
REVIEW

Novel Analgesics with Peripheral Targets

Cosmin I. Ciotu1
& Michael J. M. Fischer1

Accepted: 27 September 2020
# The Author(s) 2020

Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets
acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and
mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory
effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory
mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors.
New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether
there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market
release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-
related publications, which was also used to identify topics.

Key Words Inflammation . cytokine . pain . receptor . sensory neuron.

Introduction

Analgesia is a medically important issue, with a large
body of primary and review literature. Therefore, this re-
view starts with an outline of the aim and the approach to
the topic. The scope is to discuss novel analgesic ap-
proaches [1–3], including all stages of preclinical evi-
dence and, in particular, approaches in the clinical trial
phase. Established pain medications are mentioned, where
they serve to discuss concepts or serve as a benchmark for
novel approaches. A concept figure illustrates a general
view on peripheral nociception and analgesic approaches
(Fig. 1). Within this framework, the review discusses
bottom-up direct effects predominantly or exclusively on
the neuron, then inflammatory mediators with at least par-
tial action on sensory neurons. We accept that this

structure also has disadvantages. We have tried to avoid
a splitting of ligands from their targets where possible,
and also refer to other approaches to structure the topic
[4, 5]. For mechanisms which are in summary anti-inflam-
matory, analgesia can be expected as a collateral effect.
The other targets include resident and migrating cells.
Resident cells include mast cells, macrophages, neutro-
phils, and Schwann cells. For this more general
immunomodulation and systemic anti-inflammation, the
reader is referred to the respective literature [6, 7].
Within neuronal targets, there might be some imprecision
due to findings from afferent ganglia, which contain other
cell types than neurons and a more detailed allocation to
the cell type is unknown. Antipruritic approaches have a
considerable overlap with analgesia; therefore, a concep-
tually similar view can be found in the respective litera-
ture [8].

This review focuses on recently published approaches,
but ways to identify new targets should also be mentioned
[9]. For identifying published topics, Pubmed was queried
utilizing the NCBI E-Utilities [10]. As search terms,
“pain” and the potential targets in inverted commas were
entered. For the latter, the “targets and family” list of the
IuPhar/BPS database [11] was used. As a caveat, searches
by human gene nomenclature (HGNC) name, rat genome
database (RGD) name, or the respective short forms pro-
vide a different rate of false positives and negatives, so
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the respective search term list required manual optimiza-
tion. How to identify trends in these data? This can be
addressed by complex strategies [12]; nevertheless, an
easily comprehensible approach, considering rising publi-
cations per time, was preferred here. As suggested [13], a
3-year interval was chosen. The search was conducted in
April 2020. A comparison of the last 3 years in contrast to
the prior 3 years provides a trend of a respective topic.
Three indicators for the targets are presented (Fig. 2): a)
Already “Large topics,” assessed by the total number of pub-
lications, b) “Rising topics,” calculated as publications within
the last 3 years minus the 3 years before, and c) “Novel
topics,” considering only targets which have more than 10
publications within the last 3 years but no more than 10 pub-
lications in the 3 years before. The overall content is organized
as outlined by Fig. 1, within this structure sorted by target
type, e.g., GPCRs, ion channels, enzymes. Figure 2 was also
used to pick topics.

Effects Predominantly or Exclusively
on Sensory Neurons

GPCRs in Sensory Neurons

GPCRs form the largest receptor superfamily, with 1265 se-
quenced members in humans [14]. They play crucial roles in
inflammation, with abundant expression in immune cells (reg-
ulating migration, accumulation at the inflammation site and
phagocytosis), endothelial cells (regulating permeability), and
nervous tissue, to name a few. As a brief reference to the
above-mentioned inflammatory mediators and their GPCR
targets, PAR1–4, S1P1, LPAR1–6, prostaglandin receptors,
bradykinin receptors, and NK1 are among the most relevant
families for inflammatory hyperalgesia. Ligands binding to
these GPCRs modulate the three main signaling pathways of
the G-alpha subunits Gi, Gs, and Gq, which have typical ef-
fects. For G-beta/gamma targets, the reader is referred to a
review [15]. Gi couples inhibiting, Gs stimulating to adenylate
cyclase, and prostaglandin and opioid receptor effects
discussed below might be seen pro toto. Protein kinase A
downstream of Gs has been shown to sensitize a variety of
ion channels involved in nociception, similar to protein kinase
C via Gq and Phospholipase C (PLC) [16]. Downstream of
PLC, the intracellular signaling cascades diverge, and include
protein kinase C (PKC) and calcium admission. Most of the
inflammation pathways (leading to short-term hyperalgesia, in
any case) converge onto these mechanisms.

Opioid Receptors

Opioids are an essential pillar of analgesic therapy. This will
not change any time soon, opioid crisis or not, and a top spot
in publications reflects that importance. Opioid analgesia in
inflammation is the result of combined central and peripheral
mechanisms [17, 18], and following the scope of this review,
we briefly expand on the latter. Peripheral sensory neurons
express the μ-, δ-, and κ-opioid receptors [19, 20]. The opioid
receptors are Gi-coupled and the downstream mechanisms
apply to other Gi-coupled GRCRs on sensory neurons.
Endogenous agonists met- and leu-enkephalin are broken
down by neutral endopeptidase and aminopeptidase N.
Single inhibition of these enzymes was not analgesic in
humans [21]. On the other hand, inhibition of both enzymes
has been successfully tested in animals [22], but only with
intrathecal application in humans [23]. Progression of enkeph-
alin inhibitors has been discussed [24], and there is sparse but
ongoing development for analgesia [25]. Pharmacological in-
tervention with opioids leads to analgesia via a reduction in
neuronal excitability [26]. Thereby, opioid receptor activation
also reduces neurogenic inflammation, e.g., by limiting calci-
tonin gene-related peptide (CGRP) and substance P release. In
inflammatory conditions, opioid receptors are upregulated in

Fig. 1 Pathophysiological concept, also serving as outline for the review.
Neuronal and non-neuronal cells were separated to provide a schematic
for therapeutic approaches. These are discussed in the review, first con-
sidering direct inhibition of the neurons and then antagonizing mediators
acting on neurons. For modulation of the immune response, separated in
local modulation and chemoattraction as well as addressing systemic
inflammation, the reader is referred to the reviews of the respective topic.
In the neuron, a receptor and an enzyme are visualized as targets
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the dorsal root ganglia (DRG) and their trafficking to the nerve
endings seems to increase [27]. Moreover, with a prolonged
inflammatory event, peripheral receptors seem to account
for the majority of the analgesic effect [28]. Peripherally
restricted μ-opioid receptor antagonists methylnaltrexone,
alvimopan, and naloxegol could allow to reduce dose-
limiting side effects of blood–brain barrier–permeable ag-
onists, e.g., constipation [29]. A similar strategy should
work for developing kappa-receptor agonists. Efforts have
resulted in several compounds including ADL 10-0101
(discontinued after phase II) [30], topical loperamide for
pain due to repeated finger lancing [31], and oxycodegol
(NKTR-181, after completed phase III not commercialized
due to FDA advisory board vote) [32, 33].

Novel κ-receptor agonists include CR665 (not further
developed after phase II), which showed efficacy in al-
leviating symptoms of visceral pain [34]: JT09 designed
for oral administration [35], difelikefalin (CR845, phase
III completed 2020) [36], and TRK-820 (not further
developed after phase III) [37]—investigated in pruritus.
δ-opioid receptor agonists include GIC-1001 (phase II
started in 2013) [38, 39]. In summary, there is a lot
of activity to expand the opioid-based therapeutic
options.

Prostaglandin Receptors

These GPCRs include DP1 (PGD2 receptor), EP1–EP4 (PGE
receptors), FP (PGF receptor), IP (PGI receptor), and TP
(TXA receptor). It has been shown that murine peripheral
nociceptive neurons express IP, EP1, EP3, and EP4 mRNAs
[40]. The respectivemediators and the generating enzymes are
discussed in the second chapter. The sensitizing effects of
PGE2 and PGI are well known [41], characterized by a sensi-
tization of TRPV1 channels in DRG neurons downstream of
EP1 and IP receptors through PKA and PKC dependent path-
ways [42]. Sensory neuron sensitization occurs also through
PGE2 effects downstream of PKA phosphorylation on
voltage-gated Nav1.8 and Nav1.9 [43, 44] and voltage-gated
Cav3.2 [45], as well as P2X3 receptors [46, 47] and TRPV1
[48, 49]. Alternatively, downstream of PKA, PKCε may be
activated, by means of Epac1 (the exchange protein directly
activated by cAMP) [50]. Production of inflammatory prosta-
glandins through cyclooxygenase 1 and 2 is the mainstream
target of anti-inflammatory and analgesic therapy. A new con-
tribution to the action of ibuprofen might be TRPA1 inhibition
by a metabolite [51]. A novel approach might be a more se-
lective targeting of IP, EP1, EP3, and EP4. Such antagonists
are available, for IP selexipag [52], for EP1 ONO-8130 [53],

Fig. 2 Pain targets identified by Pubmed scraping. The search was
performed in April 2020. (a) “Large topics,” assessed by total
publications without time restriction to indicate overall interest in this
topic, sorted by the Total column. (b) “Rising topics,” sorted by the
difference between the publications within the last 3 years minus the
3 years before. (c) “Novel topics,” considering targets exceeding 10

publications within the last 3 years but not in the 3 years earlier; the
delta was used for sorting. The cumulative bar chart at the bottom
shows the distribution by target type. VGIC = voltage-gated ion channel,
GPCR = G protein-coupled receptor, T = transporter, C = catalytic recep-
tor, L = ligand-gated ion channel, O = other
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and for EP4, BGC20-1531 (phase I in 2009, not developed
further) [54] and CR6086 (phase II started in 2017) [55].
However, it was argued that a simultaneous inhibition of these
receptors might be required for analgesia, considering that
combined but not separate IP and EP4 inhibition was effective
[56]. EP3 knockout mice have a phenotype in a neuropathic
pain model [57], but the antagonists have at least also other
functions like antiaggregatory [58] and controlling micturesis
[59].

Cannabinoid Receptors

Despite a debate regarding psychotropics with at times a more
political than medical agenda, this needs consideration.
Regarding pain, there is a large body of literature [60]. A
recent meta-analysis focusing on the clinical use of cannabi-
noids covered 28 trials with chronic pain assessment (2454
participants) and, despite limited effect size, revealed an over-
all greater pain relief with cannabinoids than with placebo
[61]. There are two cannabinoid receptors, CB1 and CB2, both
Gi-coupled GPCRs. As there is selective pharmacology, it is
important whether CB1, CB2, or both receptors should be
targeted. Although it was argued that peripheral CB1 is the
main target for analgesia [62, 63], this is complicated by a
regulation of these receptors in different pathophysiological
conditions [64]. To limit central adverse effects, there are ef-
forts towards the development of peripherally restricted CB1

agonists [65]. In addition to cannabinoid receptor agonism,
positive allosteric modulation has the potential of a better side
effect profile. ZCZ011 was analgesic in inflammatory and
neuropathic pain models [66] and GAT211 acted against
paclitaxel-induced neuropathy [67].

Further, an upregulation of endogenous ligands might be
an option. Such endocannabinoids are anandamide (AEA) and
2-arachidonoylglycerol (2-AG). These are broken down by
monoacylglycerol lipase (MAGL) and fatty acid amide hydro-
l a se (FAAH) , and the i r inh ib i t i on can e leva t e
endocannabinoid levels. Spinal and supraspinal mechanisms
contributed to analgesia from systemic FAAH inhibition, but
this also has central side effects. A peripherally restricted
FAAH inhibitor URB937 lacking such side effects caused
CB1-mediated antinociceptive effects on inflammatory pain
[68, 69]. Clinical development of FAAH inhibition failed for
PF-04457845 tested against osteoarthritis [70], while BIA-
102474 had severe side effects (interrupted phase I trial in
2016) [71]. Also, MAGL inhibition has been clinically tested:
JZL184 raises 2-acylglycerol levels in the brain but has sub-
stantial central side effects [72]. FAAH and MAGL inhibition
by PF-3845 and JZL184 is synergistic [73]. In particular, com-
pounds with two targets have been sought. Dual FAAH inhib-
itor and TRPV1 antagonists AA-5-HT and OMDM-198 have
analgesic potential, and might be promising in case the bene-
fits of the dual action outweighs the disadvantages [74].

