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Acute myocardial infarction (AMI) is one of the most serious cardiovascular diseases

worldwide. Advances in genomics have provided new ideas for the development of novel

molecular biomarkers of potential clinical value for AMI.

Methods: Based on microarray data from a public database, differential analysis and

functional enrichment analysis were performed to identify aberrantly expressed genes in

AMI and their potential functions. CIBERSORT was used for immune landscape analysis.

We also obtained whole blood samples of 3 patients with AMI and performed second-

generation sequencing (SGS) analysis. Weighted gene co-expression network analysis

(WGCNA) and cross-tabulation analysis identified AMI-related key genes. Receiver

operating characteristic (ROC) curves were used to assess the diagnostic power of

key genes. Single-gene gene set enrichment analysis (GSEA) revealed the molecular

mechanisms of diagnostic indicators.

Results: A total of 53 AMI-related DEGs from a public database were obtained

and found to be involved in immune cell activation, immune response regulation,

and cardiac developmental processes. CIBERSORT confirmed that the immune

microenvironment was altered between AMI and normal samples. A total of 77

hub genes were identified by WGCNA, and 754 DEGs were obtained from own

SGS data. Seven diagnostic indicators of AMI were obtained, namely GZMA,

NKG7, TBX21, TGFBR3, SMAD7, KLRC4, and KLRD1. The single-gene GSEA

suggested that the diagnostic indicators seemed to be closely implicated in cell

cycle, immune response, cardiac developmental, and functional regulatory processes.

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.863248
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.863248&domain=pdf&date_stamp=2022-04-14
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dqy0823@163.com
https://doi.org/10.3389/fcvm.2022.863248
https://www.frontiersin.org/articles/10.3389/fcvm.2022.863248/full


Tan et al. Bioinformatics in Acute Myocardial Infarction

Conclusion: The present study provides new diagnostic indicators for AMI and further

confirms the feasibility of the results of genome-wide gene expression analysis.

Keywords: acute myocardial infarction, genomics, immune landscape, second-generation sequencing (SGS),

diagnosis, bioinformatics

INTRODUCTION

Acute myocardial infarction (AMI) is myocardial necrosis
resulting from the occlusion of a coronary artery and
characterized by persistent severe retrosternal pain and sweating
(1). AMI is one of the leading causes of death in developed
countries. The prevalence of AMI is close to 3 million people
worldwide, with more than 1 million deaths in the United States
each year (2). The prevalence of AMI has been increasing rapidly
in China in recent years. According to the standard incidence
rate of 50/100,000, the ratio of ST-segment elevationMI (STEMI)
to non-STEMI is 1.3. The number of new STEMI cases is about
216,000 every year in China. About 1 million people died of
ischemic heart disease in 2010, ranking second in death and
cardiovascular causes in China. According to the World Bank
report, there were about 8 million patients with MI in China
in 2010, and the number will reach about 23 million by 2030
(3–5).

With a rapid onset and progress, AMI can easily cause
serious complications. Rapid and accurate diagnosis is crucial for
myocardial cell protection and improvement of cardiac function
and prognosis (6). The early diagnosis of AMI is mainly based
on ischemic symptoms, physical exam, electrocardiography, and
the detection of myocardial enzyme markers, including cardiac
troponin I (cTNI), myoglobin, creatine kinase, etc. cTNI is
considered as the gold standard but its circulating level is not
sensitive or specific enough (7–9). Ideal biomarkers for rapid
diagnosis and effective regulation are still urgently needed in
clinical practice.

Advances in microarrays for gene expression analysis have
facilitated the screening of novel biomarkers for AMI, such
as MMP-9, PTAFR, TLR4, etc. (10, 11). The basic principle
of second-generation sequencing (SGS) is sequencing at the
same time as synthesis. Millions of nucleic acid molecules
can be sequenced at one time and tens of billions of base
sequences can be obtained. So, it is also called high-throughput
sequencing. It can rapidly obtain almost all transcripts and gene
sequences of a given tissue or cell in a certain state. Although
differentially expressed genes could be utilized to screen the
potential biomarkers of AMI, there is a great possibility of
omitting some key genes (12, 13). Weighted gene co-expression
network analysis (WGCNA) is a method for the analysis of the
gene expression patterns of multiple samples. It can cluster genes
and form modules based on similar gene expression patterns
and analyze the relationship between modules and specific
features (e.g., clinical information of patients). It can describe the
pattern of gene association and explore the interactions between
gene expression profiles and potential functional relationships.
It is increasingly used to identify hub genes associated with
cardiovascular diseases (14, 15).

