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Abstract: Usefulness of Vaccine-Adverse Event-Reporting System (VAERS) data and protocols re-
quired for statistical analyses were pinpointed with a set of recommendations for the application of
machine learning modeling or exploratory analyses on VAERS data with a case study of COVID-19
vaccines (Pfizer-BioNTech, Moderna, Janssen). A total of 262,454 duplicate reports (29%) from 905,976
reports were identified, which were merged into a total of 643,522 distinct reports. A customized
online survey was also conducted providing 211 reports. A total of 20 highest reported adverse
events were first identified. Differences in results after applying various machine learning algorithms
(association rule mining, self-organizing maps, hierarchical clustering, bipartite graphs) on VAERS
data were noticed. Moderna reports showed injection-site-related AEs of higher frequencies by 15.2%,
consistent with the online survey (12% higher reporting rate for pain in the muscle for Moderna com-
pared to Pfizer-BioNTech). AEs {headache, pyrexia, fatigue, chills, pain, dizziness} constituted >50% of
the total reports. Chest pain in male children reports was 295% higher than in female children reports.
Penicillin and sulfa were of the highest frequencies (22%, and 19%, respectively). Analysis of uncleaned
VAERS data demonstrated major differences from the above (7% variations). Spelling/grammatical
mistakes in allergies were discovered (e.g., ~14% reports with incorrect spellings for penicillin).

Keywords: COVID-19; VAERS; adverse events; vaccine development; association rule mining;
self-organizing maps; hierarchical clustering; bipartite graphs; vaccine analysis workflow

1. Introduction

VAERS, an online passive reporting system, co-sponsored by the US Center for Disease
Control and Prevention (CDC) and the Food and Drug Administration (FDA), and the
agencies of US Health and Health Services (HHS) are specifically geared towards assessing
the safety of newly developed vaccines along with other priorities that include: (i) the de-
tection of new, unusual, or rare vaccine adverse events, (ii) the monitoring of the increase in
known events, (iii) the identification of potential risk factors for particular types of adverse
events (AEs), (iv) the determination of possible reporting clusters, (v) the recognition of
persistent safe-use problems, and (vi) the provision of national safety monitoring to public
health emergencies, such as a large-scale pandemic influenza vaccination program [1–3].
Due to its spontaneous reporting nature, VAERS data is not recommended for discerning
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the cause of AEs from the vaccine after an AE is reported. Although the availability and
utilization of high-quality vaccine data for decision support and vaccine safety is critical,
public reports prior to a vaccine authorization by VAERS can be useful in determining
AEs and in providing valuable insights for a streamlined vaccine manufacturing and
policy development.

VAERS datasets have been used in various studies for recommendations and proactive
strategies for regulatory bodies (CDC and FDA) [4–21]. To date, only limited studies
have comprehensively focused on the protocols to be followed when VAERS datasets
are used for statistical analyses (Supplementary Materials—Section S1). For example, a
study compiled VAERS reports on Guillain-Barre Syndrome (GBS) in regard to influenza
vaccines and identified correlations between the AE and the syndrome, including the
attributes age and gender [14]. Two distinct datasets were utilized (i.e., 80,059 US (VAERS
FLU3, 1990–2017) reports and 13,550 European reports (all FLU vaccination, 2003–2016))
to develop a logistic regression model for predicting 83 different AEs with prediction
accuracies of 77.5% and 75.5% (area under the curve (AUC) measures) for VAERS and
European FLU vaccine datasets, respectively. Patient age (as quantized into the ranges
of {0.5–17, 18–49, 50–64, and 65+} years) and gender were considered as model attributes.
Syndrome to AE correlation was carried using Chi-squared test which demonstrated nine
AEs (pyrexia, chills, nausea, pruritus, rash, urticaria, injection site pain, injection site swelling,
and injection site erythema) to be negatively associated with GBS while 13 other AEs (muscle
spasms, hypertension, dysphagia, hyperglycemia, diabetes mellitus, dysuria, depression, apnea, fecal
incontinence, constipation, urinary incontinence, dysuria, urinary tract infection, and urinary
retention) were positively associated with GBS but with low prevalence (<1%). The study
acknowledged that VAERS data are screened by the CDC for the removal of duplicates.

A study emphasized that the identification of duplicate pairs in VAERS for the appli-
cation of data-mining algorithms on VAERS data that, without robustly handling duplicate
cases, can have deleterious effects on quantitative analyses leading to spurious conclusions
on vaccine safety [22]. A probabilistic approach was developed to link duplicate pairs allow-
ing a systematic approach of deduplicating the VAERS database using the structured field
data as well as non-structured textual data of AEs via event-based text-mining approach.
Another useful analysis of the validity of VAERS reports via expert judgement was carried
out that demonstrated the lower likeliness of an AE being associated with a vaccine [19].
A total of 100 VAERS reports of the AE following immunization (AEFI) were analyzed
where 83% achieved majority agreement over the results of the causality assessment, while
17% of the reports were considered for further discussion by the expert panel. From the
100 reports, 3%, 20%, and 20% of the AEFI were identified as being definitely, probably,
and possibly related to the vaccine, respectively, while 53% of the AEFIs were classified as
unlikely or unrelated to the vaccine.