OMDM-198 had a neutral profile on body core temperature,
this having been prohibitive for further progress of many
TRPV1 antagonists [75]. Dual FAAH and COX2 inhibitor
ARN2508 reduced intestinal inflammation [76]. Currently,
there are several synthetic cannabinoids clinically used for
nausea and vomiting, such as nabilone and dronabinol, that
are also used off-label as pain treatment [77], with inhaled
cannabinoids often used in conjunction with first-line analge-
sics. Current research is supportive of a role for cannabinoids
in analgesia; however, additional carefully carried out trials
are required.

PAC1 Receptor

The pituitary adenylate cyclase–activating polypeptide
(PACAP) type I receptor (PAC1R) is part of the vasoactive
intestinal peptide/secretin/glucagon family of GPCRs and is
also expressed in the peripheral nervous tissue [78]. Structure
and ligand-binding have been clarified [79, 80]. Activation of
PAC1R via PACAP or the agonist maxadilan were shown to
induce and maintain nociceptive behaviors in rodents [81, 82],
and attempts at blocking the receptor proved successful in
attenuating formalin-induced pain [83]. PACAP38 is a potent
inducer of migraine attacks with an increased selectivity to-
wards PAC1R. Therefore, inhibition of the receptor is probed
for migraine, e.g., by anti-PAC1R antibodies AMG 301
(phase II completed 2019) [84] or by the development of
small-molecule antagonists [85]. The established antibiotic
doxycycline in a subantimicrobial dose facilitates agonist-
binding to PAC1R, which could allow to exploit an anti-
inflammatory and neuroprotective potential [86].

5-HT1 Receptors

Serotonin receptors are classified into seven groups
known as 5-HT1 to 5-HT7; all are GPCRs except 5-
HT3 [87]. Members of this group have been targeted
for the treatment of various types of painful conditions
including neuropathic pain, migraine, and cluster head-
aches. The current theory of the pathophysiology of
migraine highlights the role of the trigeminocervical
complex under the effect of increased afferent activity.
Additionally, the respective activity releases CGRP and
PACAP from these nerves, leading to plasma extravasa-
tion [88]. Triptans have been a long-standing option for
migraine treatment since the 1990s and are selective 5-
HT1B/1D receptor agonists, with some entities having
affinity for the 5-HT1F receptor [89]. It is assumed that
at least part of the mechanism relies on activation of 5-
HT1 receptors in the trigeminal ganglion, leading to re-
duced neuropeptide release, while CNS effects have not
been excluded [90]. The main drawback of using
triptans is their potential for vasoconstriction, due to
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activation of 5-HT1B receptors. For selective 5HT1F ac-
tivation, a small but significant effect was found for
lasmiditan, which was approved in 2019 [91].

Injection of serotonin into the muscle is painful in human
volunteers [92]. Serotonin injection pain can be inhibited via
the 5-HT2B receptor in mice [93], and a role of this receptor
was also demonstrated in neuropathic pain [94] while being
assumed for migraine [95].

RS-127445 is a 5-HT2B receptor antagonist which reduced
allodynia after nerve injury [96]. So far, there are no clinical
studies with this target. Drugs like selective serotonin reuptake
inhibitors can reduce systemic levels of inflammatory cyto-
kines (e.g., IL-1α, IL-6, IL-8, IL-12, IFN-γ) [97]. Within this
category, the peripherally restricted N-methyl-citalopram has
been patented and reported but not investigated for analgesic
use [98].

Proton-Sensitive GPCRs

There are many acid-modulated proteins, among which
are four GPCRs, occurring in a variety of tissues. These
include GPR4, GPR68, GPR132, and GPR65 [99]. The
pH sensitivity and the expression patterns favor GPR68
(also OGR1) as a neuronal pH sensor, as it is found in
about 29% of all sensory neurons and in 78% of puta-
tive nociceptors, indicated by the small-diameter neuron
marker peripherin [100]. A role in inflammatory pain
has been demonstrated [101, 102], and pharmacological
inhibition resulted in attenuated colitis-associated pain
[103]. Other potential uses to limit cellular acid-sensing,
e.g., in cancer or cardiac ischemia [104, 105], require
careful consideration of the usefulness of this approach
for analgesia.

Histamine

Histamine is mainly released by mast cells and activates four
GPCRs (histamine receptors H1, H2, H3, and H4) involved in
physiological and pathological processes. In terms of sensory
physiology, histamine levels increase in inflammation, but the
effects have been mostly associated with itch and allergy.
There is evidence for H3 and H4 involvement in
the modulation of nerve injury-induced neuropathic pain as
well as in inflammatory pain models [106–108]. So far, there
is only preclinical data to support the use of H3 and H4 antag-
onists for minimizing hypersensitivity [109]. The combination
of peripheral and central effects might explain why H3 ago-
nists as well as antagonists might be beneficial [110]. H4 re-
ceptor antagonists are further in development [111]. JNJ
7777120 inhibited a rabbit immune response to sheep eryth-
rocytes [112], and adriforant (ZPL-3893787, discontinued
after phase II) was anti-inflammatory in a phase IIa study for
atopic dermatitis [113].

C5a Complement Receptor

The complement system is an essential driver of innate immu-
nity through opsonization and killing of bacteria. Three con-
vergent activation pathways result in the formation of the
membrane attack complex, through a precursor molecule
called C5. The biologically active fragment C5a, as well as
C3a, were shown to sensitize capsaicin-induced calcium tran-
sients in DRG neurons [114]. The C5a receptor mRNA codes
for a GPCR in sensory neurons, which can induce thermal
hyperalgesia requiring TRPV1 and NGF contribution.
Moreover, C5a triggers arachidonic acid metabolism, and
PGE2 synthesis [115], most likely through C5a receptor 1
activation. C5aR antagonism has been attempted with several
strategies, among which a more recent one implies allosteric
inhibition with DF2593A, proven to be effective in inflamma-
tory pain models [116]. Anti-C5aR antibodies were effective
at inhibiting the development of arthritis in rodents [117]. On
the clinical side, selective C5aR inhibition by avacopan
(CCX168, phase III completed, new drug application accept-
ed) has been investigated in patients with vasculitis [118],
the monoclonal antibody NNC0215-0384 (not further devel-
oped after phase I) in rheumatoid arthritis [119, 120], and anti-
C5aR antibody avdoralimab has been lined up against inflam-
matory responses in the lung [121].

Prokineticins

Prokineticin receptor 1 and 2 are GPCRs, activated by cyto-
kine prokineticin 2 (Bv8). Both are expressed by neurons and
have a role in pain [122, 123]. These receptors can sensitize
ion channels, through kinases described below, including
TRPV1 and acid-sensing ion channels [124]. PC1, an inhibi-
tor prokineticin 1 [125], reduced neuropathic pain [126]. So
far, this is in the preclinical stage; efforts to drug these targets
have been summarized [127].

Sensory Neuron Ion Channels

Sodium Channels

Voltage-gated sodium channels (Nav) play a major role in
determining neuronal membrane excitability, which high-
lights their contribution to the genesis and maintenance of
pain signals [128]. The mammalian Nav family members have
different expression patterns and possess heterogeneous elec-
trophysiological properties [129, 130]. Nav pharmacology is
comprised essentially of blockers, some among the most well-
established drugs for local anesthesia (lidocaine, bupivacaine),
type I antiarrhythmics (mexiletine), or anticonvulsants
( lamotr ig ine , carbamazepine , phenyto in) [131] .
Inflammation has been shown to be associated with upregu-
lation of Nav1.7 and Nav1.8 [132, 133], and Nav1.7 deletion
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abolished inflammatory pain responses in animal models
[134]. Moreover, changes in activity, specifically decreased
activation thresholds and ectopic discharges, most likely con-
tribute to allodynia or hyperalgesia in neuropathic pain states
[135], with certain lines of therapy including Nav blockers.
Therefore, it seems valuable to pursue selective pharmacolog-
ical tools targeting Nav subtypes. However, this development
is ongoing for a considerable time and with substantial effort,
indicating the difficulty to generate such subtype-specific and
effective drugs [136–138]. Clinical trials have been exploring
the utility of lidocaine patches in arthritis [139] and also alter-
natives to small-molecule antagonists, e.g., peptides (AM-
6120, AM-8145, AM-0422) or Nav1.7 monoclonal antibodies
[140]. Progress in development has been summarized [141].

Calcium Channels

There are ten calcium channels based on their alpha subunit,
historically labeled by initials of substances acting on these,
and more recently by genetic similarity. There are three fam-
ilies, the low-voltage-activated (T-type) CaV3.x channels and
the high-voltage activated calcium channels, which can be
differentiated into dihydropyridine-sensitive (L-type) CaV1.x
and dihydropyridine-insensitive CaV2.x. Antagonists of these
voltage-sensitive channels are clinically used, in particular for
targeting the cardiovascular system. Therefore, it has to be
carefully considered whether there is an opportunity for sys-
temic analgesic action [142]. Despite that, verapamil is a pro-
phylactic option for cluster headache [143]. However, for mi-
graine, L-type channel blockers and substances with a
calcium-inhibitory component are considered [144]. Finally,
several classic voltage-gated calcium channel inhibitors in-
crease cytosolic calcium. It was shown that in the case of
nifedipine, this is due to activation of TRPM3, TRPA1, and
ionotropic glutamate receptors of the NMDA subtype [145].
A more novel approach might include antagonists of Cav2.2
[146]. Based on the caveats mentioned above, it is interesting
whether a weak calcium-channel inhibitory component might
contribute to the overall action of an analgesic drug. Cav3.1
has also emerged as an interesting target for analgesia in the
context of neuropathic pain; Z944 (phase I in 2014) is a se-
lective antagonist [147].

TRP Channels

Transient receptor potential (TRP) channels are grouped into 7
families, totaling 28 members [148]. The respective chapter is
somewhat overrepresented as an example, but also as it re-
flects the core expertise of the authors. The scope of this re-
view is broader; TRP channel-directed development of anal-
gesics has been addressed in more focal reviews [149–151].

TRPV1 is the best-investigated pain target without a med-
ically available antagonist. It is a well-established pain sensor,

which is characterized by different modalities of activation.
TRPV1 can be activated by temperatures over about 41 °C,
chemical compounds (capsaicin, resiniferatoxin), and low pH
and can be modulated downstream of a variety of bonafide
inflammatory stimuli (e.g., bradykinin, prostaglandins), most-
ly through PKC-dependent pathways. Further stimulation can
be mitigated through PKA phosphorylation [152],
phosphatidyl-inositol-phosphates [153], and reactive oxygen
species (ROS) effects, to a certain degree [154].