In this research, the microarray data from GSE48060 dataset
and SGS results from patients with AMI were analyzed to identify
aberrantly expressed genes and their potential functions from
the point of immunology. WGCNA and cross-tabulation analysis
were used to identify AMI-related key genes. Single-gene gene
set enrichment analysis (GSEA) was used to reveal the molecular
mechanisms of diagnostic indicators.

MATERIALS AND METHODS

Public Database Source
The GSE48060 dataset (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE48060) from the GEO database was used
in this study (16). This dataset contains blood samples from 21
control and 31 AMI groups, with 5 recurrence samples out of the
31 patients. In this study, we did not focus on recurrent events of
AMI, therefore, we used 21 control and 26 AMI samples without
recurrent events for bioinformatic analysis.

Patient Collection
After approval from the Ethics Committee of the First Affiliated
Hospital of Kunming Medical University, 3 AMI patients with
ST-segment elevation and 3 healthy volunteers excluding those
with coronary heart disease with coronary angiography from
August 2020 to December 2020 in our hospital were recruited as
the experiment and control group, respectively. Anterior elbow
venous blood was extracted for transcriptome gene analysis. All
patients were notified and they signed the informed consent.

Second-Generation Sequencing
Total RNA of each sample was extracted using TRIzol reagent
(Thermo Fisher Scientific, Waltham, MA, USA), and 1 µg
RNA was used for library construction using TruSeq Stranded
Total RNA with Ribo-Zero Gold (Illumina, Cat.No. RS-122-
2301). Firstly, ribosomal RNA was removed using Ribo-Zero
Gold rRNA Removal Kit (Illumina) and fragmented. Secondly,
sequencing libraries were constructed using the rRNA-depleted
RNA. Finally, the products were purified and library quality was
assessed on the Agilent Bioanalyzer 2100 system.

The libraries were sequenced on an Illumina HiSeq X Ten
platform. Sequencing reads were mapped to the human genome
(GRCh38). For mRNAs and lncRNAs, the Cufflinks 2.0 program
was used to calculate the FPKM of each gene and assemble the
transcriptome independently. The differentially expressed genes
were analyzed using the DESeq R package. The CPC (v 0.9-r2),
PLEK (v 1.2), CNCI (v 1.0), and Pfam (v 30) were used to predict
transcripts with coding potential. Both the novel and known
lncRNAs were used for expression calculation and differential
screening. For circRNAs, they were identified using CIRI (v2.0.3)
and calculated using RPM. The differential expression analysis
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was also performed using the DESeq R package as with mRNA.
A value of p < 0.05 was set as the threshold for significantly
differential expression. All sequencing processes and analyses
were performed by OE Biotech Co., Ltd. (Shanghai, China).

Differential Analysis
In this study, the differential analysis of the GSE48060 dataset
was performed using the R package limma. Here, the DEGs were
judged by the following conditions: |log2 fold change (FD)|≥ 0.5
and p< 0.05. For the own SGS dataset, the identification of DEGs
was achieved by the R package DESeq2 based on the |log2 FD| ≥
1 and p < 0.05 screening condition.

Functional Enrichment Analysis
In this study, the R package ClusterProfiler and Gene Set
Variation Analysis (GSVA) were mainly used for functional
enrichment analysis. In detail, functional annotation of DEGs
obtained from public databases was achieved by gene ontology
(GO) and Kyoto encyclopedia of genes and genomes (KEGG)
analysis of the R package ClusterProfiler. The GO system
consists of three parts: biological processes (BP), molecular
functions (MF), and cellular components (CC). The adjusted
(adj.) p < 0.05 was meaningful. In this study, we focused
only on the GO–BP category, and detailed results for the
CC and MF categories are shown in Supplementary Table 1,
respectively. To reveal the potential functions of diagnostic
indicators, we used the GSEA) based on the single gene of R
package GSVA. Briefly, in the GSE48060 dataset, a continuous
phenotype was created using the expression of the target gene
and the Pearson correlation coefficient between the expression
of other genes and the target gene was calculated, and then
the genes were ranked according to the magnitude of the
correlation coefficient. We used c5.go.bp.v7.4.symbols.gmt and
c2.cp.kegg.v7.4.symbols.gmt as pre-defined gene sets, which were
downloaded from the Molecular Signature Database (MSigDB,
http://www.gsea-msigdb.org/gsea/msigdb/). Terms that met all
the three conditionsnamely, |normalized enrichment score
(NES)| ≥ 1, NOM p-val (i.e., p-value, a statistical analysis of ES
to characterize the confidence of enrichment results) < 0.05, and
FDR q-val (i.e., q-value; a p-value after correction for multiple
hypothesis testing, which is an estimate of the probability of a
possible false-positive result for NES, so a smaller FDR indicates
a more significant enrichment) < 0.25, simultaneously were
identified as significant.