Data provenance methods and preprocessing techniques based on only a passive
reporting system require careful attention when carrying out data-driven exploratory
analysis and applying statistical approaches on VAERS data in order to avoid mislead-
ing/incorrect conclusions. The factors contributing to the robust and accurate analyses of
such data include the handling of: (i) duplicate records, (ii) missing values (submitting
incomplete VAERS forms), (iii) limited-form fields (up to 5 symptoms in one report) leading
to duplicates, (iv) spelling/grammatical mistakes via robust and appropriate text mining
approaches, (v) outliers and data standardization/normalization, (vi) data heterogeneity,
and (vi) the binning of continuous variables (such as age) into groups to avoid bias when
applying probabilistic/frequentist approaches. Accordingly, the present study proposes
the aforementioned data provenance and preprocessing techniques for robust statistical
analyses with the help of a case study for COVID-19 vaccine data collected from VAERS.
Dynamic trends in unstructured temporal COVID-19 vaccine data from VAERS were ana-
lyzed via self-organizing maps (SOMs), association rule mining (ARM), and hierarchical
clustering (HC) techniques in order to provide a detailed data-driven evaluation of multi-
AE associations and complex patterns. Reports from VAERS and a qualitative online survey
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were incorporated to: (i) identify the frequently reported AEs after COVID-19 vaccines, (ii)
assess their correlations with respect to various demographics (age groups, gender, and
allergies), and (iii) provide a baseline decision support for predictive capability when dei-
dentified data become available from regulatory agencies as well as the vaccine producers.
Such analysis can be useful for determining the proportion of reports involving specific
AEs and a vaccine can be compared to the proportion of reports involving the same AEs
and other vaccines [2].

2. Results

Figure 1a,b shows the relative frequencies of the 20 most-reported AEs for all age
groups per three vaccine manufacturers and children of ages up to (and inclusive of)
15 years old, respectively. AEs for each vaccine manufacturer were significantly consistent.
There were 13 AEs {arthralgia, asthenia, chills, dizziness, dyspnoea, fatigue, headache, injection
site pain, myalgia, nausea, pain, pain in extremity, pyrexia} that were common for all three
vaccine manufacturers. Survey data also reported {headache, aches, chills, pain in muscle,
dizziness, nausea, vomiting, and rash} to be the most commonly reported AEs (Table 1). Rash
was replaced by injection site pain for children’s data (Figure 1b) when duplicates and
spelling mistakes were corrected in the VAERS reports.
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Figure 1. (a) Relative frequencies of the top 20 AEs appeared in VAERS reports for all age groups per
the three vaccine producers (Pfizer-BioNTech, Moderna, and Janssen). (b) Relative frequencies of the
top 20 AEs appeared in VAERS reports for children (discretized age groups of 5–11 years). The subset
{chest pain, Dyspnoea, hyperhidrosis, and myocarditis} was among the lowest-reported AEs for age group
(5–11 years) in comparison to the AEs reported for the group 12–15 and other 16 most commonly
reported AEs.
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Table 1. Summary of the 20 most commonly reported AEs in VAERS reports and online survey data
per three vaccine producers.

Effects Vaccine Manufacturer

VAERS Survey Data Pfizer-
BioNTech

Pfizer-BioNTech
Survey Data

Points
Moderna

Moderna
Survey Data

Points
Janssen

Headache Headache 48,253 (17.05%) 44 (35.77%) 51,816 (17.27%) 31 (46.97%) 15,234 (25.78%)
Pyrexia Aches 37,418 (13.22%) 53 (43.09%) 47,476 (15,82%) 44 (66.67%) 12,811 (21.68%)
Fatigue Tired 41,022 (14.49%) 78 (63.41%) 44,642 (14,88%) 48 (72.73%) 10,409 (17.62%)
Chills Chills 31,965 (11.29%) 54 (43.90%) 41,313 (13.77%) 44 (66.67%) 11,001 (18.62%)
Pain Pain in muscle 34,395 (12.15%) 49 (39.84%) 37,716 (12.57%) 34 (51.52%) 10,424 (17.64%)

Dizziness Dizziness 32,001 (11.31%) 2 (1.63%) 25,924 (8.64%) 13 (19.70%) 8075 (13.67%)
Nausea Nausea 28,179 (9.96%) 13 (10.57%) 29,220 (9.74%) 11 (16.67%) 7815 (13.23%)
Pain in

Extremity NA 24,708 (8.73%) NA 31,813 (10.60%) NA 6019 (6.11%)

Myalgia NA 15,027 (5.31%) NA 20,728 (6.91%) NA 4059 (6.87%)
Arthralgia NA 17,469 (6.17%) NA 17,713 (5.90%) NA 3504 (5.93%)

Injection site
pain NA 16,621 (5.87%) NA 30,632 (10.21%) NA 3610 (6.11%)

Dyspnoea NA 17,612 (6.22) NA 14,207 (4.74%) NA 3895 (6.59%)

Rash Itchy
Skin/Rash 14,178 (5.01%) 1 (0.81%) 17,739 (5.91%) 2 (3.03%) 2194 (3.71%)

Pruritus NA 12,013 (4.24%) NA 17,697 (5.90%) NA 1451 (2.46%)
Injection site

erythema NA 4685 (1.66%) NA 27,730 (9.24%) NA 600 (1.02%)

Asthenia Strange Feeling 11,067 (3.91%) 10 (8.13%) 12,092 (4.03%) 15 (22.73%) 2869 (4.86%)
Vomiting Vomiting 11,205 (3.96%) NA 11,523 (3.84%) 2 (3.03%) 3009 (5.09%)

Injection-site
swelling

Enlarged
lymph nodes 4815 (1.70%) NA 21,406 (7.14%) 1 (1.52%) 740 (1.25%)

Diarrhoea NA 9819 (3.47%) NA 9682 (3.23%) NA 2018 (3.42%)
Erythema NA 6242 (2.21%) NA 14,227 (4.74%) NA 838 (1.42%)

Note: Numbers in the table indicate the number of VAERS samples that reported corresponding AE and the per-
centage shows the percent of all patients in VAERS reports that were vaccinated by the given vaccine manufacturer.
Survey data for Janssen were not available.