Nevertheless, TRPV1 is downstream of many inflammato-
ry signaling pathways and pursuing strategies involving their
inhibition might prove worthwhile. In the case of TRPV1, the
consequence of locally applied capsaicin depends on the con-
centration and can lead to sensitization [155–158]. However,
local capsaicin can also trigger desensitization of primary sen-
sory afferents with analgesic outcomes, e.g., in the form of <
1% over-the-counter ointments indicated for the treatment of
neuropathic and musculoskeletal pain [159]. Interestingly, do-
ing this does not generate any meaningful changes in mechan-
ical sensitivity. Transdermal 8% capsaicin patches are ap-
proved for postherpetic neuralgia-associated neuropathic pain
[160]. Development of TRPV1 antagonists was highly pur-
sued by the pharmaceutical industry, and one of the most
important hurdles to be overcome seems to be minimizing
off-target effects on body temperature. There are already
pre-clinically confirmed modality-specific compounds, which
largely leave body temperature untouched [161]. DWP-05195
and NEO-6860 have reached phase II trials (completed 2014
and 2016) for the treatment of neuropathic pain and osteoar-
thritis, respectively [162, 163], while tivanisiran, a small in-
terference RNA inhibitor of TRPV1, failed its endpoints in a
phase III trial for dry eye syndrome in 2019 [164]. Resolvin
E1 has been shown to reduce substance P potentiation of
TRPV1 in DRGs [165] and has reached phase I clinical trials
in 2019 [166]; it might be useful for the treatment of rheuma-
toid arthritis, or other inflammatory conditions. A recent meta-
analysis points towards differences in the role of rat and hu-
man TRPV1 thermoregulation, potentially a reason for the
relatively poor translation of many antagonist effects in
humans [167]. An interesting strategy might be heralded by
the use of photoswitchable fatty acids, which could allow
exposure of an optically defined area, as it is standard for
photodynamic therapy. TRPV1 activation by photoswitchable
capsaicin could allow highly localized neuronal ablation
[168]. In summary, the development programs by most large
pharmaceutical players have resulted in many substances, key
side effects like self-inflicted burn injury and elevated body
core temperature were slowly overcome, but the human trials
so far had disappointing efficacy [169].

TRPA1 is even more promiscuous than TRPV1, as it is
gated by a very wide range of stimuli including natural chem-
ical compounds, drugs, calcium, voltage change [170], and
UV radiation [171, 172], to name a few. In addition, TRPA1
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has been shown to be sensitized by PKA [173] and prolonged
agonist application [174, 175]. For a more comprehensive
view over TRPA1 activation mechanisms as well as agonists
and antagonists, see [148, 176, 177]. One of the main chal-
lenges in developing TRPA1 antagonists lies in a notable spe-
cies difference, where in rodents, the effects may lead to
underestimating potential clinical efficacy [178]. HC-030031
or A-967079 were the most promising antagonists, but have
not been progressed to clinical testing. A phase II trial for
neuropathic pain in diabetic neuropathy with GRC 17536
failed to meet the primary endpoint in 2014 [179]. Other at-
tempts include ODM-108 [180], for neuropathic pain and CB-
625 for acute surgical pain, both terminated in phase I [181].
Alternative strategies, such as drug repurposing for TRPA1,
might see the use of desvenlafaxine, paliperidone, and
febuxostat as TRPA1 blockers [182]. With the advent of po-
tent TRPA1 agonists, a new human TRPA1 model can be
used to test TRPA1 antagonists in humans [183]. Aside from
pain, other diseases could benefit from TRPA1 inhibition
[184]. However, similar to TRPV1, TRPA1 has been known
for so long that the progress towards a usable analgesic is
somewhat disappointing [185].

TRPM8 is viewed as the canonical cold transducer [186]
and is also activated by menthol, which is routinely used for
its analgesic properties in preparations to alleviate inflamma-
tory pain in sports injuries or arthritis [187, 188]. There is an
intriguing interplay between TRPM8 activity and inflamma-
tory mediators. For example bradykinin, a proinflammatory
mediator, exerts an inhibitory effect on TRPM8 activity, while
TRPM8 activation by cold causes downregulation of proin-
flammatory TNFα [189]. TRPM8 antagonist RQ-00434739
reduced activity of afferents in bladder inflammation [190].
Systemic application of PF-05105679 successfully inhibited
the cold pressor response of human subjects, but also led to
unexpected hot sensations (discontinued after phase I com-
pleted in 2011) [191]. Also, AMG-333 was tested in phase I
in 2013, but terminated thereafter without reported results
[192]. Substantial progress has been made in the further de-
velopment of agonists and antagonists [193].

TRPV4 is expressed in a large fraction of primary afferents
and responds to, e.g., decrease of the osmolarity [194]. The
knockout mice showed reduced mechanical and acidosis-
induced pain [195]. Potent pharmacological tools have been
developed [196]. Animal experiments suggested a pathophys-
iological role, e.g., in pulmonary, pancreatic, and bladder in-
flammation [197]. TRPV4 antagonist GSK2798745 has been
reported as well-tolerated in a recent phase I trial [198]. The
phase II trials for chronic cough [199] and LPS-induced alve-
olar barrier disruption [200] have been terminated due to a
low probability of achieving the primary endpoint. In a
third trial in 11 subjects with heart failure, alveolar dif-
fusion capacity was not significantly changed [201].
Despite being beyond the peak of publication activity,

it remains interesting whether this can be converted into
human therapeutic benefit.

TRPV3 is mentioned here, despite reports of preferential
expression in non-neuronal cells. Reduction of keratinocyte
ATP release and with that the reduction of sensitization or
activation was put forward as mode of action. TRPV3 antag-
onist GRC15300 was tested in a phase II clinical trial and
terminated in 2013 after it failed to reduce neuropathic pain
[202].

TRPV2 is heat sensitive. The higher thermal threshold
compared with TRPV1 [203], which can be modulated
[204], caused the speculation that this might be the sensor
for noxious heat damage. The lack of an apparent phenotype
of TRPV2 knockouts as well as TRPV1/TRPV2 double
knockouts [205] limited interest for analgesic purpose.

TRPM2might be an option to target pain [206], but its role
in temperature sensing [207, 208] indicates that this might
need to be overcome first to uncover analgesic potential.

TRPM3 activation evokes pain-related behavior in animals
[209], and the contribution to heat pain in mice as part of a
triad of redundancy in heat perception render this interesting
[210]. In addition, TRPM3 is upregulated in inflammatory
conditions, which increases the overlap with and the interac-
tion with signaling of TRPV1 and TRPA1 [211]. TRPM3 is
found in human sensory neurons [212], and concentrations of
volatile anesthetics not exceeding the minimal alveolar con-
centration by far can act as TRPM3 antagonists [213].

Potassium Channels

Potassium channels are the largest and most diverse ion chan-
nel family with about 80 members [214]. As for the topics
above, there are more focused reviews [215–217]. The potas-
sium channels can be separated into four major groups, all
present in primary afferent neurons. These are voltage-gated
K+ channels (Kv families Kv1–Kv12), Ca

2+-activated K+

channels (KCa families KCa1–KCa5), two-pore K+ channels
(K2P families K2P1–K2P17), and inwardly-rectifying K

+ chan-
nels (Kir families Kir1–Kir7).

The respective channels are discussed regarding their func-
tion in peripheral neurons [218]. Contribution to axonal con-
duction can reduce action potential frequency, partially also
seen as action potential shape change. In particular Kv2.1,
Kv3.4, Kv9.1 and KCa1.1 have been discussed to contribute
to this in a frequency-dependent fashion, and the role of the T-
junction might be therefore considered [219].

At least as interesting are channels which modulate spike
initiation at the peripheral terminals, affecting resting mem-
brane potential and action potential threshold. An
antinociceptive decrease in primary afferent excitability can
be brought about by opening potassium channels. This will
hyperpolarize for a channel with an equilibrium potential be-
low the resting membrane potential, but also increased
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potassium conductance without a change in resting membrane
potential will stabilize against excitation. To this end, Kv1
(Kv1.1/Kv1.2), Kv7 (Kv7.2/Kv7.3), K2P (TREK1, TREK2,
TRAAK), KCa1.1 are primarily considered, and this includes
some controversy regarding expression in sensory neuron
subtypes [215]. Kv1.1/Kv1.2 are mainly found in large non-
nociceptive neurons [220]. Kv7 channels, encoded by
KCNQ1-5 historically named “M-channel” as it explained
the observed non-inactivating potassium “M-current,” are a
focus of pharmaceutical development since Kv7 activation
has demonstrated analgesic potential for inflammatory and
neuropathic pain [221, 222]. Many of the respective studies
used Kv7 blocker XE-991 or Kv7 activator retigabine [223,
224]. For currently used analgesics, a contribution of potassi-
um channels to their analgesic action has to be considered,
e.g., paracetamol metabolite NAPQI, meclofenamic acid,
and diclofenac activate Kv7.2 [225, 226]. Given homo- and
heterotetramer formation, e.g., Kv7.2/Kv7.3 [227, 228], devel-
opment of analgesics also depends on the generation of
subtype-specific drugs. New Kv7.2 agonists like ICA-27243
show antinociceptive effects and demonstrate active develop-
ment in this area [229].

K2P channel activators could also reduce excitability of
afferent neurons [230]. K2P2.1 (TREK-1) activated by GI-
530159 reduced excitability of rat sensory neurons [231] and
antinociceptive effects of riluzole were ascribed to this chan-
nel [232]. Selective activators of K2P2.1 (TREK-1) and
K2P10.1(TREK-2) allow probing these channels as analgesic
targets [233]. Cloxyquin activates K2P18.1 (TRESK) [234].
Clinically established medications and endogenous sub-
stances are known to activate these targets [235], but pain-
related studies are still rare and no clinical trials have been
performed.

A search for substances tested in registered clinical trials
concerning human pain modulation via potassium channels
shows 4-aminopyridine, flupirtine, and maxipost. 4-
aminopyridine, including the slow-release formulation
fampridine, has shown some benefits in multiple sclerosis
[236]. For the study testing 4-aminopyridine in Guillain-
Barre syndrome patients [237] no results were published.
The mechanism of action of 4-aminopyridine is unclear, since
in addition to the Kv1 inhibition, also a Cav2.2 facilitation was
demonstrated [238]. A change in pain was only a minor aspect
[239]. Potassium channel opener flupirtine reduced human
neuronal excitability [240].

Maxipost (BMS 204352) acts via multiple channels, in-
cluding KCa1.1, Kv7.2, Kv7.3, and Kv7.4, but the anxiolytic
effect demonstrates that this has a relevant central component
[241, 242]. A headache-focused trial shows headache-
induction by maxipost, indicating a role of BKCa channels in
headache pathophysiology [243]. The same group has also
reported that opening of ATP-sensitive potassium channels
was associated with occurrence of headache [244].

Chloride Channels

Intraneuronal chloride homeostasis is maintained by multiple
players, and the outline of a topical review [245] has been
used here to focus on analgesic potential. Chloride channels
are comprised of GABAA and glycine receptors, calcium-
activated chloride channels (CaCC), ClC family of chloride
channels and transporters, cystic fibrosis transmembrane con-
ductance regulator (CFTR), volume-regulated anion channels
(VRAC), and maxi-anion channels. All of these adjust intra-
cellular chloride levels, impacting on excitability of sensory
neurons. The equilibrium potential of chloride depends on the
intracellular Cl− concentration, such that in case of a high
concentration, channel opening can cause depolarization
[246, 247]. The hypothesis that neuronal Cl− accumulation
can amplify Cl− efflux and, consequently, alter sensory sig-
naling has been supported by targeting NKCC1 (Na+-K+-2
Cl− transporter). The respective knockout animals had re-
duced thermal responses [248] and NKCC1 inhibitor bumet-
anide reduced inflammatory pain in the formalin test [249].
Inflammatory mediators bradykinin, PGE2, NGF, and ATP
inhibit KCC2 (K+–Cl− cotransporter), a main player in Cl−

outflow, and facilitate chloride import through NKCC1,
which as net effect increases excitability [250].

Calcium-activated chloride channels include anoctamins,
which consist of 10 channels. For the first member, anoctamin
1, expression was predominantly found in small DRG neurons
[251], and a contribution to excitability of neurons has been
demonstrated [252]. Human anoctamin 1 can be inhibited by
MONNA with an IC50 of about 1 μM [253] and animal data
point towards an analgesic effect [254], but this needs to be
further scrutinized, also helped by new antagonists [255].
Functions of anoctamin 1 in other systems, e.g., epithelial
secretion, have to be considered for side effects [256].
Bestrophins (Best1–4) are also chloride channels, with expres-
sion in intermediate-sized sensory neurons [257]. Members
can be activated by slight intracellular calcium elevation,
which would allow an amplification of minor signals. A role
in a neuropathic pain model for bestrophin 1 has been de-
scribed [258], but the pharmacological tools to advance this
are still limited. The voltage-gated chloride channel CIC3 was
found in small sensory neurons, and upregulation reduced
excitability [259]. TMEM206 has recently been described as
a proton-activated chloride channel, but it appears predomi-
nantly expressed in the central nervous system [260]. Cystic
fibrosis transmembrane conductance regulator is a chloride
channel mainly known due to the consequence of the reces-
sive genotype. It is found in neurons, peripheral and central
[261], and contributes to neuronal ATP release [262]. The lack
of pain phenotypes in CFTR patients questions a role of this
channel in disease pathophysiology.

