pan and coworkers observed two kinds of pathways in the free

energy landscape of a natural ribozyme [27]. Firstly, the experiments revealed fast-folding

pathways, in which a sub-population of RNAs folded rapidly into the native state. The second

population, however, quickly reached metastable misfolded states, then slowly folded into the

native structure. In some cases, these metastable states are functional. These phenomena are

direct consequences of the rugged nature of the RNA folding landscape [28]. The experiments

performed by Russell and coworkers also revealed the presence of multiple deep channels

separated by high energy barriers on the folding landscape, leading to fast and slow folding

pathways [29]. The formal description of the above mechanism, called kinetic partitioning

mechanism, was first introduced by Guo and Thirumalai in the context of protein folding

[30]. In the free energy landscape, these metastable conformations form competing attraction

basins in which RNA molecules are temporarily trapped. However, in vivo, folding into the

native states can be promoted by molecular chaperones [31], which means that the active

structure depends on factors other than the sequence. This may rise some discrepancy when

comparing thermodynamic modelling to real data.

Here, we propose a novel approach to RNA structure prediction and dynamics inspired by

the kinetic partitioning mechanism. Our method has two components: (1) a folding algorithm

that models the fast-folding pathways and (2) a kinetic ansatz that displays how the conforma-

tions are populated over time (Fig 1).

The folding algorithm constructs multiple parallel folding pathways by sequentially forming

stems. This procedure yields an ensemble of structures modelling the complete folding pro-

cess, from the unfolded state to multiple folded states. The FFT algorithm on which RAFFT is

based has already been used in the analysis of sequences [32]; for example, it powers MAFFT, a

well-known multiple-sequence-alignment tool [33].

The quality of the predicted ensembles of structures has been assessed on a the well-curated

dataset ArchiveII [34]. The results were compared to two structure estimates: the MFE

Fig 1. RAFFT framework. (1) The sequence of nucleotides of the RNA molecule is first encoded numerically to facilitate its

treatment. (2) The numerically encoded sequence is analyzed using the FFT to detect stems quickly, such that stems are

added iteratively to form parallel folding paths. (3) The folding pathways form a graph that connects potential intermediate

secondary structures. Starting with the unfolded structure, our kinetic ansatz predicts a complete folding trajectory (i.e. when

the RNA molecule adopts a specific structure).

https://doi.org/10.1371/journal.pcbi.1010448.g001
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structure computed with RNAfold, and the ML structure computed with MXfold2 [18]

since methods of each approaches displayed similar performances.

Using RAFFT, we investigated the folding kinetic of the Coronavirus frameshifting stimula-

tion element (CFSE) [35]. RAFFT’s procedure displayed results qualitatively similar to the

state-of-the-art barrier kinetics [23]. However, our procedure requires drastically fewer struc-

tures and models the complete folding process from the unfolded state. Our kinetic modelling

revealed that the native structure of the CFSE is a kinetic trap while the MFE structure only

appears some time after.

Material and methods

Folding algorithm

We start from a sequence of nucleotides S = (S1 . . . SL) of length L, and its associated unfolded

structure. We first create a numerical representation of S where each nucleotide is replaced by

a unit vector of 4 components:
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This encoding gives us a (4 × L)-matrix we call X, where each row corresponds to a nucleotide

as shown below:
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For example, XA(i) = 1 if Si = A. Next, we create a second copy �S ¼ ð �SL . . . �S1Þ for which we

reversed the sequence order. Then, each nucleotide of �S is replaced by one of the following vec-

tors:
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�A (respectively �C; �G; �U ) is the complementary of A (respectively C, G, U). wAU, wGC, wGU rep-

resent the weights associated with each canonical base pair; these parameters are chosen

empirically. We call this complementary copy �X , the mirror of X.

To search for stems, we use the complementary relation between X and �X with the correla-

tion function cor(k). This correlation is defined as the sum of individual X and �X row
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correlations:

corðkÞ ¼
X

a2fA;C;G;Ug

cXa ;�XaðkÞ; ð4Þ

where a row correlation between X and �X is given by:

cXa ;�XaðkÞ ¼
X 1 � i � L

1 � iþ k � L

XaðiÞ�Xaðiþ kÞ
minðk; 2L � kÞ

: ð5Þ

For each α 2 {A, C, G, U}, XaðiÞ � �Xaðiþ kÞ is non-zero if sites i and i + k can form a base

pair, and has the chosen weight; therefore, the set of weights can be seen as a simplified energy

function scoring stems. If all the weights are set to 1, cor(k) gives the likelihood of base pairs