Immune Landscape Analysis
The CIBERSORT algorithm was used for the analysis of
the proportional distribution of immune infiltrating cells
between normal and AMI samples in the GSE48060 dataset
(Supplementary Table 2). CIBERSORT is a gene-based
deconvolution algorithm that uses features of 547 marker
genes to quantify the relative scores of 22 human immune cell
types (17). In this method, to enhance the robustness of the
results, the Monte Carlo algorithm is employed to obtain the
inverse convolution p-value for each sample, and only samples
with p < 0.05 can be used for subsequent analysis. In this study,
all samples in the GSE48060 dataset (AMI: 26, normal: 21) met

these conditions. The differences in immune cells between the
AMI and normal groups were analyzed by the t-test method.

Weighted Gene Co-expression Network
Analysis
We analyzed AMI and normal samples in the GSE48060 dataset
by the R package WGCNA to find modules of interest and
hub genes. Briefly, sample clustering trees were constructed to
ensure the accuracy of the subsequent analysis. In this study,
no obvious outlier samples were found in the GSE48060 dataset
(Supplementary Figure 1A). To make sure the co-expression
network conforms to the scale-free distribution, a suitable soft
threshold (β) needs to be selected. Then, the neighboring and
dissimilarity coefficients among genes in the GSE48060 dataset
were calculated to obtain a systematic clustering tree among
genes. Meanwhile, the genes were grouped into 11 modules
based on the expression matrix (Supplementary Figure 1B).
The minimum number of genes per module was set to 30
according to the hybrid dynamic shearing tree algorithm, and
MEDissThres was adjusted to 0.45 to merge similar modules
(Supplementary Figure 1C). In this study, a primary clinical
trait of the disease status (i.e., presence or absence of AMI)
and a secondary trait of immune cells previously identified to
differ between AMI and normal groups were used to analyze
the correlation of each module with these traits. If |correlation
coefficient (cor)| > 0.3 and p < 0.05, it was considered
significant. Modules that correlated with both the primary and
secondary traits described above were considered interesting
modules. Module membership (MM) and gene significance
(GS) correlation analyses were subsequently performed on the
modules of interest to identify hub genes. It was important to
note that to have a sufficient number of genes in the subsequent
analysis, here we only focused on MM of the interesting module
with GS for the main trait (disease status) analysis. In the module
of interest, genes with |GS|> 0.2 and |MM|< 0.6 were considered
as hub genes.

Identification of Key Genes
Identification of shared genes between public database DEGs and
hub genes was done by cross-tabulation analysis. Subsequently,
shared genes with the same expression trend in the own SGS
dataset were extracted as key genes.

GeneMANIA
GeneMANIA (http://www.genemania.org) is a user-friendly
website that provides protein and genetic interactions, pathways,
co-expression, co-localization, and protein domain similarities
for submitted genes (18). In this study, we used this tool to
analyze key gene-related genes and functional prediction of
key genes.

Identification of Diagnostic Indicators
The ROC curves were used to screen for key genes with
diagnostic potency. ROC curve analysis was performed using the
R package pROC against key genes in the GSE48060 dataset,
and AUC was calculated to assess the ability of key genes to
distinguish normal samples from AMI samples. In this study,
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key genes with an area under the curve (AUC) > 0.7 were
considered as diagnostic indicators. Meanwhile, we assessed the
joint diagnostic potency of diagnostic indicators by ROC curves
based on the linear logistic regression approach as well.

Statistical Analysis
All analyses and statistics were performed based on R software.
Volcano and Box plots were drawn with the R package ggplot2.
The expression heatmap of DEGs was plotted in the R package
pheatmap. Correlation analysis was conducted by the Pearson
correlation calculation method. Correlation heatmaps were
generated in the R package ggcorrplot. Cross-tabulation analysis
was implemented in the Jvenn online network (http://jvenn.
toulouse.inra.fr/app/example.html). The value p < 0.05 was
considered statistically significant, if not otherwise stated.