Volume-regulated anion channels respond to osmotic
changes [263]. LRRC8A, an essential member, is found in
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DRG neurons [264]. Whether it can be targeted to control
chloride levels remains to be elucidated. Maxi-anion channels
are widely expressed and can be recruited by cellular stress
[265]. This includes inflammatory conditions, which were
shown to regulate SLCO2A1 [266]. So far, pain as part of a
syndrome has only been described in case reports.

GABAA receptors are found on sensory neurons, and local
GABA injection increases excitability in mice and humans
[267, 268]. An antinociceptive effect could be expected from
GABAA antagonists, but systemic application of substances
penetrating the blood–brain barrier have a convulsant effect
[269]. Peripherally restricted GABAA receptor antagonists,
e.g., bicuculline methiodide, were so far not reported to inhibit
pain, which might suggest that there is no tonic GABA release
contributing to baseline excitability.

Acid-Activated Ion Channels

Acidosis is one of the main features of inflammation, with
protons being sourced through cell lysis along with other me-
diators and by relative ischemia. Tissue acidosis leads to
nociception, by direct gating or through sensitization to other
agonists [270]. Canonically, proton-gated acid-sensing ion
channels (ASICs) [271] form a group of voltage-insensitive
sodium channels, with four members (ASIC1–4) [272]. This
feature is also present in a variety of other channels, including
TRPV1, TRPV4, TRPC4, TRPC5, TRPP2, P2X
purinoceptors, inward rectifier K+ channels, voltage-
activated K+ channels, L-type Ca2+ channels, HCN channels,
gap junction channels and Cl− channels [273], and can be
sensitized by inflammatory mediators [274, 275]. In humans,
low pH-induced pain in the range of acidosis occurrence is
mediated by TRPV1 [276], whether other targets contribute
substantially in inflammatory conditions is currently un-
known. The most likely target for ASIC analgesia in inflam-
mation remains ASIC3, with substantial expression in the pe-
ripheral nervous system [277, 278]. In a human trial, ASIC
blocker PPC-5650 had no relevant effect on mechanical, ther-
mal, electrical, and chemical stimulations of the esophagus
[279].

Mechanoreceptors

Mechanotransduction is fundamental to the environmental in-
teraction of living organisms. Sensing of mechanical stimuli,
innocuous or noxious, is strongly affected by inflammation, as
most inflammatory conditions are accompanied by protective
hype r a l ge s i a [ 280 , 281 ] and a l l odyn i a [282 ] .
Mechanosensation, mechanonociception and the differentia-
tion between these two sensory modalities represent a
longstanding interest in neuroscience research. Competing
theories regarding how they function are the labeled line the-
ory of somatosensation and the population-coding model

[283, 284]. More and more light is shed on the molecular
pathways of mechanosensitivity. Key players include Piezo2
[285], Nav1.1 [286], neuronal S1P receptor S1P3 [287],
TRPV4 [288], and epithelial Na+ channel (ENaC) [289]. In
addition, several cellular microcompartments such as primary
cilia, caveolae, or integrins can sense the stiffness of the ex-
tracellular matrix [290, 291].

Sensory neurons respond to sphingosine 1 phosphate
(S1P), involving TRP ion channels [292], but the contribution
to neuropathic pain also involves non-neuronal cells, e.g.,
through the S1P receptor 1 in astrocytes [293]. Sphingosine
1 phosphate contributes to inflammation [294], but this sig-
naling is also involved in acute mechanonociception by S1P3
[287]. S1P3 knockout mice showed attenuated mechanical
pain and inflammatory thermal hypersensitivity. There are
two FDA-approved S1P1 antagonists, namely fingolimod
and siponimod. Fingolimod stimulates S1P receptor internal-
ization and has so far been therapeutically used against mul-
tiple sclerosis relapse [295]. Fingolimod reduces neuropathic
pain, however, by reducing central sensitization in the dorsal
horn [296]. A further trial exploring its utility in neuropathic
pain is underway [297].

An interesting argument has been made in the case of
TRPV4, an established sensor of shear stress and change in
osmolarity, referring to a role in transducing forces in cell
contacts [290]. TRPV4 deficient mice seem to be protected
when being faced with acute lung injury [298] and pharmaco-
logical inhibition leads to similar results [299], reducing neu-
trophil infiltration and levels of inflammatory mediators such
as IL-6.

In the long-enigmatic mechanotransduction, the late dis-
covery of the unusual Piezo cation channels stands out
[300]. The rodent and the human form of Piezo2 respond to
low mechanical forces [285, 301, 302]. Bradykinin has been
shown to increase Piezo2 mechanosensitive currents via PKC
and PKA pathways in sensory neurons [303]. However, the
primary function of the Piezo channels seems to be touch, and
there is less contribution to stronger pain-inducing stimuli.
Neurons lacking Piezo2 responded robustly to noxious pinch
[304]. When touch becomes allodynic in inflammation,
Piezo2 seems to contribute, and human subjects with a loss
of function mutation report less sensitivity to capsaicin-
induced neurogenic inflammation [305]. A relief from inflam-
matory pain can only be hypothesized, but this still awaits the
availability of an antagonist. For Piezo1, a negative interaction
with Piezo2 has been demonstrated [306].

HCN Channels

Hyperpolarization-activated cyclic nucleotide-gated channels
(HCN1–4) are nonselective cation channels conducting both
sodium and potassium ions [307]. HCN upregulation in the
trigeminal ganglion has been demonstrated for inflammation
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at the dura mater [308] and HCN2 knockout mice exhibit
diminished heat hyperalgesia in inflammatory pain models
[309]. HCN3 has been largely excluded from having any rel-
evant implications in inflammatory pain [310]. HCN2 and
HCN4 are modulated by cAMP and PKA, which might be
selectively targeted [311]. Ivabradine, a peripherally restricted
general HCN blocker, provided analgesia in inflammatory and
neuropathic pain mouse models [312]. However, in healthy
volunteers, ivabradine lacked impressive analgesic properties
but decreased heart rate, indicating that more HCN2-specific
blockers might be required [313]. To this end, compounds
selective towards HCN1/2, such as MEL55A, might yield
better results on this front [314].

Purinergic Signaling

Purinergic receptors are divided into three main groups: P1
with members A1, A2A, A2B, A3 is G protein-coupled, the P2
family has been divided into the P2X ion channels P2X1–
P2X7 and the P2Y G protein-coupled receptors with 8 mem-
bers. Purinergic signaling is an important driver of inflamma-
tion as ATP is released into extracellular space by inflamma-
tory cells [315, 316], and iontophoretic ATP application into
human skin caused a concentration-dependent pain response
[317]. An in-depth review for purinergic signaling in pain has
been provided [318].

The role of P2X receptors in pain has been reviewed [319].
A role in nociception has been shown for the purinergic re-
ceptors P2X2 and P2X3, which can form heterodimers [320].
P2X3 receptors are attractive analgesic targets due to their
exclusive expression on sensory neurons [321]. A-317491
reduced inflammatory and neuropathic pain in rats [322], with
further improvement of pharmacokinetics and a reduction of
thermal and mechanical hyperalgesia in an endometriosis pain
model [323]. P2X3 antagonist gefapixant (AF-219) reduced
chronic cough in a phase II trial [324]. AF-219 has advanced
to phase III, BLU-5937 to phase II, and the progress in devel-
opment has been recently summarized [325]. P2X4 [326] and
P2X7 [327] are also involved in pain, but their primary mech-
anism works through microglia. As purinergic GPCRs have
not been given a separate paragraph, it should be mentioned
that neuronal P2Y1 activation has been shown to elicit sensi-
tization through TRPV1 [328]. With the release of ATP, also
ADP, AMP and adenosine are generated. Targeting adenosine
A1 receptors with GR79236X failed to reduce pain due to a
third molar extraction [329].

Enzymes in Sensory Neurons

Protein Kinase A

Many inflammatory mediators’ signaling pathways converge
to an increase in intracellular levels of cAMP (e.g.,

prostaglandins, bradykinin). Among downstream targets of
cAMP, contributing to neuronal hypersensitivity, is the
AMP-dependent protein kinase (PKA), itself a sensitizer of
pain-transducing targets, including TRPV1 [330], TRPV4
[331], and TRPA1 [173], as well as Nav1.8 [332] and
Nav1.7 [333]. PKA activity in inflammatory hyperalgesia
plays an important role in its onset as well as in maintenance,
as PKA inhibitors have shown reduction of hyperalgesia in
animal models [334, 335]. PKA has four regulatory subunits,
of which R1β has a predominantly neuronal expression pat-
tern, and the respective knockout mice have a phenotype in
inflammatory pain [336]. However, there are so far only in-
hibitors for multiple protein kinases (AGC inhibitors), with
effects also on PKA for cancer treatment [337, 338], but not
PKA subtype-specific antagonists.

An alternative pathway for cAMP involves the exchange
proteins directly activated by cAMP (Epac), which function to
catalyze the exchange of GDP to GTP on small Rap proteins,
leading eventually to PKCε-and mitogen-activated protein ki-
nase activation [339]. Epac function seems to be intertwined
with alterations in nociception; for example, Epac activation
leads to TRPV1 sensitization, an effect blocked by inhibiting
downstream targets PKCα and PKCε [340]. Epac-selective
cAMP analogue 8-pCPT has been shown to sensitize mechan-
ically evoked Piezo2-mediated currents in DRG neurons and
induce mechanical allodynia through Epac1 [341]. More re-
cently, Epac inhibitor ESI-09 was used to suppress
chemotherapy-induced pain [342] or inflammatory pain
[343], but so far, Epac modulators have been limited to pre-
clinical research [344].

Protein Kinase C

Protein kinase C (PKC) is important for regulating several
neuronal functions, with sensitizing effects on many ion chan-
nels involved in nociception, such as TRPV1 [345, 346],
ASICs [347, 348], and Navs [332, 349]. Since PKC activity
is sensitive to intracellular levels of calcium, it is also subject
to modulation by inflammatory mediators acting through the
PLC pathway, many of which are discussed below. Among
the 16 PKC isoforms, PKCε seems to be critical for the de-
velopment of acute inflammation, as shown with genetic de-
letion and pharmacological inhibition [350]. So far, PKC in-
hibitors, as many other kinase inhibitors, were mostly devel-
oped regarding their antitumor activity. Preclinical and clini-
cal efforts in development were summarized [351]. The fur-
thest progress was made for aprinocarsen which failed in
phase III for lung cancer [352]. Subtype-specific knockouts
have demonstrated less neuropathic pain, e.g., for PKCγ
[353]. The importance of PKC subtypes for pain has been
discussed [354]. The PKCε inhibitor KAI-1678 (studies com-
pleted in 2011) was well tolerated, but had no beneficial effect
for postherpetic neuralgia and postoperative orthopedic pain
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[355, 356]. Overall, for PKC, the challenge remains to find a
sufficiently nociception-specific approach, which is equally
valid for all ubiquitous kinases.

Anchoring of PKC, PKA, and also phosphatase 3A to their
targets occurs through adapter proteins, for these enzymes in
particular through the A-kinase anchoring proteins (AKAP);
this serves to facilitate sensitization driven by bradykinin and
PGE2 in certain channels, e.g., TRPV1 [357] and TRPA1
[358]. These anchoring proteins have specific interfaces to their
phosphorylated targets, which could avoid the side effects of
the kinases’ many targets, but allow to inhibit a specific inter-
action [359]. However, this has so far also remained elusive.