for a positional lag k. However, the weights can be tuned in order to facilitate the detection of

stems containing some types of stems, i.e. as G-C interactions are known to be stronger, a

larger weight can be used to favor the detection of G-C rich stems. Although the correlation

naively requires O(L2) operations, it can take advantage of the FFT which reduces its complex-

ity to OðL logLÞ.
Large cor(k) values between the two copies indicate positional lags k where the frequency of

base pairs is high; however, this does not allow to determine the exact stem positions. Hence,

we use a sliding window strategy to search for the largest stem within the positional lag (since

the copies are symmetrical, we only need to slide over one-half of the positional lag). Once the

largest stem is identified, we compute the free energy, using the ViennaRNA package API [36],

change associated with the formation of that stem. We perform this search for the n highest

correlation values, which gives us n potential stems. Then, we define the stem with the lowest

free energy as the current structure.

We are now left with two independent parts, the interior and the exterior of the newly

formed stem. If the exterior part is composed of two fragments, they are concatenated into

one. Then, we apply recursively the same procedure on the two parts independently in a

breadth-first fashion to form new consecutive base pairs. The procedure stops when no base

pair formation can improve the energy. When multiple stems can be formed in these indepen-

dent fragments, we combine all of them and pick the composition with the best overall stabil-

ity. If too many compositions can be formed, we restrict this to the 103 best in terms of energy.

Fig 2 shows an example of a single step to illustrate the procedure.

The complexity of this algorithm depends on the number and size of the stems formed. The

main operations performed for each stem formed are: (1) the evaluation of the correlation

function cor(k), (2) the sliding-window search for stems, and (3) the energy evaluation. We

based our approximate complexity on the correlation evaluation since it is the most computa-

tionally demanding step; the other operations only contribute a multiplicative constant at

most. The best case is the trivial structure composed of one large stem where the algorithm

stops after evaluating the correlation on the complete sequence. At the other extreme, the

worst case is one where at most L/2 stems of size 1 (exactly one base pair per stem) can be

formed. The approximate complexity therefore depends on
PL=2

i¼0
ðL � 2iÞ logðL � 2iÞ ¼ OðL2 log LÞ.

The algorithm described so far tends to be stuck in the first local minima found along the

folding trajectory. To alleviate this, we implemented a stacking procedure where the N best tra-

jectories are saved in stacks and evolved in parallel. As shown in Fig 3, the algorithm starts

with the unfolded structure; then, the N most stable stems are saved iteratively in stacks, lead-

ing to the construction of a graph we call fast-folding graph. The empirical time complexity of
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the naive algorithm and the stacked version only changes by a scaling pre-factor (Fig 4). The

naive naive algorithm is very fast for sequence up to 104; however, LinearFold [19] is the fastest

for the largest sequences.

Kinetic ansatz

Our folding kinetic ansatz uses the fast-folding graph to model the slow processes by which

RNA molecules slowly escape from metastable structures. As described in Fig 3, transitions fol-

lows the formation or destruction of stems. The fast-folding graph follows the idea that parallel

pathways quickly reach their endpoints; however, when the endpoints are non-native states,

this ansatz allows slowly folding back into the native state [27].

As usually done, the kinetics is modelled as a continuous-time Markov chain [38], where

populations of structures evolve according to transition rates. In this context, an Arrhenius

formulation is commonly used to derive transition rates r(x! y)/ exp(−βE‡), where E‡ is the

activation energy separating x from y. In contrast, our kinetic ansatz uses transition rates r(x
! y) based on the Metropolis scheme already used in [39], and defined as

rðx! yÞ ¼ k0 �minð1; expð� bDDGðx! yÞÞÞ; ð6Þ

Fig 2. Algorithm execution for one example sequence which requires two steps. (Step 1) From the correlation cor(k), we select one peak which

corresponds to a position lag k. Then, we search for the largest stem and form it. Two fragments, “In” (the interior part of the stem) and “Out” (the

exterior part of the stem), are left, but only the “Out” may contain a new stem to add. (Step 2) The procedure is called recursively on the “Out” sequence

fragment only. The correlation cor(k) between the “Out” fragment and its mirror is then computed and analyzing the k positional lags allows to form a

new stem. Finally, no more stem can be formed on the fragment left (colored in blue), so the procedure stops.

https://doi.org/10.1371/journal.pcbi.1010448.g002
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Fig 3. Fast folding graph constructed using RAFFT. In this example, the sequence is folded in two steps: starting

from the unfolded structure, the N = 5 most stable stems found are stored in stack 1. From stack 1, multiple stems can

be formed but only the N = 5 most stable are stored in stack 2. All secondary structure visualizations were obtained

using VARNA [37].