Interestingly, four injection-site-related AEs {injection site—(erythema, pruritus, swelling,
warmth)} were among the top 20 AEs for Moderna (p-value < 2.2 × 10−16 for Moderna
vs. {Pfizer-BioNTech, Janssen} with respect to the top 20 AEs including injection-site-
related AEs). Survey data also showed 51% of the samples for Moderna with pain
in muscle as opposed to only 39% samples for Pfizer-BioNTech reporting pain in muscle
(Table 1). This may be due to the fact that Moderna uses a 100-microgram dose as opposed
to the 30-microgram used by Pfizer-BioNTech, causing increased reactogenicity [23].
Additionally, although the etiology of delayed large local reactions due to Moderna is
unclear, a delayed-type hypersensitivity reaction to the excipient polyethylene glycol
can be a potential etiology [24]. The above visual exploration without duplicate-row
removal (Supplementary Materials—Figures S1 and S2) showed relative frequencies of
the above 20 AEs to be lower by up to 7% (Supplementary Materials—Figure S1) than
the frequencies observed in the cleaned data (Figure 1a). Similarly, the AEs for children
showed differences of up to 4% (Figure 1b and Figure S2 (Supplementary Materials)).

The subset {dizziness, pyrexia, headache, nausea, vomiting, fatigue, dyspnoea, pain, pain
in extremity, chills, rash} was common among adults (including children (Figure 1a)) and
children (Figure 1b). None of the injection-site-related AEs {injection site—(pain, erythema,
swelling, warmth)} were among highly reported AEs in children’s reports. Additionally,
{arthralgia, asthenia, myalgia, pruritus, erythema} only appeared in the 20 most reported AEs
for adults where {chest pain, syncope, loss of consciousness, pallor, hyperhidrosis, urticaria, fall,
unresponsive to stimuli, myocarditis} were reported only among children. The above differ-
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ences may arise due to the Pfizer-BioNTech dose for children being only 10 micrograms
compared to 30 micrograms for adults.

As given in the heatmap in Table 2, although in a different order based on their
percentage, all 20 highest-reported AEs for both children’s genders were the same. An
important pattern in children’s VAERS reports was found to have chest pain reported to be
3 times higher in male reports than in female reports (chi-squared test p-value: 5.74× 10−62).
Based on the number of occurrences, vomiting was ranked as the top effect for female as
opposed to the 2nd for male children (p-value: 0.56 indicating no significant correlation of
vomiting with gender). It is noted, however, that for the VAERS dataset with duplicates,
headache appeared as the top-ranked effect for female (Table S3) as opposed to 5th-ranked
for male children (p-value: 0.61). Additionally, injection site pain ranked a level higher
for female (6th) compared to male children (7th), with p-value: 0.59 (i.e., no significant
correlation of injection site pain with gender). Other correlation tests with p-values are
{Dizziness: 3.8 × 10−14, Pyrexia: 8.21 × 10−6, Fatigue: 4 × 10−3, Nausea: 4 × 10−4, Pain in
Extremity: 0.77, Rash: 0.88, Pain: 0.075, Chest Pain: 5.74 × 10−62}. It is also noted that the
ratio of female VAERS COVID-19 reports is higher than male reports, which is consistent
with other VAERS vaccine ratios (e.g., flu vaccine for 2021 had the number of reports as
female: 5222, and male: 2375).

Table 2. The 20 most commonly reported AEs ranked with respect to the age groups and gender based
on the percentage of VAERS samples reporting the corresponding AE (minimum 0% to maximum
25%). Heatmap cells are colored according to the percentage of reported samples, and the AEs are
sorted according to the percentage of reported VAERS samples for age group 5–11.

Age Group (Male Participants) Age Group (Female Participants)

5–11 12–15 16–18 19–30 31–50 51–65 66+ 5–11 12–15 16–18 19–30 31–50 51–65 66+ 25
Pyrexia Vomiting

Vomiting Headache
Nausea Dizziness

Dizziness Pyrexia
Headache Fatigue

Fatigue Injection site
pain

Injection site pain Nausea

Pain in Extremity Pain in
Extremity

Rash Rash
Pain Pruritus

Chills Pain
Diarrhoea Dyspnoea
Arthralgia Chills

Dyspnoea Injection site
erythema

Asthenia Diarrhoea
Pruritus Asthenia
Myalgia Arthralgia

Injection site
erythema

Injection site
swelling

Erythema Myalgia
Injection site

swelling Erythema

0

When grouped into clusters via an unsupervised HC approach, male children and
young adults (i.e., age groups of 18 inclusive and under) were clustered in one group (i.e.,
Cluster III with blue dendrogram), as shown in Figure 2. For male children, {dizziness,
headache, pyrexia} were grouped in the same cluster (Cluster II) with {nausea, vomiting} to
be in the adjacent cluster (Cluster III), consistent with the grouping provided in Table 2.
Furthermore, {fatigue, chills, pain} for male children were clustered in Cluster I. Interestingly,
the HC approach demonstrated tolerance in grouping datasets with and without duplicates,
as no difference in Figures 2 and S3 was observed. Overall, VAERS reports for male
participants in Clusters I and II (fatigue, chills, pain, dizziness, headache, pyrexia} were to be of
the highest percentage, as confirmed in Table 2. Consequently, due to {dizziness, headache,
nausea, pyrexia} being reported more commonly between the age groups of 12–15 and
16–18 for female, they were grouped in the same cluster as shown in Figure 2, while 5–11
grouped in adjacent cluster. Consistent with Table 2, injection-site-related AEs in female
and male children were grouped in clusters I and IV with lower-reporting percentages in
Figures 2 and S3, respectively.
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Figure 2. Hierarchical clustering of the 20 most commonly reported effects and 7 age groups for
(a) male and (b) female participants. For male participants (a) the effects {pyrexia, vomiting, and nausea}
and {dizziness, pyrexia} were reported to be the most commonly reported effects for the two children
age groups 5–11 and 12–15, respectively. For female participants (b), the effects {headache, pyrexia,
nausea, vomiting, and dizziness} were reported to be the most commonly reported effects for children
age group 5–11 and 12–15, respectively, with the addition of nausea among the 3rd most-reported
effect for age group 12–15.