Mitogen-Activated Protein Kinases

MAPKs are a diverse family of serine–threonine kinases
which include extracellular signal-regulated kinase (ERK),
p38, and c-Jun N-terminal kinase (JNK) [360]. These signal-
ing cascades are involved in cell proliferation, and respective
inhibitors have largely been evaluated or used for cancer.
However, these kinases are also involved in sensitization,
and their analgesic potential, directly on neurons or indirectly,
e.g., reducing tumor progression, needs to be discussed [361].
In DRGs, MAPKs are activated under cellular stress condi-
tions and proinflammatory cytokines exposure, e.g., NGF,
TNFα, and thermal stimulation [362–364]. MAPK inhibitors
have been extensively used for alleviating allodynia and
hyperalgesia in animal models of inflammatory pain. Below
are recent preclinical and clinical developments pertaining to
this complex pathway. ERK inhibition with U0126 resulted in
improved thermal hyperalgesia after capsaicin injection [365],
normalized indices of mechanical allodynia and heat
hyperalgesia [366], and alleviated chemotherapy-induced
neuropathy [367]. Compounds in late stages of development
or already on the market include selumetinib, which reduced
pain in children with inoperable plexiform neurofibromas,
again the relative importance of desensitization versus
slowing of disease progression being unclear [368]. P38 in-
hibitors appeared to be effective in rheumatoid arthritis (PH-
797804, discontinued after phase II) [369], the inflammasome
was inhibited by CDD-450 (ATI-450, phase II, new ongoing
study) [370, 371], and pain after nerve injury was reduced by
dilmapimod (SB-681323, phase II trials completed several
years ago) [372]. JNK contributes to inflammatory pain, also
via non-neuronal cells in the DRG [362, 373]. Whether
MAPK inhibitors prove to be useful as analgesics for patients
without need for antitumor therapy or even within this group
remains an open question.

Src

Src is a ubiquitously expressed tyrosine kinase, with important
roles in several signaling pathways, including cell growth,

division, and survival [374]. It is also strongly linked with a
number of targets of inflammatory mediators (e.g., NGF) trig-
gering the PI3K-PKB-Src pathway, and leading to TRPV1
upregulation [375]. TRPM8 function also depends on the
phosphorylation state, which is regulated by Src [376].
Similarly, the role of Src in inflammation and neuropathic
pain has been investigated in conjecture to the NMDA recep-
tor complex, whose function it also enhances [377]. Using a
Src inhibitor peptide, the authors suppressed both inflamma-
tion and nerve injury-induced pain, leaving other sensory
functions intact. Non-specific tyrosine kinase inhibitors which
also target Src, e.g., dasatinib, imatinib, are used therapeuti-
cally against several types of cancer, where they also inhibit
cancer-induced pain [378], but have not been investigated so
far in terms of analgesia.

Interleukin Receptors, at Least Also on Sensory
Neurons

Interleukins are numbered, which obfuscates that these are
clustered in superfamilies, labeled by a prominent or early
member. Here, according to the review structure, these are
primarily sorted based on whether they act on a receptor on
sensory neurons. An overview of cytokine targets in pain has
been provided [379, 380].

IL-1

The IL-1 receptor has been found on sensory neurons [381],
although there is also conflicting evidence, where the receptor
was only on DRG-supplying vessels [382]. IL-1β-increased
excitability of isolated sensory neurons should settle this issue
[383]. The IL-1 superfamily consists mostly of proinflamma-
tory mediators, key members are IL-1α, IL-1β, IL-18, IL-33,
IL-36α, IL-36β, and IL-36γ, acting on a series of own recep-
tors [384]. There are also antagonists to these respective re-
ceptors, e.g., IL-1Ra, IL-36Ra, which can belong to other
superfamilies. IL-1α has been labeled as a dual function cy-
tokine with a nuclear localization sequence in its precursor
region, in addition to it targeting its cell membrane receptor
[385]. IL-1β potently induces hyperalgesia, e.g., in skin or in
joints [386, 387]. The cascade is complex and involves PGE2,
substance P, nitric oxide, and endothelial adhesion molecules.
Vice versa, IL-1β occurs also downstream upon injection of
well-established inflammatory agents [388]. That review also
discussed IL-1β involvement in glia–neuron interaction, as-
suming a role in neuromodulation in persistent pain states.

In clinical studies, IL-1α and IL-1β administration leads to
fever and generalized systemic inflammation, parenting strat-
egies for disrupting the respective pathway [389, 390]. There
is no doubt about the merit of targeting IL-1 signaling in
pathophysiology. There are antibodies against anti-IL-1α
and anti-IL-1β and against the IL-1 receptor [391], and with
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the first mention of therapeutic antibodies, a review of this
treatment strategy is provided [392, 393]. A monoclonal anti-
body against IL-1α reduced pain in refractory cancer patients
and improved quality of life [394]. A strategy to scavenge IL-
1β before it binds to its target is through soluble receptor
decoys rilonacept, gevokizumab, and canakinumab [395].
IL-1 receptors can be blocked by recombinant antibodies;
anakinra was the first one to be approved in 2001 for rheuma-
toid arthritis and its use has been expanded to other
autoinflammatory diseases [391].

A novel strategy serving this purpose is in the form of a
chimeric IL-1α/IL-1β structure, inactive until conversion to
the active form at sites of inflammation [396], potentially re-
ducing the risk of infection. It should bementioned that the IL-
1R1 receptor antibody AMG108 (development discontinued)
has not shown substantial effects in clinical trials [397]. All of
these entities are clinically investigated in trials spanning a
broad spectrum of diseases, and it remains to be scrutinized
more thoroughly if they can be helpful in inflammation-
induced hyperalgesia [391].

IL-6

IL-6 receptor presence in sensory neurons was shown by
mRNA [398] and on a protein level, using glycoprotein 130-
like immunoreactivity [399]. TLR activation in monocytes
and macrophages due to extracellular damage induces
mRNA-transcription of IL-6 through the NF-κB pathway,
along with other potent pro-inflammatory cytokines, in a sim-
ilar fashion to TNFα and IL-1β [400]. PGE2, e.g., produced
by macrophages, also stimulates IL-6 release [401, 402].
Classic IL-6 signaling works by forming a hexameric complex
comprising two molecules each of IL-6, the membrane bound
or the soluble form of the IL-6 receptor and the signaling
receptor component gp130 [403–406]. Signaling is mediated
through the ubiquitous gp130 via the JAK/STAT transduction
pathway. The role of IL-6 varies according to the organ it is
produced in; in hepatocytes, it induces acute-phase proteins,
such as the C-reactive protein [407], while in bone tissue, it is
tightly linked with osteoclastogenesis and bone remodeling
[408]. IL-6 is elevated in several models of peripheral nerve
injury [409–411], and targeting IL-6 attenuates neuropathic
pain [412]. Moreover, IL-6 induced calcium transients in a
third of cultured rat DRG neurons, and longer exposure in-
creased NK1 receptor immunoreactivity and substance P in-
duced calcium transients [399]. Satellite glia cells were found
to also exhibit increased levels of IL-6 and its receptor upon
constriction injuries of the sciatic nerve, suggesting involve-
ment in sensitization [413].

Therapeutic approaches are mainly based on monoclonal
antibodies, targeting IL-6 by sirukumab and siltuximab [414,
415] or the IL-6 receptor by tocilizumab [403]. So far, dis-
eases responsive to tocilizumab seem to be characterized by

long-term IL-6 action (Castleman disease, rheumatoid arthri-
tis); the respective efforts have been summarized [416, 417].
Tocilizumab showed promising results for discogenic low
back pain [418]. Several studies also pointed towards differ-
ential effects of IL-6 versus IL-6 receptor antibodies, suggest-
ing alternative signaling pathways not involving the IL-6 re-
ceptor [419].

IL-6 superfamily members with an association to inflam-
mation and pain are leukemia inhibitory factor (LIF),
oncostatin M, which are found on sensory neurons, with IL-
27 and IL-35 discussed in the “Immune Reaction” section.

Leukemia Inhibitory Factor

In contrast to the proinflammatory function of LIF, there is
also evidence of an anti-inflammatory and even neuroprotec-
tive role [420], with both points of view summarized else-
where [421]. LIF receptor mRNA and protein have been iden-
tified in murine DRG neurons [422, 423]. Nevertheless, test-
ing of LIF monoclonal antibodies seems to be directed to-
wards other fields than nociception, e.g., infertility [424].
After less successful interventions on chemotherapy-induced
neuropathic pain [425], it has shown promise for pancreatic
cancer [426].

Oncostatin M

Oncostatin M signals through gp130 and the oncostatin M–
specific subunit beta, which is also expressed in sensory neu-
rons, colocalized with TRPV1 and the P2X3 purinergic recep-
tor [427]. One of its main roles seems to be in the development
of nociceptors, as genetic ablation of oncostatin M resulted in
reduced sensitivity to noxious mechanical and thermal stimuli
[428]. This is in line with evidence of oncostatin M–
dependent heat-induced hypersensitivity via TRPV1 sensiti-
zation [429]. A wider use has been demonstrated with inflam-
matory heart failure [430]. A trial with oncostatin M mono-
clonal antibody GSK2330811 has completed phase I (phase II
ongoing) [431]. Therapeutic options for a more general anti-
inflammatory use can still be conceptualized.

IL-4 and IL-13

IL-4 receptors are found in both mouse and human sensory
neurons and elicit functional responses [432]. A new concept
is a fusion protein of two anti-inflammatory interleukins; the
IL4–10 fusion protein has shown an analgesic effect in vivo in
a model of osteoarthritis [433, 434]. Related to IL-4 is IL-13,
which is secreted by immune cells and changes the phenotype
of local macrophages towards an anti-inflammatory pheno-
type. Peripherally administered IL-13 reduced allodynia in a
neuropathic pain model [435]. Targeting IL-4 and IL-13 with
the monoclonal antibody dupilumab has proven clinically
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effective against inflammatory conditions, for atopic dermati-
tis patients [436, 437] as well as in chronic rhinosinusitis [438,
439]. This is in line with a similar effect of Janus kinase
inhibitor delgocitinib (phase II studies in 2020), which re-
duces IL-13, IL-4, and IL-31 levels [440].

IL-17

IL-17 receptors have been found on sensory neurons, can
sensitize mechanical nociception, and prolonged exposure
changes the expression of pain-related targets, e.g., TRPV4
[441, 442]. IL-17 family members IL-17A–IL-17F are pro-
duced by a T helper cell subset called Th17. These cytokines
signal through a set of heterodimeric receptors, comprised of
an IL-17RA chain, and a second chain, serving ligand speci-
ficity [443]. The canonical activation leads into NF-kB and
MAPK pathway activation, including ERK, p38, JNK, and
CCAAT-enhancer-binding proteins (C/EBP) [443, 444]. IL-
17A might have the potential to mediate mechanical
hyperalgesia through receptors on nociceptive neurons
[442]. Recent successful therapeutic approaches have mainly
targeted the progression of psoriasis inflammation, e.g., by IL-
17A-blocking antibodies secukinumab and ixekizumab and
the IL-17RA-targeting antibody brodalumab [445–448]. A
small-scale study showed a decline in pain ratings in psoriatic
patients with subclinical joint inflammation [449].

IL-31 and IL-33

These interleukins were reported in conjunction with allergic
diseases and itch [432]. The receptors for IL-31 and IL-33 are
on sensory neurons, and the mediators can directly excite
mouse DRG neurons [450, 451]. IL-31 was found to signal
through the brain natriuretic peptide and is also involved in the
antinociceptive as well as pruritogenic actions of morphine
[452]. Hypertrophic scars can be associated with itch and pain
[453], and the IL-31 signaling in this tissue was upregulated
[454]. Nemolizumab, an antibody against the IL-31 receptor
reduced pruritus in atopic dermatitis [455]. In psoriatic pa-
tients, lesioned skin had lower pain thresholds and elevated
IL-33 expression compared with control skin [456]. There is
substantial preclinical evidence supporting that this target
could be exploited [457], and human trials using monoclonal
antibodies against IL-33 or ST2 are in early stages [458–460].