https://doi.org/10.1371/journal.pcbi.1010448.g003

Fig 4. Execution time comparisons. For samples of 30 sequences per length, we averaged the execution times of five folding tools. The

empirical time complexity O(Lη) where η is obtained by non-linear regression. RAFFT denotes the naive algorithm whereas RAFFT(50)

denotes the algorithm where 50 structures can be saved per stack.

https://doi.org/10.1371/journal.pcbi.1010448.g004
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where ΔΔG(x! y) is the stability change between structure x and y. Here k0 is a conversion

constant that we set to 1 for the sake of simplicity. These transitions are only allowed if y is

connected to x in the graph (i.e. y is in the neighborhood of x, y 2 X). Here, we initialize the

population px(0) with only unfolded structures; therefore, the trajectory represents a complete

folding process. The frequency of a structure x evolves according to the master equation

dpxðtÞ
dt
¼
X

y2X

rðy! xÞpyðtÞ � rðx! yÞpxðtÞ; ð7Þ

where the sum runs over the neighborhood X of x.

The traditional kinetic approach starts by enumerating the whole space (or a carefully cho-

sen subspace) of structures using RNAsubopt. Next, this ensemble is divided into local attrac-

tion basins separated from one another by energy barriers. This coarsening is usually done

with the tool barriers. Then, following the Arrhenius formulation, one simulates a coarse

grained kinetics between basins. In contrast, the Metropolis scheme used in our kinetic ansatz

is based on the stability difference between structures, which may hide energy barriers. Due to

this approximation, we referred to our approach as a kinetic ansatz.

Benchmark dataset

To build the dataset for the folding task application, we started from the ArchiveII dataset

derived from multiple sources [40–56]. We first removed all the structures with pseudoknots,

since the tools considered here do not handle them. Next, we evaluated the structures’ energies

and removed all the unstable structures (i.e. structures with energies ΔGs> 0). This dataset is

composed of 2, 698 sequences with their corresponding known structures. 240 sequences were

found multiple times (from 2 to 8 times); 19 of them were mapped to different structures. For

the sequences that appeared with different structures, we picked the structure with the lowest

energy. In the end, we obtained a dataset of 2, 296 sequences-structures.

Structure prediction protocols for benchmarks

To evaluate the structure prediction accuracy of the proposed method, we compared it to two

structure estimates: the MFE structure and the ML structure. To compute the MFE structure,

we used RNAfold 2.4.13 with the default parameters. We computed the prediction using

MXfold2 0.1.1 with the default parameters for the ML structure. Therefore, only one

structure prediction per sequence for those two methods was used for the statistics.

Two parameters are critical for RAFFT, the number of positional lags in which stems are

searched, and the number of structures stored in the stack. For our computational experi-

ments, we searched for stems in the n = 100 best positional lags and stored N = 50 structures.

The correlation function cor(k), which allows to choose the positional lags, is computed using

the weights wGC = 3, wAU = 2, and wGU = 1.

To assess the performance of RAFFT, we analyzed the output in two different ways. First,

we considered only the structure with the lowest energy found for each sequence. This proce-

dure allows us to assess RAFFT performance in search of low energy structure only. Second,

we computed the accuracy of all N = 50 structures saved in the last stack for each sequence and

displayed only the best structure in terms of accuracy (RAFFT�). As mentioned above, the low-

est energy structure found may not be the active structure. Therefore, this second procedure

allows us to assess whether one of the pathways constituting the ensemble is biologically

relevant.

We used two metrics to measure the prediction accuracy: the positive predictive value

(PPV) and the sensitivity. The PPV measures the fraction of correct base pairs in the predicted
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structure, while the sensitivity measure the fraction of base pairs in the accepted structure that

are predicted. These metrics are defined as follows:

PPV ¼
TP

TPþ FP
; Sensitivity ¼

TP
TP þ FN

; ð8Þ

where TP, FN, and FP stand respectively for the number of correctly predicted base pairs (true

positives), the number of base pairs not detected (false negatives), and the number of wrongly

predicted base pairs (false positives). To be consistent with previous studies, we computed

these metrics using the scorer tool provided by Matthews et al. [34], which also provides a

more flexible estimate where shifts are allowed.