RESULTS

Identification and Functional Annotation of
AMI-Related DEGs in the GSE48060
Dataset
DEGs were performed on whole blood transcriptome data
from AMI (n = 26) and healthy (n = 21) samples in the
GSE48060 dataset by R package limma. Based on the criteria
of |log 2 FC| ≥ 0.5 and p < 0.05, we obtained a total of 53
DEGs (31 up-regulated genes and 22 down-regulated genes;
Supplementary Table 3). The volcano plot (Figure 1A) and
heatmap (Figure 1B) illustrated the distribution and expression
pattern of DEGs sequentially.

These DEGs were suggested as breakthroughs for finding
diagnostic markers for AMI. Therefore, through the R package
ClusterProfiler, we executed GO and KEGG analysis on the
above DEGs. The top 10 of the three categories in the GO
analysis are exhibited in Figure 1C. In our study, we focused
on the GP–BP category (Supplementary Table 4). Surprisingly,
we noticed a major enrichment of DEGs in the regulation
process regarding immune cell activation (“neutrophil activation
involved in immune response,” “neutrophil activation,” “negative
regulation of CD4-positive, alpha-beta T cell activation,”
“regulation of T cell activation,” etc.) and differentiation
(“negative regulation of T-helper cell differentiation,” “negative
regulation of CD4-positive, alpha-beta T cell differentiation,”
“regulation of T cell differentiation,” “regulation of lymphocyte
differentiation,” “regulation of leukocyte differentiation,”
etc.) (adj. p < 0.05). Also, they were implicated in the
regulatory processes of the immune response (“negative
regulation of adaptive immune response based on somatic
recombination of immune receptors built from immunoglobulin
superfamily domains,” “negative regulation of adaptive immune
response,” “humoral immune response,” “negative regulation of
immune response,” “regulation of adaptive immune response,”
“regulation of type 2 immune response,” “negative regulation
of production of molecular mediator of immune response,”
etc.). Certainly, such genes were further significantly associated
with “ventricular septum morphogenesis,” “ventricular cardiac
muscle tissue morphogenesis,” “ventricular cardiac muscle tissue
development,” “cardiac muscle tissue morphogenesis,” “cardiac
ventricle morphogenesis,” “ventricular septum development,”
“cardiac septummorphogenesis,” “cardiac septum development,”
“cardiac epithelial to mesenchymal transition,” and “heart

FIGURE 1 | Identification of DEGs in GSE48060 dataset associated with AMI. (A) The volcano map of DEGs. (B) The heatmap of all genes expression in GSE48060.

(C) Top 10 of gene ontology enrichment analysis.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 April 2022 | Volume 9 | Article 863248

http://jvenn.toulouse.inra.fr/app/example.html
http://jvenn.toulouse.inra.fr/app/example.html
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Tan et al. Bioinformatics in Acute Myocardial Infarction

TABLE 1 | KEGG enrichment analysis of AMI-related DEGs.

ID Description Gene ratio Bg ratio p value p. adjust q value Count

hsa05332 Graft-vs.-host disease 3/29 42/8112 0.000429 0.032638 0.027123 3

hsa04650 Natural killer cell mediated cytotoxicity 4/29 131/8112 0.001128 0.039172 0.032553 4

hsa05321 Inflammatory bowel disease 3/29 65/8112 0.001546 0.039172 0.032553 3

hsa04612 Antigen processing and presentation 3/29 78/8112 0.00261 0.049598 0.041217 3

hsa04640 Hematopoietic cell lineage 3/29 99/8112 0.005118 0.077797 0.064651 3

hsa05330 Allograft rejection 2/29 38/8112 0.008011 0.101472 0.084326 2

hsa04940 Type I diabetes mellitus 2/29 43/8112 0.010177 0.110495 0.091824 2

hsa05144 Malaria 2/29 50/8112 0.013595 0.12829 0.106612 2

hsa05320 Autoimmune thyroid disease 2/29 53/8112 0.015192 0.12829 0.106612 2

hsa05134 Legionellosis 2/29 57/8112 0.017442 0.132556 0.110157 2

hsa04613 Neutrophil extracellular trap formation 3/29 190/8112 0.029559 0.178911 0.14868 3

hsa05202 Transcriptional misregulation in cancer 3/29 192/8112 0.030363 0.178911 0.14868 3

hsa05140 Leishmaniasis 2/29 77/8112 0.030603 0.178911 0.14868 2

hsa04658 Th1 and Th2 cell differentiation 2/29 92/8112 0.042369 0.221421 0.184006 2

hsa04350 TGF-beta signaling pathway 2/29 94/8112 0.044049 0.221421 0.184006 2

hsa05215 Prostate cancer 2/29 97/8112 0.046615 0.221421 0.184006 2

FIGURE 2 | Analysis of the composition of the immune cells in GSE48060 dataset association with AMI. (A) Diagram of patterns of immune infiltration. The different

color represents the type of immune cells, and the column length represents the proportion of immune cells. (B) Box diagram of immune cells distribution. (C) Heat

map of correlations among immune cells.