It is noted that, despite comprehensive data preprocessing steps, reports submitted
through VAERS have not undergone data-quality assurance/control strategies, thus posing
challenges for the verification of the analysis. To overcome the challenge of the uncertainty
and reliability of the VAERS reports and confirm the AE similarities, an exploration of the
online survey data was also conducted (Figure 3). As illustrated in Table 1 and Figure 3,
from a set of 11 AEs compiled from 211 participants, {headache, chills, dizziness, nausea, itchy
skin/rash, vomiting} also appeared in the 20 most reported AEs in the VAERS reports.
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Figure 3. Relative frequencies of the 11 AEs appearing in survey data reports for all age groups per
the two vaccine producers (Pfizer-BioNTech, Moderna). The subset {headache, chills, dizziness, nausea,
itchy skin/rash, vomiting} was the same as 6 of the 20 most-reported effects in VAERS reports.

2.1. Associations of the Most Commonly Reported AEs via ARM and SOM

The interrelationships of AEs from VAERS reports were analyzed via ARM and SOM
with respect to two major age groups [<16, ≥16]. Assessment of the interrelationships
of AEs for children revealed 16 non-redundant association rules (ARs) (Table 3). From a
subset of one-to-one rules, the existence of Hyperhidrosis or flushing was shown to imply
the existence of dizziness with lift-over 3 (R2,10). Chest pain was found to be prominent
with dependency over the subset {Electrocardiogram ST segment elevation, Chest X-ray normal,
Echocardiogram normal, Myocarditis, Electrocardiogram normal, C-reactive protein increased,
Troponin increased} with a lift value of >8 (R3,5,7–9,11,13). Additionally, it was also noticed
that hyperhidrosis was associated with flushing with a high lift value of 18.8 (R9). Although
fatigue appeared among the top 6 AEs for children based on its individual frequency, its
correlation with any other AE could not qualify it for the top 14 ARs (Table 3 and Figure 1).

Table 3. Non-redundant association rules for post-COVID-19 vaccine AEs reported in VAERS reports
for children based on cleaned with duplicate rows merged. Rule 14 was the only non-redundant
many-to-one rule identified for children. The highlighted regions in gray represent a subset of
rules with relatively high counts in the dataset (>200) and include {dizziness, hyperhidrosis, syncope,
unresponsive to stimuli, pyrexia, chills, myocarditis}, which were also among the 20 most commonly
reported AEs in children when explored based on their individual frequencies.

Rule Antecedent Consequent Support Confidence Lift Count

R-1 Flushing Hyperhidrosis 0.016 0.80 15.18 149
R-2 Flushing Dizziness 0.013 0.69 4.34 128

R-3 Electrocardiogram ST segment
elevation Chest pain 0.012 0.92 10.18 114

R-4 Unresponsive to stimuli Syncope 0.023 0.72 6.35 223
R-5 Chest X-ray normal Chest pain 0.011 0.79 8.70 103

R-6 Echocardiogram normal Troponin
increased 0.011 0.55 16.59 108

R-7 Echocardiogram normal Chest pain 0.018 0.87 9.62 172
R-8 Myocarditis Chest pain 0.021 0.74 8.22 205
R-9 Electrocardiogram normal Chest pain 0.017 0.68 7.52 163

R-10 Hyperhidrosis Dizziness 0.028 0.52 3.31 266
R-11 C-reactive protein increased Chest pain 0.012 0.67 7.46 118
R-12 Chills Pyrexia 0.027 0.62 5.76 263
R-13 Troponin increased Chest pain 0.028 0.85 9.46 270
R-14 Headache, Pain Pyrexia 0.011 0.54 4.98 101
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The ARM employs a frequentist approach to calculate the Support, Confidence, and
Lift (Supplementary Materials—Section S2.2.1), for which duplicate reports can pose a
significant challenge. Therefore, a new report or reports with spelling/grammar mistakes
can impact the generality and specificity of the ARs, impacting such analysis with duplicates
present in the VAERS data. As illustrated in Tables S4–S7 (Supplementary Materials), the
ARs for children and each vaccine producer indicated significant differences from those
identified when duplicates were removed (Tables 3 and 4). For example, R6 (Echocardiogram
normal→ Troponin increased) for the non-redundant ARs for children (Table 3) demonstrated
that the highest lift value of 16.6 was initially not identified as a non-redundant AR in
Table S4 (Supplementary Materials). Additionally, seven rules (R3,5,7–9,11,13) reported chest
pain in the consequent cleaned VAERS data for children (Table 3) whereas none of the
ARs in Table S4 (Supplementary Materials) reported chest pain in the consequent VAERS
data with duplicates. ARs (R4,10,12,14) when verified via SOM in Figure 4 demonstrate the
relationships of {{Unresponsive to stimuli→ Syncope}, {Hyperhidrosis→ Dizziness}, {Chills
→ Pyrexia}, {Headache, pain→ Pyrexia}}. However, SOM may also suffer from misleading
correlations from uncleaned VAERS data due to the iterative nature of 2D-map refinement
(Table S4 (Supplementary Materials) and Figure 4).
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pyrexia, syncope} in the form of 2D cluster similarities is demonstrated as shown in the rules R4,10,12,14

in Table 3.

Analysis of the ARs for the AEs of all age groups was also conducted for the three
vaccine types (Table 4). In the set of ARs for Pfizer-BioNTech, headache appeared in the
consequent of 10 ARs, with {chills, myalgia, pyrexia, pain, fatigue, nausea} in antecedents
with count values > 3000 (R5,6,8,10–16). Although the above distributions appeared to be
dispersed without demonstrating a discernible pattern (Figure 4), the overall distributions
showed similarities in the SOM component planes. However, with duplicates present,
only two ARs (R19,20) had headache in the consequent (Supplementary Materials, Table S5),
due to the fact that the entries for headache were distributed with duplicates, increasing
the frequency with which headache appeared. Another observation (Table 4) showed 7
out of 25 ARs for Moderna listed injection-site-related effects (e.g., injection site {pruritus,
pain, induration, warmth, swelling, erythema}) in either the antecedent or the consequent
with Injection site swelling→ injection site erythema (R5) having the second highest count
of 13,561. Additionally, the distributions for {injection site (erythema, pain, swelling), pain in
extremity} were also interrogated via SOM (Supplementary Materials—Figure S6) to validate
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the existence of correlations among these AEs as indicated by the rules (R1,2,4,5,7,8,15,16) in
Table 4. The similarity between AEs as represented by the 2D SOM is indicative of the
coexistence of their correlations (i.e., the existence of a base AE implies the existence of
another AE as given by the distributions on a 2D map).