Structure space visualization

We used a Principal Component Analysis (PCA) to visualize the loop diversity in the datasets

considered here. To extract the weights associated with each structure loop from the dataset,

we first converted the structures into weighted coarse-grained tree representation [57]. In the

tree representation, the nodes are generally labelled as E (exterior loop), I (interior loop), H

(hairpin), B (bulge), S (stacks or stem-loop), M (multi-loop) and R (root node). We separately

extracted the corresponding weights for each node, and the weights are summed up and then

normalized. Excluding the root node, we obtained a table of 6 features and n entries. This

allows us to compute a 6 × 6 correlation matrix that we diagonalize using the eigen routine

implemented in the scipy package. For visual convenience, the structure compositions were

projected onto the first two Principal Components (PC).

Results

Application to the folding task

We started by analyzing the prediction performances with respect to sequence lengths: we

averaged the performances at fixed sequence length. Fig 5 shows the performance in PPV and

sensitivity for the three methods. It shows that the ML method consistently outperformed

RAFFT and MFE predictions. A t-test between the ML and the MFE predictions revealed not

only a significant difference (p-value� 10−12) but also a substantial improvement of 14.5% in

PPV. RAFFT showed performances similar to the MFE predictions for shorter sequences;

however, RAFFT is significantly less accurate for sequences of length greater than 300

nucleotides.

The quality of the trajectories predicted by our framework, and therefore, by our kinetic

ansatz depends on the quality of the ensemble of structures predicted by the folding compo-

nent of our method. Consequently, we try here to answer the question: are there relevant struc-

tures in the ensemble predicted by our method? To address this question we retained the

structure with the best score among the 50 recorded structures per sequence. We obtained an

average PPV of 57.9% and an average sensitivity of 63.2% over all the dataset. The gain in

terms of PPV/sensitivity is especially pronounced for sequences of length� 200 nucleotides,

indicating the presence of biologically more relevant structures in the predicted ensemble than

the thermodynamically most stable one (PPV was = 79.4%, and sensitivity = 81.2%). The aver-

age scores are shown in Table 1. We also investigated the relation to the number of bases

between paired bases (base pair spanning), but we found no striking effect, as already pointed

out in one previous study [58].

All methods performed poorly on two groups of sequences: one group of 80 nucleotides

long RNAs, and the second group of around 200 nucleotides (two of these sequences are

shown in Fig A in S1 Appendix). The PCA analysis of the known structure space, shown in Fig
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6, reveals a propensity for interior loops and the presence of large unpaired regions like hair-

pins or external loops. The structure space produced by the ML predictions seems closer to the

native structure space. In contrast, the structure spaces produced by RAFFT and RNAfold
(MFE) are similar and more diverse.

Test case: The investigation of the CFSE folding dynamics

We applied the RAFFT framework (folding + kinetics) to the CFSE, a natural RNA sequence

of 82 nucleotides, where the structure has been determined by sequence analysis and obtained

Fig 5. RAFFT’s performance on folding task. PPV and sensitivity vs sequence length. In the left panels, RAFFT (in blue)

shows the scores when for the structure (out of N = 50 predictions) with the lowest free energy, whereas RAFFT� (in green)

shows the best PPV score in that ensemble. Each dot corresponds to the mean performance for a given sequence length, and

vertical lines display their standard deviation. The right panels of both figures show the distribution of PPV and sensitivity

sequence-wise.

https://doi.org/10.1371/journal.pcbi.1010448.g005
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from the RFAM database. This structure has a pseudoknot which is not taken into account

here.

Fig 7A and 7B respectively show the fast-folding graph constructed using RAFFT, and the

MFE and native structures for the CFSE. The fast-folding graph is computed in four steps. At

each step, stems are constructed by searching for n = 100 positional lags and, a set of N = 20

structures (selected according to their free energies) are stored in a stack. The resulting fast-

folding graph consists of 68 distinct structures, each of which is labelled by a number. Among

the structures in the graph, 6 were found similar to the native structure (16/19 base pairs differ-

ences). The structure labelled “29” in the graph leading to the MFE structure “59” is the 9th in

the second stack. When storing less than 9 structures in the stack at each step, we cannot

Table 1. Average performance displayed in terms of PPV and sensitivity. The metrics were first averaged at fixed

sequence length, limiting the over-representation of shorter sequences. The first two rows show the average perfor-

mance for all the sequences for each method. The bottom two rows correspond to the performances for the sequences

of length� 200 nucleotides. For the ML and MFE only one prediction per sequence and for RAFFT 50 predictions per

sequence were used. Here RAFFT (respectively RAFFT�) refers to the case when the lowest free energy (resp. highest

PPV) from the ensemble of 50 predictions is selected.