IL-2

The IL-2 receptor was found to be expressed in the DRGs, in
particular on small and medium-sized neurons, and its activa-
tion increased pain thresholds [461]. However, the recombi-
nant IL-2 variant, aldesleukin is prescribed for metastatic kid-
ney cancer or metastatic melanoma, indicating that analgesia
is not the primary therapeutic effect.

Neurotrophin Receptors

Neurotrophins, such as NGF and BDNF, are induced in in-
flammatory conditions [462, 463]. They work via the tyrosine
kinase-coupled receptors of the Trk family and, depending on
the concentration and duration of exposure, can elicit
hyperalgesic effects [464]. The receptors for NGF and other
neurotrophins are found on sensory neurons [465, 466], which
is also the reason why NGF is frequently added to primary
afferent neuron cultures.

Injection of NGF produces acute hyperalgesia, most likely
through trkA signaling. In the long term, NGF causes sensiti-
zation through many effects, including mobilization to the
membrane [467] and regulation of expression [468], axonal
transport [469], axonal growth [470], and neuronal survival
[471]. NGF increases expression of receptors involved in gen-
erating painful sensations, such as ASICs, sodium channels,
and bradykinin receptors, and by release of neuropeptides
[472–475]. The proinflammatory actions of NGF can be
inhibited, with a reduction of allodynia and thermal
hyperalgesia demonstrated more than 20 years ago [476].
Since then, therapeutic options have increased, including
scavenging of NGF by antibodies, inhibition of NGF binding
to trkA, and the inhibition of trkA function [477]. Despite
intermediate setbacks from arthritis therapy, the monoclonal
antibodies against NGF are an important contribution of anti-
inflammatory options [478], e.g., for arthritis, but also for low
back pain [479]. BDNF receptors were found in the sensory
neurons and an antibody directed against BDNF reduced bone
cancer pain [480]. The central effects, also useful for other
diseases, make this less of a pain target. The therapeutic op-
tions for GDNF, BDNF and NGF have been recently summa-
rized [481].

Other Targets on Sensory Neurons

TLR4

Toll-like receptors (TLRs) are a family of well-conserved
transmembrane receptors that initiate immune cell responses
by recognition of pathogen-associated molecular patterns
[482]. Their expression extends from immune cells to glial
cells and DRG neurons [483–485]. TLR ligands have been
shown to induce upregulation of several inflammatory medi-
ators in DRG cultures [486, 487] and particularly TLR4 has
emerged as an interesting target for inflammatory pain [488].
It was hypothesized that TLR4 might facilitate conversion
towards chronic pain states [489] and also help maintain it
[490]. TLR4 as a target to control neurogenic inflammation
has been discussed [491]. Monoclonal anti-TLR4 antibody
NI-0101 (phase II completed in 2018) did not show efficacy
for rheumatoid arthritis [492]. TLR4 antagonist TAK-242 has
antinociceptive effects in rodent neuropathic pain, low back
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pain and disc degeneration, experimental pancreatitis, and is-
chemia–reperfusion-induced pain [493–496]. Suppressor of
cytokine signaling 3 (SOCS3) allows an anti-inflammatory
intervention through TLR4 [497]. This could be enhanced
by paeoniflorin, but immunomodulation by this compound
has consequences, including the inhibition of the
inflammasome and TRPV1 [498], and the potential of sup-
pressor of cytokine signaling 3 cannot be judged with the
available results.

Prolactin Receptor

The prolactin receptor, a type I cytokine receptor, is acti-
vated by prolactin, a polypeptide hormone with major
roles in lactation and reproduction among serving regula-
tory effects in growth, development, and immune func-
tions [499]. Prolactin production has been described for
several tissues, including the pituitary gland, CNS, im-
mune cells, placenta, and mammary glands [500, 501].
The main downstream effector pathway of prolactin/
prolactin receptor signaling is the JAK/STAT pathway,
and MAPK is also activated [502]. Nevertheless, the pro-
lactin receptor is intriguing in the context of nociception
due to its prolactin-dependent sensitization predominantly
in females, which also worked in isolated sensory neurons
of females [503, 504]. More specifically, it has been hy-
pothesized that the female sex hormone estradiol regulates
translation of prolactin receptor mRNA. Alternative splic-
ing generates a long and a short isoform of the prolactin
receptor [503], and the latter seems to regulate neuronal
excitability via TRPA1, TRPV1, and TRPM8 channels
and modulate opioid-induced hyperalgesia [505, 506].
Pharmacological tools are available, e.g., competitive an-
tagonist Delta1-9-G129R-hPRL [507] or the monoclonal
antibody (LFA102, phase I in 2012, continued as X213 in
2016), which has been evaluated against prostate and
breast cancer [508, 509]. Delta1-9-G129R-hPRL could
antagonize prolactin-induced sensitization of ASICs
[510]. A consequence of prolactin receptor signaling
inhibition could be the dysfunction of pituitary homeo-
stasis, e.g., pituitary hyperplasia; therefore, it is critical
to consider potential side effects of prolactin receptor
antagonists when attempting to establish analgesic con-
trol [511].

ClC-6

This is an electrogenic 2Cl−/H+ exchanger with expression in
afferent neurons, localized intracellularly to late endosomes
[512]. ClC-6 knockout mice tolerated noxious heat longer,
which might render this an interesting target to inhibit once
an antagonist has been discovered.

Programmed Cell Death 1

The programmed cell death 1 receptor (PD-1) belongs to the
immunoglobulin superfamily and is expressed by T cells
[513], and also in the periphery, e.g., on epithelial and endo-
thelial cells. The ligand PD-L1 acts as an immune suppressor
and is expressed by several types of tumors, including mela-
nomas [514]. However, the receptor and its ligand PD-L1 are
also found on DRGs, and PD-L1 was shown to reduce excit-
ability through PD-1 in rodent and human primary sensory
neurons [514, 515]. Conversely, blocking the PD-L1/PD-1
pathway elicited spontaneous pain. PD-1 was required for
opioid antinociception, demonstrated in knockout mice, but
also with the clinically used monoclonal anti-PD-1 antibody
nivolumab [516]. An association between the soluble ligand
sPD-1 and pain in cancer patients has been reported [517].
Several immune checkpoints inhibitors involving the PD1/
PD-L1 pathway are approved for cancer treatment [518];
however, an overview of pain scores in treated patients is
not yet available. Adverse neuromuscular effects should be
mentioned [519]. Nevertheless, before this can be used as
antinociceptive or opioid-enhancing, the challenge remains
to disentangle immunosuppressive action from the
antinociceptive one.

Mediators and Antagonists Acting on Sensory
Neurons

Mediators and targets of these play overlapping roles in in-
flammation and inflammatory disorders. For sorting in this
review, molecules with many targets were sorted in
“Mediators and Antagonists Acting on Sensory Neurons,”
when the mediator appeared more essential than a particular
of its respective receptors on sensory neurons. However, in
case no such receptor is known, the target is mentioned in
“Neurotrophin Receptors.” Mediators can trigger the release
of other mediators, generating a stimulus pattern. Some medi-
ators can function bimodally, serving as proinflammatory or
anti-inflammatory, depending on the context. Mediators
which are not direct effectors of the nociceptive neurons
can still be essential components of an inflammatory cas-
cade. Therefore, targeting these in a disease-modifying
approach might provide means to disrupt pathophysiolo-
gy, and justifies to expect an analgesic potential and
therefore discussion here.

Lipid Mediators

These are diverse and include e.g., prostaglandins, leukotri-
enes, hydroperoxyeicosatetraenoic acids (HPETEs),
h yd r oxy e i c o s a t e t r a e no i c a c i d s (HETEs ) , a n d
epoxyeicosatrienoic acids (EETs). The generating pathways

Novel Analgesics with Peripheral Targets 797



as well as options to intervene were well summarized [520,
521].

Prostaglandins originate from membrane phospholipids,
which under the catalytic activity of PLA2 and PLA1 generate
arachidonic acid and lysophospholipids. Arachidonic acid is
further processed by cyclooxygenase 1, regulating baseline
levels of prostaglandins, and cyclooxygenase 2 inducing pros-
taglandin production during inflammation. Additionally, in
the brain, arachidonic acid is l iberated from 2-
arachidonoylglycerol through endocannabinoid hydrolysis
[522]. As the concentration of the important mediators criti-
cally depends on a rate-limiting enzyme activity, the latter has
been successfully targeted. Cyclooxygenases are widely
expressed in many tissues [523]; the resulting mediators are
primarily not generated by the sensory neurons and depend on
the involved cells [524]. The respective drugs are most
established [41, 523] and among the most frequently used
analgesics [525]. Lipidomic screens demonstrated that the
available drugs have a differential effect on the resulting me-
diator patterns [520]. There are still efforts for further devel-
opment [526].

Lipoxygenases convert arachidonic acid to leukotrienes,
HPETEs and HETEs. An important role in leukotriene bio-
synthesis is held by the 5-LOX-activating protein (FLAP); as
the name suggests, it serves to enhance enzyme activity, doing
so through binding to arachidonic acid and presenting 5-LOX
to it [527]. Potentially targetable sites along the leukotriene
metabolic pathway therefore include FLAP, 5-LOX, LTA4,
and LTB4 receptors [520]. FLAP as a target in inflammatory
diseases has been discussed [528]. Some of the more ad-
vanced FLAP inhibitors include licofelone (phase III in
2010, no new drug application) for osteoarthritis [529], and
veliflapon (phase III in 2006, no new drug application) for
cardiovascular pathology [530]. Other attempts at developing
FLAP inhibitors mainly oriented them towards asthma treat-
ment with compounds such as MK-0591 (quiflapon,
discontinued after phase II in 2015) [531], or GSK2190915
(several phase II trials, completed many years ago) [532]. 5-
LOX inhibitor development has also been pursued, outputting
compounds such as flavocoxid (discontinued after phase I)
[533] and atreleuton (VIA-2291, discontinued after phase
III) [534]. Diflapolin, a dual inhibitor of 5-LOX and soluble
epoxide hydrolase, emerged as a promising anti-inflammatory
tool [535]. LTB4, an end product of the LOX signaling path-
way has been involved in inflammation [536] and has been
shown to generate hyperalgesia in an intracutaneous injection
model in humans [537]. Interestingly, its receptors, GPCRs
BLT1 and BLT2, seem to have antagonizing functions,
with BLT2 activation being pronociceptive and BLT1
activation being antinociceptive, e.g., converging on
TRPV1 [538]. Although pharmacological tools exist
for these targets, it remains to be seen how clinical
development unfolds.

Lysophospholipids

Lysophospholipids share one acyl chain, which remains after
cleavage of phosphatidic acid by phospholipase A1 and A2 or
by c l e avage o f acy l - l y sophospha t i d i c a c i d o r
lysophosphatidylcholine by lysophospholipase D (autotaxin).
Lysophosphatidic acid is a more general term describing sev-
eral variations of the molecule, depending on the degree of
saturation and the length of the acyl chain [539]. LPA modu-
lates the function of members of most ion channel families
[540]. In addition, there are also phospholipid receptors, in
particular on cells of the immune system [541]. LPA has been
shown to be involved in the genesis of neuropathic pain
through direct intrathecal injection [542]. In humans, it seems
that LPA levels correlate with the severity of pain symptoms
in patients with various types of neuropathies [543]. LPA-
generating autotaxin levels correlate with the intensity of pru-
ritus symptoms in patients with cholestatic itch [544]. In con-
trast to previous findings of direct TRP channel activation
[545], LPA18:1 more substantially activates satellite glial
cel ls and Schwann cel ls , suggest ing an indirect
neuromodulatory action [546]. LPA receptor antagonists are
under development, and being tested for a number of pathol-
ogies, with analgesia not as the primary focus [539, 547, 548].