trabecula morphogenesis.” KEGG analysis demonstrated
that AMI-related DEGs were tightly linked to the “graft-
vs.-host disease,” “natural killer cell mediated cytotoxicity,”
“inflammatory bowel disease,” and “antigen processing and
presentation” pathways (Table 1). Collectively, we recommend
that these DEGs were not only involved in the process of cardiac
histopathology in AMI but also modulated the inflammatory
response induced by cardiac arterial vascular injury.

Immune Cell Infiltration
Inspired by these results, we explored the composition of
immune cells in AMI vs. controls in the GSE48060 dataset by the
ESTIMATE algorithm to identify different patterns of immune
infiltration (Figure 2A). Only three of the 22 immune cell types
were differentially distributed in AMI and controls. Specifically,
the proportion of neutrophils (P < 0.05) was significantly higher
in AMI than in controls; however, the proportion of T cells
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CD4 memory activated (P < 0.05) and natural killer (NK)
cells resting (P < 0.001) was lower in AMI than in controls
(Figure 2B). Moreover, correlations between the three immune
cell types mentioned above were also assessed, with neutrophils
(cor=−0.48) and NK cells resting (cor= 0.47), both moderately
correlated with T cells CD4 memory activated (Figure 2C).
Combined with the above evidence, we postulated that these
differentially distributed immune cells may be associated with the
AMI process.

Construction of Module-Trait Relationships
and Detection of Key Module Genes
Before constructing the weighted co-expression network, to
ensure a scale-free network, we chose a suitable soft threshold (β
= 12 and R2

= 0.75; (Figure 3A) and constructed gene modules
using the WGCNA package. A total of 9 modules (including
gray modules; Figure 3B) were obtained by the dynamic mixed
cutting tree algorithm. Each module was then associated with a
trait (disease status and three differentially distributed immune
cells) in the GSE48060 dataset usingWGCNA (Figure 3C). Upon

combined analysis, the blackmodules showedmoderate to strong
correlations with all traits, specifically, negative correlations with
disease status (cor = −0.44, P = 0.002) and neutrophils (cor
= −0.51, P = 2e-04), and positive correlations with NK cells
resting (cor = 0.48, P = 6e-04) and T cells CD4 memory
activated (cor = 0.61, P = 7e-06). Therefore, the black module
was considered an interestingmodule.We subsequently analyzed
the MM in the black module with the GS of disease status
(Figure 3D) and identified 77 genes within the module as hub
genes based on the condition that |GS| > 0.2 and |MM| > 0.6
(Supplementary Table 5).

Recognition and Interaction Analyses of
Key Genes
We obtained a total of 13 shared genes from DEGs (identified
by public databases), and hub genes (Figure 4A) were defined
as candidate genes for the subsequent analysis. Meanwhile,
by R package DESeq2, based on the own second-generation
transcriptome dataset, we acquired 754 DEGs from 3 AMI
and 3 normal samples (Supplementary Table 6). Among them,

FIGURE 3 | WGCNA co-expression network analysis of GSE48060 dataset. (A) Scale independence, mean connectivity and scale-free topology. (B) Clustering

dendrogram of genes with dissimilarity based on topological overlap. The assigned color band shows the clustered module. (C) Heat map of the association between

the module and clinical trait. The table is color-coded by correlation according to the color legend. (D) A scatter plot of GS versus MM in the black module. P =

0.0017 and correlation = 0.3.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 April 2022 | Volume 9 | Article 863248

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Tan et al. Bioinformatics in Acute Myocardial Infarction

FIGURE 4 | Identification of key genes related to AMI. (A) Venn diagram of genes belonging to DEGs in GSE48060 and hub genes in black module. (B) The volcano

map of DEGs in AMI and controls of our own transcriptome dataset. (C) The heat map of DEGs in AMI and controls of our own dataset. (D) Venn diagram of shared

genes in public and our own datasets. (E) Violin plot of the expression level of key genes in GSE48060. (F) Violin plot of the expression level of key genes in our

dataset.