RAFFT ML MFE RAFFT�

All sequences

PPV 47.7 70.4 55.9 60.0

Sensitivity 52.8 77.1 63.3 62.8

Sequences with lengths� 200

PPV 57.9 76.7 59.5 79.4

Sensitivity 63.2 82.9 65.5 81.2

https://doi.org/10.1371/journal.pcbi.1010448.t001

Fig 6. Structure space analysis. PCA for the predicted structures using RAFFT, RNAfold, MxFold2 compared

to the known structures denoted “True”. The arrows represent the direction to secondary structure types (H = hairpin,

I = E = exterior loop, I = interior loop, H = hairpin, B = bulge, S = stacks, M = multi-loop and R = root node).

https://doi.org/10.1371/journal.pcbi.1010448.g006
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obtain the MFE structure using RAFFT; this is a direct consequence of the greediness of the

proposed method. To visualize the energy landscape drawn by RAFFT, we arranged the struc-

tures in the fast-folding graph onto a surface according to their base-pair distances; for this we

used the multidimensional scaling algorithm implemented in the scipy package. Fig 7D

shows the landscape interpolated with all the structures found; this landscape illustrates the bi-

stability of the CFSE, where the native and MFE structures are in distinct regions of the struc-

ture space.

From the fast-folding graph produced using RAFFT, the transition rates from one structure

in the graph to another are computed using the formula given in Eq 6. Starting from a popula-

tion of unfolded structure and using the computed transition rates, the native of structures is

calculated using Eq 7. Fig 7C shows the frequency of each structure; as the frequency of the

unfolded structure decreases to 0, the frequency of other structures increases. Gradually, the

structure labelled “44”, which represents the CFSE native structure, takes over the population

and gets trapped for a long time, before the MFE structure (labelled “59”) eventually becomes

dominant. Even though the fast-folding graph does not allow computing energy landscape

properties (saddle, basin, etc.), the kinetics built on it reveals a high barrier separating the two

meta-stable structures (MFE and native).

Our kinetic simulation was then compared to Treekin [59]. First, we generated 1.5 × 106

sub-optimal structures up to 15 kcal/mol above the MFE structure using RNAsubopt [36].

Since the MFE is ΔGs = −25.8 kcal/mol, the unfolded structure could not be sampled. Second,

the ensemble of structures is coarse-grained into 40 competing basins using the tool barri-
ers [59], with the connectivity between basins represented as a barrier tree (see Fig 8A).

Fig 7. Application of the folding kinetic ansatz on CFSE. (A) Fast-folding graph in four steps and N = 20 structures stored in a stack at each step. The

edges are coloured according to ΔΔG. At each step, the structures are ordered by their free energy from top to bottom. The minimum free energy

structure found is at the top left of the graph. A unique ID annotates visited structures in the kinetics. For example, “59” is the ID of the MFE structure.

(B) MFE (computed with RNAfold) and the native CFSE structure. (C)The change in structure frequencies over time. The simulation starts with the

whole population in the open-chain or unfolded structure (ID 0). The native structure (Nat.l) is trapped for a long time before the MFE structure

(MFE.l) takes over the population. (D) Folding landscape derived from the 68 distinct structures predicted using RAFFT. The axes are the components

optimized by the MDS algorithm, so the base pair distances are mostly preserved. Observed structures are also annotated using the unique ID. MFE-like

structures (MFE.l) are at the bottom of the figure, while native-like (Nat.l) are at the top.

https://doi.org/10.1371/journal.pcbi.1010448.g007
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When using Treekin, the choice of the initial population is not straightforward. Therefore

we resorted to two initial structures I1 and I2 (see Fig 8B and 8C, respectively). In Fig 8B, the

trajectories show that only the kinetics initialized in the structure I2 can capture the complete

folding dynamics of CFSE, in which the two metastable structures are visible. Thus, in order to

produce a folding kinetics in which the native and the MFE structures are visible, the kinetic

simulation performed using Treekin required a particular initial condition and a barrier

tree representation of the energy landscape built from a set of 1.5 × 106 structures. By contrast,

using the fast-folding graph produced by RAFFT, which consists only of 68 distinct structures,

our kinetic simulation produces complete folding dynamics starting from a population of

unfolded structure.

Discussion

We have proposed a method for RNA folding dynamics predictions called RAFFT. Our

method was inspired by the experimental observation of parallel fast-folding pathways.

RAFFT has two components: a folding algorithm and a kinetic ansatz.