Tumor Necrosis Factor Superfamily

TNF inhibitors are clinically used for more than 30 years. This
therapeutic group has become medically important and is
therefore mentioned here not as a novel approach, but as a
benchmark for the potency of other approaches discussed
below.

The TNF superfamily is comprised of 19 ligands and 29
receptors [549] of which probably TNFα is the most impor-
tant and extensively studied due to its strong proinflammatory
effects [550]. TNFα acts pronociceptive; unilateral injection
of TNFα caused a bilateral TRPV1-dependent pain, which
involves PKC, prostaglandin E2, and IL-1β [551]. Pain-
related behavior induced by the PKC activator PMA was re-
duced in mice treated by an anti-TNFα antibody [552]. TNFα
is cleaved from a membrane-bound precursor by the metallo-
proteinase TNFα-converting enzyme (TACE). During the im-
mune response, a variety of cells release TNFα, including
activated macrophages, dendritic cells, monocytes, NK cells,
CD4+ T cells, CD8+ T cells, microglia, and astrocytes [553,
554]. TNFα acts on TNF receptor 1 and TNF receptor 2 [555].
These receptors are found on various cell types, but it should
be mentioned that they are upregulated in the DRG during
inflammation [550]. In rats, intrathecal knockdown of the
TNF receptor 1 decreased inflammatory hyperalgesia [556].
Based on the strong preclinical effects, antibodies against
TNFα have been developed and are on the market since
1988 [557]. The primary indication is autoimmune disease,
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including rheumatoid arthritis, psoriasis, Crohn’s disease, ul-
cerative colitis [558, 559]. Clinical trials investigating periph-
eral pain using TNFα inhibitors had a promising start [560]
but, overall, provided mixed results. Infliximab was not better
than placebo in patients with disc herniation-induced sciatica
[561] and etanercept showing varying improvements in acute
lumbosacral radiculopathy [560, 562, 563]. Finally, adverse
reactions at the injection site should be mentioned [564].

Trypsin

Trypsin belongs to the PA clan superfamily of serine prote-
ases. Pathophysiology can be differentiated between the pan-
creas and other sites. For acute pancreatitis, an antinociceptive
effect of inhibition of serine proteases was shown [565], and
protease-activated receptor 2 (PAR2) contributes to this [566].
In line with this, PAR2 also contributes to pain in pancreatic
cancer [567].

In tumors, PAR2 is triggered as a result of increased levels
of proteolytic activity [568]. PAR2 contributes to inflamma-
tory pain [569], in particular to mechanical-induced pain
[570]. For trypsin, also an activation of vagal neurons through
PAR1 has been demonstrated [571]. In the peripheral nervous
system, the endogenous serine proteinase inhibitor serpin3A
inhibits leukocyte elastase, and inhibition of leukocyte elas-
tase reduced neuropathic pain in mice [572].

Substance P

Substance P was identified in the early 1930s as a vasodilating
substance and structurally characterized approximately
40 years later as a undecapeptide [573, 574]. It serves as the
ligand for the neurokinin receptor 1 with roles in, among
others, pain and inflammation [575, 576]. Substance P is re-
leased from a series of immune cells [577] but also from
terminals of primary sensory neurons in response to stimula-
tion [578]. Upon release, or after local injection, substance P
has been shown to increase inflammatory cytokine levels
whereas a neurokinin 1 receptor antagonist was effective in
reducing sensitization in an incisional model [579].
Intracellular signaling following neurokinin 1 receptor activa-
tion involves PLC-dependent intracellular calcium elevations,
and also PKC and PKA activation [580, 581]. In terms of
clinical use for neurokinin 1 receptor antagonists, they
are attractive for targeting inflammation, but have been
oriented towards reducing chemotherapy-induced nausea
and vomiting, e.g., aprepitant [582]. Neurokinin 1 re-
ceptor antagonists have been considered for headache
[583], but results have been disappointing [584, 585].
Also for other types of pain, in contrast to preclinical
results, human data showed no analgesia for neurokinin
1 receptor inhibition [586]. A potential benefit of a
more complex inhibition of multiple neurokinin

receptors is unclear, or whether targeting this pathway
can se rve to po t en t i a t e ana lge s i a i n ce r t a i n
circumstances.

CGRP

Calcitonin gene-related peptide is a neuropeptide
expressed in a fraction of sensory neurons and released
upon their activation in a calcium-dependent manner
[587]. Not too many new classes of analgesics have be-
come available in the past, but targeting CGRP is one of
these, with clear benefit for migraine patients [588].
Fremanezumab, galcanezumab, eptinezumab target
CGRP, while erenumab targets the CGRP receptor.

Activity in the trigeminal system is thought to reflect head-
ache. CGRP stimulated trigeminal activity [589] and CGRP
antagonist olcegepant reduced trigeminal activity [590].
Mechanisms underlying sex-dependent differences in animals
and humans are unclear [591]. Despite effective phase III trials
for small molecule antagonists, poorly published concerns
regarding liver toxicity effect have halted further develop-
ment. Animal models support a role of CGRP in liver disease
[592]. The proof of concept was put to success with monoclo-
nal antibodies against CGRP and the CGRP receptor [588].
Given their success and independence from triptan re-
sponders, there is new incentive for further consideration
and development of small-molecule antagonists [593]. This
paragraph was placed in the mediator section, as the functional
role of CGRP receptors on neurons is unclear. CGRP does not
excite the terminals [594], is found on Schwann cells and on
central but not peripheral axons [595], and the site of action is
also proximal to the ganglion [596], assumably postsynaptic.

Acidosis

Local pH decrease is a robust follow-up of the onset of in-
flammation, resulting from immune cell infiltration, increased
demand in oxygen and energy, and accelerated glycolysis and
acidic molecule secretion, such as lactic acid [597]. In addi-
tion, local phagocytic bursts result in a dramatic increase in
local proton concentrations [598]. This in turn has been shown
to stimulate proinflammatory factor secretion, such as TNFα
and IL-1β [599, 600]. Low pH has been shown repeatedly to
be an activator of sensory neurons [601, 602]. Several struc-
tures can in principle sense low pH, including acid-sensing ion
channels (ASICs), K2P channels, the four proton-sensitive
GPCRs discussed above, and TRPV1 [270, 603]. Peptide iso-
lation from the black mamba venom has also revealed an
interesting new group of molecules, mambalgins, targeting
acid sensors with analgesic effects [604, 605]. Recently, it
has been reinforced that in humans, TRPV1 is the main con-
tributor to mild and pathophysiologically relevant acidosis-
induced pain in the skin [276], which supports using
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modality-specific TRPV1 antagonists as a new tool for in-
flammatory pain.

ADAMTS

ADAMTS abbreviates for “a disintegrin and metalloprotein-
ase with thrombospondin motifs.” In contrast to ADAMS,
which are mainly cell membrane proteins, ADAMTS are se-
creted enzymes [606]. This family is comprised of 19 mem-
bers of which ADAMTS-4 (aggrecanase-1) uses chondroitin
sulfate hyaluronan-binding proteoglycans as a substrate, in-
cluding aggrecan [607]. ADAMTS-4 and ADAMTS-5 are
proteases with important developmental roles [608], associat-
ed with inflammatory disorders, in particular osteoarthritis,
where cartilage degradation results in joint pain [609].
Aggrecan is attached to the surface of chondrocytes, and with
it the bulk of chondroitin sulfate, a critical water absorbing
component of the cartilaginous structure [610]. The cleaving
process mediated by ADAMTS-4 and ADAMTS-5 releases
the chondroitin sulfate–modified C-terminus from the
chondrocytes into the synovium, and inhibitors could prevent
osteoarthritis cartilage loss. In this regard, several substances
with antagonizing effects have been investigated, including
disease-modifying anti-rheumatic drugs, nonsteroidal anti-
inflammatory drugs, and statins [608]. Tissue inhibitor of me-
talloproteinase TIMP-3 could serve as a prototype for biolog-
ical treatments [611, 612]. In summary, these targets appear to
reduce pain primarily through disease modification. For
ADAMTS-13, despite some search hits, pain occurs also only
disease-associated and the literature does not suggest analge-
sic potential.

Glutamate Carboxypeptidase II

Glutamate production, to which this enzyme contributes, is a
basis of this important neurotransmitter, and might be an al-
ternative to inhibition of receptors for glutamate [613]. Mice
deficient of this enzyme had less neuropathic pain [614], and
an orally available antagonist for this enzyme reduced neuro-
pathic pain [615].

Amino Acid Metabolism

Amino acids are typically not classified as mediators, but are
nevertheless discussed here. Tumors and other fast-dividing
tissues depend on metabolites, including glucose and amino
acids. Therefore, nutrient deprivation of these has been tested
to limit tumor growth [616]. Amino acids of interest are glu-
tamine, serine, methionine, asparagine, and arginine [617].
Therefore, key enzymes of the respective metabolic reactions
have been considered targets, and this might be extended to
the control of pain. Caloric restriction has been associated
with a reduction of pain in rodents [618, 619]. A change in

amino acid composition has also been useful in low back pain
patients [620], although a normalization of lowered amino
acid levels was observed. A dietary intervention also im-
proved chronic pancreatitis, again with a mixed effect on plas-
ma amino acid levels [621].

Attempts to target individual amino acid metabolism for
pain included glutaminase inhibition. However, antagonist
CB-839 failed to reduce cancer-induced bone pain, which
might be due to more metabolic flexibility of the tumor than
expected [622]. Another option would be targeting transmem-
brane amino acid transporters. It remains to be determined
whether a metabolic intervention allows to reduce pain with
an acceptable level of adverse effects.

IL-36

IL-36α, IL-36β, and IL-36γ have been outlined as relevant
promoters for skin psoriasis, psoriatic arthritis, and rheuma-
toid arthritis [623]. The anti-inflammatory cytokine
interleukin-36Ra is reduced in psoriasis [624] and anti-IL-36
receptor antibodies reduced tissue inflammation in a psoriasis
mouse model [625]. IL-38, the most recent addition to the IL-
1 superfamily, is an anti-inflammatory cytokine, acting
through inhibition of the IL-36 receptor [626], and reduces
IL-1β, IL-6, IL-8, IL-1α, and TNF-α [623, 627, 628].

Immune Reaction

The general function of the immune system and the many and
differentiated approaches for anti-inflammatory intervention
are beyond the scope of this effort and are regularly reviewed.
The aim of this last chapter is to point the reader to recent
literature on this topic, in particular for matters considered of
relevance to pain.

Cytokines as Part of the Immune Reaction

Therapeutic options to target cytokines in inflammatory dis-
eases have been discussed [629].

IL-18 and IL-37

IL-18, first described as “interferon gamma-inducing factor,”
is structurally close to IL-1β. It is nevertheless functionally
distinct [630], e.g., it does not induce PGE2 production [631].
The IL-18 receptor is primarily found in immune cells [632].
In rats, intrathecal IL-18 application reduced pain withdrawal
thresholds and IL-18 scavenging by an antibody or a binding
protein alleviated nerve injury-induced hypersensitivity [633,
634]. The respective mechanism appears to involve spinal
microglia. IL-18-binding protein is a constitutively secreted
protein, with higher affinity for IL-18 than the IL-18Rα and
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is supposed to act as a down-regulator of Th1 immune re-
sponses through IL-18 binding and reduction of IFNγ induc-
tion [635]. Tadekinig alfa is a recombinant human IL-18-
binding protein that has been under clinical scrutiny for the
treatment of adult-onset Still’s disease [636] and could hold
promise for providing analgesia in inflammatory diseases with
imbalance between IL-18 and the IL-18 binding protein. IL-
37 is an endogenous suppressor of proinflammatory cytokine
secretion, reducing IL-1β, IL-8, IL-1α, and TNFα in patients
with systemic inflammatory diseases [637]. IL-37 in associa-
tion with the IL-18-binding protein inhibits the IL-18 receptor
alpha [638]; in addition, SMAD family member 3 is discussed
as a target [639]. For anti-inflammatory interleukins, applica-
tion of a recombinant form might be an option and has been
used for other interleukins [640]. Recombinant IL-37 is avail-
able and might serve as a viable strategy for reducing inflam-
mation [641]. However, until the moment of writing, this has
not been clinically investigated.