Table 4. Non-redundant association rules for AEs reported in VAERS reports for the three vaccines.

Non-redundant association rules for post-COVID-19 vaccine AEs reported in VAERS reports for Pfizer-BioNTech vaccine. Rules
4–16 were non-redundant many-to-one rules identified for Pfizer-BioNTech. The highlighted regions in gray represent the subset of
rules with relatively high counts in the dataset (>6000). The rules below include {pyrexia, fatigue, headache, nausea, vomiting, chills,
pain, myalgia}, which were also among the 20 most commonly reported AEs for VAERS reports for Pfizer-BioNTech when explored
based on their individual frequencies.

Rule Antecedent Consequent Support Confidence Lift Count

R-1 Body temperature Pyrexia 0.016 0.86 6.53 4572
R-2 Vomiting Nausea 0.022 0.54 5.46 6095
R-3 Chills Pyrexia 0.063 0.56 4.24 17,925
R-4 Chills, Myalgia Fatigue 0.011 0.53 3.65 3085
R-5 Chills, Myalgia Headache 0.013 0.62 3.61 3588
R-6 Myalgia, Pyrexia Headache 0.013 0.58 3.40 3589
R-7 Nausea, Pain Chills 0.012 0.50 4.46 3352
R-8 Chills, Nausea Headache 0.018 0.60 3.52 5110
R-9 Nausea, Pain Pyrexia 0.012 0.51 3.83 3371
R-10 Nausea, Pain Headache 0.014 0.60 3.49 3967
R-11 Nausea, Pyrexia Headache 0.017 0.59 3.45 4838
R-12 Fatigue, Nausea Headache 0.019 0.57 3.36 5334
R-13 Chills, Pain Headache 0.024 0.54 3.17 6879
R-14 Chills, Fatigue Headache 0.025 0.56 3.26 7058
R-15 Fatigue, Pain Headache 0.022 0.52 3.05 6130
R-16 Fatigue, Pyrexia Headache 0.025 0.52 3.05 7008

Non-redundant association rules for post-COVID-19 vaccine AEs for Moderna vaccine. Rules 7–25 were many-to-one rules. The
highlighted regions represent rules with relatively high count (>10,000). The rules below include {pyrexia, headache, nausea, vomiting,
fatigue, chills, pain, injection site pain/swelling/warmth/pruritus/erythema, myalgia}, which were also among the 20 most commonly
reported AEs for VAERS reports for Moderna when explored based on their individual frequencies.

R-1 Injection site induration Injection site erythema 0.01 0.66 7.19 3716
R-2 Injection site warmth Injection site erythema 0.03 0.70 7.55 10,203
R-3 Vomiting Nausea 0.02 0.56 5.72 6423
R-4 Injection site pruritus Injection site erythema 0.04 0.67 7.25 13,393
R-5 Injection site swelling Injection site erythema 0.05 0.63 6.87 13,591

R-6 Chills Pyrexia 0.08 0.57 3.63 23,724

R-7
Injection site pruritus, Injection

site warmth Injection site swelling 0.01 0.51 7.09 3430

R-8 Injection site pain, Injection site pruritus Injection site swelling 0.01 0.52 7.24 3177

R-9 Arthralgia, Chills Headache 0.01 0.60 3.45 3215

R-10 Arthralgia, Fatigue Headache 0.01 0.55 3.21 3372

R-11 Arthralgia, Pyrexia Headache 0.01 0.57 3.27 3262

R-12 Chills, Myalgia Headache 0.02 0.57 3.28 4685

R-13 Fatigue, Myalgia Headache 0.02 0.55 3.20 4555

R-14 Myalgia, Pyrexia Headache 0.02 0.53 3.07 4696

R-15 Chills, Injection site pain Headache 0.01 0.54 3.14 3263

R-16 Chills, Pain in extremity Headache 0.01 0.51 2.96 3515

R-17 Nausea, Pain Chills 0.01 0.55 3.99 4193
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Table 4. Cont.

R-18 Nausea, Pain Pyrexia 0.01 0.55 3.47 4187

R-19 Nausea, Pain Headache 0.02 0.60 3.50 4606

R-20 Chills, Nausea Headache 0.02 0.60 3.48 6599

R-21 Fatigue, Nausea Headache 0.02 0.58 3.38 6077

R-22 Nausea, Pyrexia Headache 0.02 0.58 3.36 6198

R-23 Fatigue, Pain Headache 0.02 0.52 3.04 6744

R-24 Chills, Fatigue Headache 0.03 0.55 3.17 8765

R-25 Fatigue, Pyrexia Headache 0.03 0.51 2.95 8442

Non-redundant association rules for post-COVID-19 vaccine AEs for Janssen vaccine. Rules 11–14 were many-to-one rules. The
highlighted regions represent rules with relatively high count (>4000). The rules below include {pyrexia, fatigue, headache, pain,
nausea, chills, vomiting, myalgia}, which were also among the 20 most commonly reported AEs for VAERS reports for Janssen when
explored based on their individual frequencies.