First, we showed that our algorithm produces ensembles that contain biologically relevant

structures. Two structure estimates were compared to our method: the MFE structure com-

puted using RNAfold, and the ML estimate using MXfold2. Other thermodynamic-based

and ML-based tools were investigated but not shown here because their performances were

found to be very similar to the one of MXfold2 and RNAfold (See Fig A in S1 Appendix for

the complete benchmark). When we considered the lowest energy structure, the comparison

of RAFFT to existing tools confirmed the overall validity of our approach. In more detail, com-

parisons with thermodynamic/ML models yielded the following results. First, the ML predic-

tions performed consistently better than both RAFFT and the MFE approach, where the

Fig 8. Folding kinetics of CFSE using Treekin. A) Barrier tree of the CFSE. From a set of 1.5 × 106 sub-optimal structures, 40 local minima were

found, connected through saddle points. The tree shows two alternative structures separated by a high barrier with the global minimum (MFE

structure) on the right side. (B) Folding kinetics with initial population I1. Starting from an initial population of I1, as the initial frequency decreases, the

others increase, and gradually the MFE structure is the only one populated. (C) Folding kinetics with initial population I2. When starting with a

population of I2, the native structure (labelled Nat.1) is observable, and gets kinetically trapped for a long time due to the high energy barrier separating

it from the MFE structure.

https://doi.org/10.1371/journal.pcbi.1010448.g008
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PPV = 70.4% and sensitivity = 77.1% on average. Second, the ML methods produced loops,

such as long hairpins or external loops. We argue that the density of those loops correlates

with the ones in the benchmark dataset, which a PCA analysis revealed too. In contrast, the

density of loops was lower in the structure spaces produced by RAFFT and MFE, implying

some over-fitting in the ML model. Finally, known structures obtained through covariation

analysis reflect structures in vivo conditions. Therefore, the structures predicted by ML meth-

ods may not only result from their sequences alone but also from their molecular environ-

ment, e.g. chaperones. We expect the thermodynamic methods to provide a more robust

framework for the study of sequence-to-structure relations.

So how does RAFFT predictions contain more relevant structures than the MFE, although

these structures are less thermodynamically stable? The interplay of three effects may explain

this finding. First, the MFE structure may not be relevant because active structures can be in

kinetic traps. Second, RAFFT forms a set of pathways that cover the free energy landscape

until they reach local minima, yielding multiple long-lived structures accessible from the

unfolded state. Third, the energy function is not perfect, so the MFE structures computed by

minimizing it may not be the most stable.

However, identifying these structures in the ensembles produced by RAFFT is not trivial.

In contrast to the benchmark data, the native structure is usually unknown, necessitating fur-

ther analyses of the ensembles output by RAFFT. The empirical results showed that we can use

RAFFT fast-folding graph to reproduce state-of-the-art kinetics, at least qualitatively. Our

method demonstrated three main benefits. First, the kinetics can be drawn from as few as 68

structures, whereas the barrier tree may require millions. Second, the kinetics ansatz describes

the complete folding mechanism starting from the unfolded state. Third, the procedure did

not require additional coarse-graining into basins for the length range tested here. (Longer

RNAs might require such a coarse-graining step, in which structures connected in the fast-

folding graph are merged together).

We believe that the proposed method is a robust heuristic for structure prediction in con-

junction with folding dynamics based on our results. The folding landscape depicted by

RAFFT was designed to follow the kinetic partitioning mechanism, where multiple folding

pathways span the folding landscape. This approach has shown good predictive potential. Fur-

thermore, we derived a kinetic ansatz from the fast-folding graph to model the slow part of the

folding dynamics. It approximated the usual kinetics framework qualitatively, requiring drasti-

cally fewer structures. Our findings suggest that the RNA folding kinetic partitioning mecha-

nism is indeed following the stem competition at the foundation of RAFFT.

On the one hand, further improvements to RAFFT’s algorithm could be investigated:

• the choice of stems is limited to the largest in each positional lag, a greedy choice that may

not be optimal. We propose to add stochasticity in the selection of positional lag to keep,

such that running multiple times RAFFT, one can overcome some greediness bottlenecks.

• our method constructs parallel pathways leading to a diverse set of accessible structures. Still,

we have not given any thermodynamic-based criterion to identify which are more likely to

resemble the native structure. We suggest using an ML-optimized score to investigate the

restrained ensemble of structures predicted by RAFFT.