Colony-Stimulating Factors

Granulocyte colony-stimulating factor (G-CSF) and
granulocyte–macrophage colony-stimulating factor (GM-
CSF) have been shown to act directly on the respective recep-
tors on DRG neurons, causing sensitization [642]. G-CSF is
the primary driver of neutrophil differentiation. Binding of G-
CSF to its receptor induces signal transduction through
STAT3, PI3K, and ERK [643]. Recombinant G-CSF
filgrastim and lenograstim are clinically used for neutrophil
regeneration after chemotherapy or myeloablation [644].
Adverse effects include inflammation, swelling, pain, and
stinging; the most common adverse effect of pegfilgrastim
and lenograstim is bone pain [645, 646]. In addition, there
seems to be a role for microglia in G-CSF-driven neuronal
hyperexcitability [647]. G-CSF monoclonal antibodies have
entered clinical trials [648] and show some promise for the
treatment of persistent pain following inflammation
resolution.

GM-CSF is principally expressed in myeloid precursors,
mature monocytes, and granulocytes [649]. The respective
receptor is found on myeloid cells, in particular monocytes
and granulocytes [650]. GM-CSF signals through
JAK2/STAT5a/b in addition to PI3K, RAS/MAPK, and
NF-κB [651]. Recombinant GM-CSF accelerates wound
healing [652], with an obvious implication of inhibition of this
mechanism. Studies using GM-CSF knockout mice and
monoclonal antibodies against GM-CSF have shown that the
cytokine is key in the development of osteoarthritis and rheu-
matoid arthritis–associated pain [653]. Moreover, silencing
GM-CSF signaling in a model of peripheral nerve ligation
induced analgesia, supporting a role in neuropathic pain upon
intrathecal and not peripheral delivery of anti-GM-CSF recep-
tor antibodies [654]. Clinical studies involving mavrilimumab

were promising for targeting this pathway in rheumatoid ar-
thritis [655] and could be explored further as a tool for pro-
viding analgesia in inflammatory conditions.

Macrophage colony-stimulating factor (M-CSF or CSF1)
expression is increased in DRG neurons following peripheral
nerve injury with the M-CSF receptor mRNA being induced
in spinal microglia [656]. Recombinant M-CSF given intra-
thecally led to mechanical allodynia, while blocking its recep-
tor suppressed mechanical allodynia after SNI [657].

IL-12

Interleukin 12 is produced in monocytes, macrophages, and
dendritic cells [658]. IL-12 generates mechanical but not ther-
mal hyperalgesia upon intraplantar injection into the rat
hindpaw, with the endothelin B receptor being reported to
mediate this action [659]. Endothelin B receptors are
expressed on DRG neurons; however, endothelin 1 and syn-
thetic agonist IRL-1620 decrease the excitability of DRG neu-
rons [660], which seems contradictory to the IL-12 effect be-
ing mediated through endothelin B receptors. Only one of two
heteromeric IL-12 subunits has been identified in the mouse
DRG and was surprisingly downregulated after sciatic nerve
damage [661]. Nevertheless, patients receiving recombinant
IL-12 infusion as therapy for various types of cancer, reported
painful symptoms, such as arthralgias [662] or headaches and
abdominal pain [663], allowing to consider anti-IL-12 as a
concept.

IL-27 and IL-35

IL-27 and IL-35 are structurally different (heterodimeric cyto-
kines) to the original members, however still considered a part
of the IL-6 superfamily. Genetic ablation of IL-27 was shown
to deprive mice of an innate IL-10-dependent antinociceptive
reaction in a nerve injury model [664]. IL-27 acts anti-inflam-
matory, limiting thermal and mechanical sensation, as mice
lacking IL-27 or its receptor spontaneously showed chronic
pain-like hypersensitivity, with reversal of the behaviors upon
recombinant IL-27 injection [665]. Anti-inflammatory cyto-
kine IL-35 was antinociceptive in an autoimmune encephalo-
myelitis pain model [666]. The anti-inflammatory properties
of IL-35 were also shown in a model of diabetic neuropathy,
associated with JNK downregulation [667] and neuroprotec-
tive microglial M2 polarization [668].

IL-23

Interleukin 23 is mainly released from dermal dendritic cells
in skin psoriasis models. This stimulates a γδ-T cell subset,
triggering IL-17 and IL-22 secretion [669], and can lead to
itch, pain, and discomfort. Interestingly, a TRPV1- and
Nav1.8-positive subpopulation of sensory neurons was
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required for the IL-23 production of dermal dendritic cells, the
signaling pathway from nociceptors to dermal dendritic cells
is unclear [670].

Interferons

Receptors for type I interferons IFN-α and IFN-β are
expressed in small and medium-sized DRG neurons. The ac-
tivation of these receptors increases excitability and produces
mechanical pain in mice [671].

The receptor for type II interferon gamma (IFNγ) has also
been reported on DRG neurons [672]. IFNγ is produced by T
cells and other immune cells [673] and has a proinflammatory
role [674] acting on microglia [675]. IFNγ is medically used
for osteopetrosis and chronic granulomatous disease, the anti-
body against IFNγ emapalumab for the treatment of
haemophagocytic lymphohistiocytosis [676]. In summary,
this does not indicate a relevant analgesic potential for
interferons.

IL-10

Interleukin 10 is considered an important anti-inflammatory
cytokine, signaling through the IL-10 receptor which is found
primarily on leukocytes [677]; an expression on sensory neu-
rons has not been reported. Pathways include STAT1,
STAT3, PI3K, and p38 MAPK [678, 679], inhibiting the syn-
thesis of proinflammatory cytokines such as IFN-γ, IL-2, IL-
3, TNFα, and GM-CSF.

Recombinant IL-10 has been tested as anti-inflammatory
treatment in clinical trials, but results were heterogeneous,
e.g., disappointing for rheumatoid arthritis, but promising for
psoriasis [680]. However, also proinflammatory actions were
observed [681], including flu-like symptoms [682]. Given the
many studies, a general anti-inflammatory and thereby anal-
gesic role seems unlikely.

Chemokines

Chemokines are a family of cytokines with around 50 mem-
bers. These small secreted proteins act on GPCRs and have
important roles in leukocyte chemotaxis [683]. Some of the
receptors are also expressed at the level of primary afferents
[684]. A function of these is neuron to glia signaling, e.g.,
sensory neuron CX3CL1 induces microglial activation via
CX3CR1, as well as glia to neuron signaling, e.g., CCL2
and CXCL1 from spinal astrocytes acting on neuronal
CCR2 and CXCR2. Moreover, it has been shown that a series
of chemokines, many of which secreted by resident leuko-
cytes, can exert direct excitatory effects on primary sensory
neurons, and also lead to the release of substance P [685]. This
might account for some of the increased pain sensitivity in a
variety of inflammatory conditions. The challenge for

effective analgesic therapeutics to emerge is targeting
proalgesic effects without undermining useful immune func-
tion, hence the relative paucity of clinical trials exploring che-
mokine receptor antagonists’ analgesia.

Free Radicals in Inflammation

The framework describing the role of redox reactions in cel-
lular homeostasis and pathological processes is more recently
known as “the redox code” [686] or similarly the “reactive
species interactome” [687]. Reactive oxygen species are
well-documented, with one of the most important being su-
peroxide. Producedmainly in the mitochondria, by interaction
of leak electrons with oxygen or through NAD+ oxidation, via
xanthine oxidase [688] or even as a result of COX or LOX
function, superoxide is reduced to the subsequent ROS spe-
cies, hydrogen peroxide and the hydroxyl radical. The latter is
especially unstable and reacts readily, with membrane lipids
fueling lipid peroxidation processes and even with DNA
[689]. The role of ROS in the early stages of inflammation
or tissue injury is well established, as they are produced during
the respiratory burst in phagocytic cells [690]. More so, ROS
production is a result of most antitumor drugs and the main
mechanism bywhich photodynamic therapy works [691]. The
intense pain generated by photodynamic therapy is explained
by a photosensitizing effect on primary sensory neurons,
namely the subpopulations expressing TRPA1 and TRPV1,
which have also been shown to be directly gated by ROS
[171, 172, 692]. With regard to reactive nitrogen species, ni-
tric oxide matches one of the smallest molecular sizes with an
extremely important role in vascular biology, acting as an
endogenous vasodilator [693]. NO is produced by nitric oxide
synthases. Coded by separate genes on different chromo-
somes, nitric oxide synthases are either constitutive (endothe-
lial, neuronal eNOS, nNOS) or inducible (iNOS). The first
two produce transient pico- to nanomolar concentrations of
NO and are dependent on intracellular calcium levels, whereas
iNOS is calcium-independent and results in long-lasting mi-
cromolar concentrations of NO [694]. Some NO results from
swallowed nitrite (NO2

−), or from nitrites in the UVA or blue
light–exposed skin [695]. In sensory neurons, NO plays a very
important role in modulating pain sensitivity during inflam-
mation [696, 697], as confirmed by the analgesic effect of NO
synthesis inhibitors [698]. Downstream of NO, soluble
guanylate cyclase activation takes effect, leading to increases
in cGMP [699], also in central spinal cord neurons [700].
Direct infusion of NO causes pain in humans [701] and
TRPA1 and TRPV1 have been shown to be NO sensors
[702]. Reactive sulfur species are less well characterized than
the others, potentially due to less stability in experimental
conditions. Interestingly, there is an emerging interest for in-
teraction with RNS (NO/H2S crosstalk) and the formation of
sulfur/nitrogen reactive species (nitrosopersulfide, SSNO)
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[687] and HNO in the presence of hydrogen sulfide [703,
704]. Further, NO can disrupt cysteine bonds and form
S-nitrosylated residues, with structural consequences for
(membrane) proteins [705]. Inhibiting or scavenging re-
active species has not been a convincing strategy to
combat pain and pathophysiology. Inhibiting the target
of these reactive species, in particular TRPA1, might be
more promising.

NLRP3

NLRP3 (NALP3) is a Nod-like receptor subset with an
inflammasome-forming pattern recognition receptor of
the innate immune system, a multimeric protein complex
with NLRP3 as the sensor component, alongside adaptor
protein ASC and the effector caspase 1, and is represen-
tative of a major inflammatory pathway [706, 707].
Downstream effects of NLRP3 activation include in-
creased levels of proinflammatory mediators, spearheaded
by IL-1β, eventually accounting for hypersensitivity
[708]. Moreover, this particular inflammasome is trig-
gered in conditions such as gout, rheumatoid arthritis,
and fibromyalgia [709]. The clinical progress with several
antagonists for the NLRP3 pathway has been reviewed
[710]. Targeting the NLRP3 inflammasome has been
attempted with varying degrees of success. Tranilast, ap-
proved in 1982, has been found to inhibit the assembly of
NLRP3 inflammasome [711]. However, tranilast can in-
duce cystitis [712], which might be partial agonistic
through TRPA1 [713]. MCC950 [714–716] and
dapansutrile have reached phase II [717] and could be a
promising new approach.

Conclusion

This work aimed at summarizing the status quo of pre-
clinical and clinical research of well-established targets
for analgesia as well as showcasing novel, potentially
addressable elements of a multitude of signaling path-
ways involved in nociception, the majority of which, of
inflammatory nature. One must always consider far-
reaching repercussions, especially pertaining to immune
system function and pathology-appropriate treatment
scenarios. However, too many new approaches fail due
to translational hurdles, adverse effects, lack of efficacy,
but also regulations. A positive outlook is that most of
the presented strategies involve specificity towards one
or several targets (e.g., monoclonal antibodies), some
already in different phases of clinical trials.
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