R-1 Body temperature Pyrexia 0.02 0.85 3.94 1223

R-2 Decreased appetite Fatigue 0.01 0.53 2.99 609

R-3 Vomiting Nausea 0.03 0.54 4.12 1638

R-4 Myalgia Headache 0.04 0.56 2.17 2268

R-5 Nausea Headache 0.07 0.52 2.01 4051

R-6 Pain Pyrexia 0.09 0.50 2.32 5237

R-7 Pain Headache 0.09 0.50 1.96 5261

R-8 Chills Headache 0.10 0.55 2.14 6058

R-9 Fatigue Headache 0.09 0.51 1.97 5275

R-10 Pyrexia Headache 0.11 0.51 1.99 6574

R-11 Myalgia, Nausea Pyrexia 0.01 0.57 2.64 614

R-12 Fatigue, Myalgia Pyrexia 0.02 0.52 2.42 942

R-13 Nausea, Pain Chills 0.02 0.55 2.98 1318

R-14 Fatigue, Pain Chills 0.03 0.52 2.77 1869

ARs for Janssen (Table 4) showed that 6 of 14 ARs reported headache in the consequent,
with {fatigue, pain, pyrexia, chills, myalgia, nausea} appearing in the antecedent (Supplemen-
tary Materials—Figure S7). This is in contrast with Pfizer-BioNTech and Moderna, where
the AR with highest count was chills→ pyrexia, pyrexia→ headache had the highest count
of 6574 (R10). An interesting AR R2 indicated a noteworthy observation {decreased appetite
→ fatigue}, with a 609 count value for Janssen. The AR R10 was also demonstrated with
the help of SOM (Supplementary Materials—Figure S7) showing similarity for pyrexia and
headache, despite the lack of indication of definitive clusters in the SOM.

2.2. Interrelations of Vaccine AEs via Bipartite Graphs

The interrelationships between the 20 most commonly reported AEs and the three
vaccines were also interrogated via bipartite graphs [25–27] (Figures 5, S8 and S9). As
shown in Figure 5, headache was most often reported for all 3 vaccines with a relative
existence of 11%. The injection-site-related AEs {injection site (erythema, pain, swelling)} are
of a higher relative percentage for Moderna (5%, 6%, and 4%) compared to those for
Pfizer-BioNTech (1%, 4%, and 1%) and Janssen (1%, 3%, and 1%). The relationships of
allergies with the 20 most-reported AEs in Figure 5e showed penicillin and sulfa to have
the highest occurrences with 22% and 19% frequency, respectively. In the same figure,
penicillin and sulfa appear to be uniformly distributed among all 20 AEs with headache,
fatigue, and pyrexia having the highest percentages. Additionally, gluten from 3% of VAERS
reports demonstrated a correlation with fatigue in 11% of data after cleaning and data
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pre-processing steps. Such a percentage suggests that the AR of gluten with fatigue may
be supported with a higher level of confidence than the AR of sulfa with fatigue. Studies
have reported that a significant percentage (31%) of patients with a self-reported gluten
sensitivity had a lack of energy (third-highest symptom). Reports with non-coeliac gluten
sensitivity also appear to correlate with {depression, anxiety, headache, fatigues, reflux, and
irritable bowel syndrome} [25]. One study found that 82% of those newly diagnosed with
coeliac disease complained of fatigue. Limited literature also indicates that fatigue can
potentially be caused by malnutrition, induced by intestinal damage causing malabsorption of
nutrients [26]. Fatigue can also be caused by anemia, which frequently appears in patients
with coeliac disease [27].
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Figure 5. Bipartite graphs for the correlations of 20 most commonly reported AEs with the 3 vaccine
producers (Pfizer-BioNTech, Moderna, and Janssen). (a) Shows the distribution of the entire VAERS
dataset with respect to all the vaccine producers, and (b–d) show the distributions of the effects
with respect to each vaccine. (e) Shows the correlations of 20 most commonly reported AEs with
reported allergies in VAERS data. The allergies penicillin and sulfa collectively appear to be in 41% of
the 643,522 VAERS reports.

It is noted that the VAERS data that included 5 distinct symptoms reported as 5 at-
tributes in free-form text were of significant percentage with spelling mistakes. For example,
penicillin was reported with various spelling variations such as {penecellin, penecillin, pene-
cilin}, and sulfates was reported as {sulfa, sulpha, sulfides, sulfite, sulfate}. Another notable
spelling mistake in the present analysis was the use of words “vaccination site” and “injec-
tion site” interchangeably such as vaccination site {pain, mass, induration, swelling, warmth,
inflammation} and injection site {pain, mass, induration, swelling, warmth, inflammation}. The
words “vaccination site” were replaced with “injection site” for consistency.

3. Discussion

The usefulness of the VAERS data for the statistical analysis of vaccines was illustrated
with the help of a case study for COVID-19 vaccine data. It was emphasized that, due
to the specific reporting format by VAERS online submission portal, its passive nature
and access to the public can have an impact on any machine-learning (ML)/data-mining
approach when careful data preprocessing approaches are omitted (i.e., removing/merging
duplicates in VAERS, discretizing numeric attributes, handling missing values, and fixing
spelling/grammar errors). With the help of these data provenance and preprocessing
techniques, it is hoped that vaccine research and development can utilize and streamline
the protocols when ML techniques are applied to VAERS data. The present study proposes
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a set of recommendations supported by the application of various ML algorithms that are
critical to applying modeling approaches to or exploratory analyses of VAERS data. An
online survey was also conducted, providing 211 distinct reports of the COVID-19 post-
vaccination effects from participants in the US. Various useful data preprocessing/cleaning
techniques were pinpointed, which should be considered to be part of VAERS.

It is noted that, although models of various types have been developed for different
vaccine reports based on exploratory data analyses and the application of ML techniques
on VAERS data [4,6,7,9–13,15,16,20,28], the model development for evolving VAERS data
can be exposed to unseen situations that would neither be available for model training nor
for validation. Despite the anticipated outcome from the ML perspective, the monitoring
and testing strategies should be carefully implemented. Studies utilizing VAERS data for
vaccine safety based on ML techniques require the following best practices.

3.1. Flexibility offor Model Features

Data and model-feature provenance strategies should be documented, including
feature definitions, data ranges, meta-level requirements, and privacy controls. Structure
of the developed ML model should be made flexible for new feature addition and updates
to existing features.