• structures connected in the parallel pathways are separated by the formation or unfolding of

a single stem. As mentioned above, RAFFT does not account for barriers between structures

that stem formation could involve. Therefore, we propose to apply a post-treatment on the

folding graph, where the folding path between structures is investigated using the set of valid

atomic folding moves (e.g. individual base-pair formation).
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On the other hand, our method can also find applications in RNA design. The design pro-

cedure could start with identifying long-life intermediates and using them as target structures.

Moreover, the efficient stem sampling enabled by the FFT can also be straightforwardly

applied to the search for RNA-RNA interactions.

Supporting information

S1 Appendix. Supporting appendix. Additional numeric experiments for comparing other

folding tools and execution times.

(PDF)
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43. Daub J, Gardner PP, Tate J, Ramsköld D, Manske M, Scott WG, et al. The RNA WikiProject: commu-

nity annotation of RNA families. RNA. 2008; 14(12):2462–2464. https://doi.org/10.1261/rna.1200508

PMID: 18945806

44. Damberger SH, Gutell RR. A comparative database of group I intron structures. Nucleic Acids

Research. 1994; 22(17):3508–3510. https://doi.org/10.1093/nar/22.17.3508 PMID: 7937050

45. Zwieb C. Tmrdb (tmRNA database). Nucleic Acids Research. 2000; 28(1):169–170. https://doi.org/10.

1093/nar/28.1.169 PMID: 10592214

46. Zwieb C. Tmrdb (tmRNA database). Nucleic Acids Research. 2003; 31(1):446–447. https://doi.org/10.

1093/nar/gkg019 PMID: 12520048

47. Waring RB, Davies RW. Assessment of a model for intron RNA secondary structure relevant to RNA

self-splicing—a review. Gene. 1984; 28(3):277–291. https://doi.org/10.1016/0378-1119(84)90145-8

PMID: 6086458

48. Specht T, Szymanski M, Barciszewska MZ, Barciszewski J, Erdmann VA. Compilation of 5s rRNA and

5s rRNA gene sequences. Nucleic Acids Research. 1997; 25(1):96–97. https://doi.org/10.1093/nar/25.

1.96 PMID: 9016510

49. Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S. Compilation of tRNA sequences and sequences

of tRNA genes. Nucleic Acids Research. 1998; 26(1):148–153. https://doi.org/10.1093/nar/26.1.148

PMID: 9399820

50. Sloma MF, Mathews DH. Exact calculation of loop formation probability identifies folding motifs in RNA

secondary structures. RNA. 2016; 22(12):1808–1818. https://doi.org/10.1261/rna.053694.115 PMID:

27852924

51. Schnare MN, Damberger SH, Gray MW, Gutell RR. Comprehensive comparison of structural character-

istics in eukaryotic cytoplasmic large subunit (23 S-like) ribosomal RNA. Journal of Molecular Biology.

1996; 256(4):701–719. https://doi.org/10.1006/jmbi.1996.0119 PMID: 8642592

PLOS COMPUTATIONAL BIOLOGY RAFFT: Efficient prediction of RNA folding pathways using the fast Fourier transform

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010448 August 26, 2022 17 / 18

https://doi.org/10.1002/bip.360360108
https://doi.org/10.1002/bip.360360108
https://doi.org/10.1073/pnas.1712962114
http://www.ncbi.nlm.nih.gov/pubmed/29217641
https://doi.org/10.1093/nar/18.21.6305
http://www.ncbi.nlm.nih.gov/pubmed/2243777
https://doi.org/10.1093/nar/10.1.133
http://www.ncbi.nlm.nih.gov/pubmed/6174932
https://doi.org/10.1016/j.ymeth.2019.04.003
http://www.ncbi.nlm.nih.gov/pubmed/30951834
https://doi.org/10.1016/j.virol.2004.11.038
https://doi.org/10.1016/j.virol.2004.11.038
http://www.ncbi.nlm.nih.gov/pubmed/15680415
https://doi.org/10.1186/1748-7188-6-26
http://www.ncbi.nlm.nih.gov/pubmed/22115189
https://doi.org/10.1093/bioinformatics/btp250
http://www.ncbi.nlm.nih.gov/pubmed/19398448
https://doi.org/10.5220/0008916600230031
https://doi.org/10.5220/0008916600230031
https://doi.org/10.1140/epjb/e2008-00136-7
https://doi.org/10.1186/1471-2105-9-340
http://www.ncbi.nlm.nih.gov/pubmed/18700982
https://doi.org/10.1093/nar/26.1.351
https://doi.org/10.1093/nar/26.1.351
http://www.ncbi.nlm.nih.gov/pubmed/9399871
https://doi.org/10.1261/rna.2125310
http://www.ncbi.nlm.nih.gov/pubmed/20699301
https://doi.org/10.1261/rna.1200508
http://www.ncbi.nlm.nih.gov/pubmed/18945806
https://doi.org/10.1093/nar/22.17.3508
http://www.ncbi.nlm.nih.gov/pubmed/7937050
https://doi.org/10.1093/nar/28.1.169
https://doi.org/10.1093/nar/28.1.169
http://www.ncbi.nlm.nih.gov/pubmed/10592214
https://doi.org/10.1093/nar/gkg019
https://doi.org/10.1093/nar/gkg019
http://www.ncbi.nlm.nih.gov/pubmed/12520048
https://doi.org/10.1016/0378-1119(84)90145-8
http://www.ncbi.nlm.nih.gov/pubmed/6086458
https://doi.org/10.1093/nar/25.1.96
https://doi.org/10.1093/nar/25.1.96
http://www.ncbi.nlm.nih.gov/pubmed/9016510
https://doi.org/10.1093/nar/26.1.148
http://www.ncbi.nlm.nih.gov/pubmed/9399820
https://doi.org/10.1261/rna.053694.115
http://www.ncbi.nlm.nih.gov/pubmed/27852924
https://doi.org/10.1006/jmbi.1996.0119
http://www.ncbi.nlm.nih.gov/pubmed/8642592
https://doi.org/10.1371/journal.pcbi.1010448