3.2. Robust Model-Development Pipelines

Model development for vaccine AE identification and predictive capability should
be reviewed, tested, and updated for the continuous refinement of existing workflows.
Modularity in terms of model applicability on all or selected slices of data should be
accomplished through a robust development pipeline, and model parameters should be
tuned upon the availability of new data.

3.3. ML Model Verification

In order to enhance model applicability and reproducibility, validation (via unit, sys-
tem, and integration testing) should be ensured before deployment into the production
environment, or any policy or recommendation is proposed. Appropriate model mainte-
nance and documentation strategies should be implemented, and transparency in terms of
step-by-step debugging (on single data instances) should be demonstrated.

3.4. Model Stability and Efficiency

Model efficiency should be carefully evaluated via robust tests to ensure the reasonable
use of computational resources in order to provide accurate predictions. Such tests can be
based on model-training speed, use of RAM, and throughput in a real-time learning envi-
ronment. Additionally, automation test cases can be developed to verify model prediction
accuracy and stability (in terms of predictive accuracy) over time, as well as latency issues.

4. Materials and Methods

Analysis of the psychological and physical effects of COVID-19 vaccines along with
the discovery of correlations among the most commonly reported AEs was conducted
as per the workflow described in Figure 6. Vaccine data for Pfizer-BioNTech, Moderna,
and Janssen were obtained via VAERS, which was accompanied by a primary dataset
collected from an online survey comprising information on post-vaccine AEs and public
perception of the COVID-19 vaccine. Online survey data were designed to fill data gaps in
the absence of other closely monitored data repositories such as v-safe [29], whose data
have not yet been made available for public and research communities. The overarching
goal of the present study of VAERS and the online survey data was to pinpoint critical
data provenance and management protocols for robust statistical analysis and predictive
modeling of vaccines with a case study of COVID-19 vaccines. Particular steps to assess the
efficacy of data-driven techniques applied on VAERS data were based on: (i) the exploration
of the post-vaccination effects of COVID-19 vaccines on various age groups (particularly
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children under the age of 16), (ii) the determination of the frequencies of reported AEs
after each dose of COVID-19 vaccines, (iii) the evaluation of the co-existence of common
post-vaccine AEs via unsupervised ML approaches, and (iv) the assessment of potential
relationships of pre-existing conditions (e.g., allergies) with the AEs. Active reporting via
an online survey was also aimed for to further assess the impact of COVID-19 vaccination
via the reported AEs, evaluate psychological perception of COVID-19 vaccination, and
compare the VAERS reports with an active and systematically controlled system that
incorporates quality data into COVID-19 vaccine domain knowledge.
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4.1. Compilation, Preprocessing, and Exploration of VAERS Data

Two distinct datasets were compiled with 905,976 and 211 data samples from VAERS
(filtered to prune rows for the three COVID-19 vaccines) and an online survey, respectively.
The VAERS reports consisted of vaccine- and patient-related attributes that included vaccine
identification (VAX type, VAX manufacturer, VAX lot, VAX does series, VAX route, VAX
site, VAX name), free-form textual attributes {US state, gender, allergies, hospital, disability,
current illness}, binary attributes {birth defects, prior visit, ER visit}, age (numeric), and
vaccination date (date). VAERS reports that did not list any AEs were removed, reducing
the dataset size to 892,213 reports. Data cleaning was then performed to merge duplicate
reports and fix spelling/grammar mistakes, resulting in a total of 643,522 reports. The age
attribute was discretized into 7 groups (5–11, 12–15, 16–18, 19–30, 31–50, 51–65, and 66+)
for the purpose of identifying the age-to-AE correlation via bipartite plots (Section 3.3).
Data statistics per manufacturer for each of the above age groups and genders are given in
Tables 5 and S1, along with the numbers of categories for each attribute in both datasets
from VAERS (original without removing duplicates (Table S1) and after data preprocessing
(Table 5)) and the online survey. A summary of the content of the datasets (without the
removal of duplicate records) is also provided in Table S2, which lists the number of data
samples for each of the 20 most commonly reported AEs along with their percentage
per manufacturer.
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Table 5. Number of VAERS reports categorized with respect to the age group and gender along
with their percentage per the three vaccine producers. For robust statistical analysis of vaccine data,
duplicate reports were merged into distinct rows resulting into 643,522 rows compared to the total
905,976 reports with duplicates.

Vaccine

Pfizer-BioNTech Moderna Janssen

Age Group
(Years) Male Female Male Female Male Female

5–11 233 (0.30%) 251 (0.14%) 13 (0.02%) 13 (0.01%) 3 (0.02%) 3 (0.01%)
12–15 4133 (5.36%) 4525 (2.55%) 96 (0.13%) 106 (0.05%) 43 (0.23%) 38 (0.13%)
16–18 3498 (4.54%) 4396 (2.48%) 2645 (3.59%) 3587 (1.83%) 761 (4.13%) 753 (2.52%)
19–30 10,556 (13.69%) 24,146 (13.62%) 8533 (11.58%) 21,883 (11.19%) 4054 (22.00%) 5087 (17.03%)
31–50 22,658 (29.39%) 66,760 (37.65%) 19,198 (25.06%) 64,711 (33.08%) 6561 (35.61%) 11,901 (39.83%)
51–65 18,109 (23.49%) 45,575 (25.71%) 18,917 (25.68%) 52,060 (26.62%) 4960 (26.92%) 8754 (29.30%)
66+ 17,898 (23.22%) 31,645 (17.85%) 24,260 (32.93%) 53,212 (27.21%) 2045 (11.10%) 3342 (11.19%)

Total 77,085 177,298 73,662 195,572 18,427 29,878

Note: The number of samples per vaccine manufacturer and their percentages were calculated using clean data
by removing those samples where any of the four attributes {age, gender, vaccine manufacturer, and symptom}
were listed as “unknown.” There were 63,189 reports with missing age values, which were also removed from the
above analysis, followed by the merger of duplicate rows in the dataset.