52. Mathews DH, Sabina J, Zuker M, Turner DH. Expanded sequence dependence of thermodynamic

parameters improves prediction of RNA secondary structure. Journal of Molecular Biology. 1999; 288

(5):911–940. https://doi.org/10.1006/jmbi.1999.2700 PMID: 10329189

53. Samuelsson T, Zwieb C. The signal recognition particle database (SRPDB). Nucleic Acids Research.

1999; 27(1):169–170. https://doi.org/10.1093/nar/27.1.169 PMID: 9847170

54. Gutell RR, Gray MW, Schnare MN. A compilation of large subunit (23S and 23S-like) ribosomal RNA

structures: 1993. Nucleic Acids Research. 1993; 21(13):3055. https://doi.org/10.1093/nar/21.13.3055

PMID: 8332527

55. Gutell RR. Collection of small subunit (16S-and 16S-like) ribosomal RNA structures: 1994. Nucleic

Acids Research. 1994; 22(17):3502–3507. https://doi.org/10.1093/nar/22.17.3502 PMID: 7524024

56. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, et al. Rfam: updates to the RNA

families database. Nucleic Acids Research. 2009; 37(suppl_1):D136–D140. https://doi.org/10.1093/

nar/gkn766 PMID: 18953034

57. Shapiro BA, Zhang K. Comparing multiple RNA secondary structures using tree comparisons. Bioinfor-

matics. 1990; 6(4):309–318. https://doi.org/10.1093/bioinformatics/6.4.309 PMID: 1701685

58. Amman F, Bernhart SH, Doose G, Hofacker IL, Qin J, Stadler PF, et al. In: The trouble with long-range

base pairs in RNA folding. Advances in Bioinformatics and Computational Biology. Springer Interna-

tional Publishing; 2013. p. 1–11. Available from: https://doi.org/10.1007/978-3-319-02624-4_1.

59. Flamm C, Hofacker IL, Stadler PF, Wolfinger MT. Barrier trees of degenerate landscapes. Zeitschrift für

Physikalische Chemie. 2002; 216(2):nil.

PLOS COMPUTATIONAL BIOLOGY RAFFT: Efficient prediction of RNA folding pathways using the fast Fourier transform

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010448 August 26, 2022 18 / 18

https://doi.org/10.1006/jmbi.1999.2700
http://www.ncbi.nlm.nih.gov/pubmed/10329189
https://doi.org/10.1093/nar/27.1.169
http://www.ncbi.nlm.nih.gov/pubmed/9847170
https://doi.org/10.1093/nar/21.13.3055
http://www.ncbi.nlm.nih.gov/pubmed/8332527
https://doi.org/10.1093/nar/22.17.3502
http://www.ncbi.nlm.nih.gov/pubmed/7524024
https://doi.org/10.1093/nar/gkn766
https://doi.org/10.1093/nar/gkn766
http://www.ncbi.nlm.nih.gov/pubmed/18953034
https://doi.org/10.1093/bioinformatics/6.4.309
http://www.ncbi.nlm.nih.gov/pubmed/1701685
https://doi.org/10.1007/978-3-319-02624-4_1
https://doi.org/10.1371/journal.pcbi.1010448