VAERS reports for children of age under 16, with a total of 12,489 VAERS samples,
were also collected and analyzed separately in order to explore the commonality between
the AEs with respect to different age groups. The goal of this analysis was to discover
meaningful patterns (i.e., AEs) that appear collectively in children when compared to adults
or differences as the age group progresses to an older population. Data from children’s
reports were also cleaned where rows that reported any attribute (column) from {age group,
gender, symptom, and vaccine manufacturer} as “unknown” were removed. Additionally,
reports indicating “product administered to patient of inappropriate age” while reporting no AEs
were also removed. Cleaned data after the removal of reports with “product administered to
patient of inappropriate age” comprised of 9457 reports with distributions of 9142, 228, and
87 for Pfizer-BioNTech, Moderna, and Janssen, respectively (Table 5). The AEs submitted
in children’s VAERS reports were also separated in the form of heatmaps (Table 2) with
respect to the gender in order to identify gender similarities/dissimilarities with the help
of cell colors based on the percentage of the corresponding AEs. The AEs for all genders
in Table 2 were sorted based on the age group (Sections 2 and 2.1) of 5–11 years old. A
non-cleaned version of the VAERS reports (i.e., the reports with duplicates) is provided
in Table S1.

4.2. Exploratory Data Analysis of the COVID-19 Vaccines’ Effects

The initial exploratory analysis for VAERS data was conducted to determine the
frequencies of AEs to support advanced analysis. The 20 most commonly reported AEs
were first used to assess their associations, as shown in Table 1. Similar to Tables 5 and S1,
statistics based on non-cleaned data are reported in Table S2, demonstrating significant
differences from Table 1, which could have a significant impact on the performance and
robustness if a statistical approach is applied.

4.3. Correlation Analysis of AEs Based on Age Groups and Allergies

Unsupervised ML approaches utilizing ARM and SOMs (Supplementary Materials—
Section S2.2.1) were applied on VAERS and survey data, where the endpoints were analyzed
to explore the relationships among AEs and reported allergies. Unsupervised learning is
useful for visual data exploration to find hidden data groups in order to better understand
the correlation of the AEs with existing medical conditions without any predictions or
testing the underlying hypotheses. ML approaches are also helpful for applying statistical
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approaches to cluster/group similar biological effects to enhance the applicability domain
of the vaccines as well as recommend proactive strategies for vaccine safety. Furthermore,
as new data become available, analyzing the relationships among post-COVID-19 vaccine
AEs and other reported demographical characteristics via ML approaches can be helpful
in designing improved versions of vaccines (e.g., COVID-19 pills) for COVID-19 vaccine
safety. Mapping the relationships (i.e., associations) among the reported post-COVID-19
vaccine AEs via unsupervised ML techniques is particularly helpful in revealing useful
patterns, streamlining COVID-19 vaccine safety standards and the development of robust
models for proactive strategies and recommendations. Through these relationships, one
can assess the co-occurrence of certain AEs and infer the reasons that the emergence of
one or more AE may lead to other AE(s) that are correlated due to biological or other
relevant reasons. The ARM of AEs was also accompanied by confirmatory cluster analysis
approaches based on hierarchical clustering.

ARM has been applied in various disciplines [28,30–37]. Irrespective of the domain
of interest, triggering of one or more AE can imply the triggering of other AEs, consistent
with the crosstalk between various physical AEs and perceptional indicators. The ARM
of the AEs after each vaccine dose can be used to identify many-to-many relationships
and propose a data-driven hypothesis-generation technique. A detailed description of
ARM can be found in the Supplementary Materials (Section S2.2.1). ARs in the present
study were also validated with the help of the SOM analysis, demonstrating the VAERS
data distribution on 2D maps. Cluster analysis via SOMs has been demonstrated to
be useful for discovering relationships in complex multidimensional datasets in cross-
disciplinary areas of research and development [38–41]. SOM clustering applies competitive
learning, preserves topological structure of the input space, and transforms the output
to a lower dimension (i.e., 2-D map of cells within SOM clusters). Further discussion on
SOM can be found in the Supplementary Materials (Section S2.2.1). The utility of SOMs
for data visualization and feature selection has also been demonstrated for exploratory
data analyses [34,38,39,41–47]. For the analysis via ARM and SOM, open-source libraries
were utilized, which are freely available online (R Studio arules—version 1.7-3 [48] (for
ARM), kohonen version 3.0.11 [49] (for SOM analysis), hclust version 3.6.2 [50] (for HC),
and Python stats.chisquare [51] (for statistical significance test)).

The interrelationships of the AEs with allergies and other personalized factors (age
group and gender) were identified via bipartite graphs (Section 2.2 and Section S2.2.2).
Bipartite graphs established in the present study are useful for the exploratory analysis of
potential allergies, age groups and genders that may be indicative of the occurrence of one
or more common AEs. Moreover, bipartite graphs allow for the bidirectional exploration
of COVID-19 vaccine data for detailed information about specific AEs and their causal
(i.e., {allergy, age group, gender}→ AE) or a diagnostic reasoning (i.e., AE→ {allergy, age
group, gender}). Graphical displays of correlations between reported AEs and allergies
can help explore the frequencies of certain AEs, interrogate comparisons between them
and their occurrences given certain pre-existing conditions, identify similarity/distribution
among reports that demonstrated similar AEs, and assess potential causes of AEs given
certain pre-existing conditions [47]. For example, it can be seen in Figure 5 that Age group
of 31–50 years old has been reported to have the highest percentage (36%) among all of
the 20 commonly reported AEs. Each bar in the bipartite graph is further split into sub-
bars representing its distribution in terms of the available categories for each of the three
variables {age group, gender, and allergies} across 20 AEs. The bars on the left side of
the bipartite graphs list the 20 most commonly reported AEs. The bipartite graphs in the
present study were created using the open-source JavaScript library from d3.js [52].

Supplementary Materials: The following supporting information [53–56] can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms23158235/s1.
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