371 were up-regulated genes and 383 were down-regulated
genes (Figure 4B). Volcano plots demonstrated the expression
pattern of DEGs in individual samples (Figure 4C). Afterward,
a cross-tabulation analysis (Figure 4D) yielded seven genes with
consistent expression trends (all repressed expression in AMI)
in both the public dataset (Figure 4E) and the own second-
generation transcriptome dataset (Figure 4F), namely Granzyme
A (GZMA), Natural Killer Cell Granule Protein 7 (NKG7), T-Box
Transcription Factor 21 (TBX21), Transforming Growth Factor
Beta Receptor 3 (TGFBR3), SMAD Family Member 7 (SMAD7),
Killer Cell Lectin Like Receptor C4 (KLRC4), and Killer Cell Lectin
Like Receptor D1 (KLRD1), which were considered as key genes.

Interaction Analyses of Key Genes
A gene–gene interaction network based on 7 key genes was
constructed and the potential functions were revealed by
the GeneMANIA database (Figure 5A). The 7 central nodes
representing the key genes were surrounded by 20 nodes, which
in turn represented genes closely related to the key genes
in terms of co-expression, co-localization, and shared protein
domains. The five genes that correlated most with key genes
were Granzyme B (GZMB), Killer Cell Lectin Like Receptor C1
(KLRC1), Killer Cell Lectin Like Receptor F1 (KLRF1), Killer Cell
Lectin Like Receptor C2 (KLRC2), and C-Motif Chemokine Ligand
5 (CCL5). Among them, GZMA was associated with GZMA,

KLRC4, KLRD1, NKG7, and TBX21 in terms of co-expression;
co-localized withGZMA,KLRD1, andTBX21; and shared protein
domains with GZMA. KLRC1 was linked to GZMA in terms of
co-expression; KLRC4, KLRD1, NKG7, and TBX21 co-localized
with KLRC4; and shared protein domains with KLRC4 and
KLRD1. KLRF1 was correlated with GZMA, KLRC4, KLRD1,
NKG7, and TBX21 in terms of co-expression; co-localized with
GZMA, KLRD1, and TBX21; and shared protein domains with
KLRC4 and KLRD1. KLRC2 was associated with GZMA, KLRC4,
KLRD1, NKG7, and TBX21 in co-expression and shared protein
domains with KLRC4 and KLRD1. CCL5 was associated with
GZMA, KLRC4, KLRD1, NKG7, and TBX21 in co-expression
and co-localized with GZMA, KLRD1, and TBX21. To clarify,
in this network we found that the key gene SMAD7 was
an orphan without interaction with any other gene. Further
functional analysis revealed that these genes were associated
with cytokine receptor binding, lymphocyte-mediated immunity,
MHC protein complex binding, regulation of lymphocyte-
mediated immunity, negative regulation of T-cell-mediated
immunity, negative regulation of cytokine production involved
in immune response, and cell killing. This evidence prompted
us to explore the correlation of key genes with differentially
distributed immune cells, and the results indicated that key genes
displayed a positive correlation with NK cells resting and T
cells CD4 memory activated, and a negative correlation with
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FIGURE 5 | Comprehensive analysis of seven key genes. (A) PPI network. The inner circle represents seven key genes. Purple edge represents co-expression,

light-blue edge represents co-localization, and light-yellow represents shared protein domains. (B) Heat map of correlation between key genes and differentially

distributed immune cells. *Represents significance (P < 0.05) and ** represents high significance (P < 0.01).

FIGURE 6 | ROC analysis of seven key genes in AMI. (A–G) ROC curve for GZMA, KLRC4, KLRD1, NKG7, SMAD7, TBX2 and TGFBR3. (H) ROC curve for linear

logistic regression model.

neutrophils (Figure 5B; Supplementary Table 7). It should be
noted that KLRC4 did not correlate strongly with NK cells resting
(cor= 0.28).

Diagnostic Evaluation of the Validity of Key
Genes in AMI
As illustrated in Figures 6A–G, all seven key genes displayed
superior performance in the assessment of diagnostic power in
distinguishing AMI samples from healthy samples, with an AUC

of 0.758 for GZMA, 0.725 for KLRC4, 0.773 for KLRD1, 0.755
for AUC in NKG7, 0.799 for AUC in SMAD7, 0.799 for AUC
in TBV21, 0.791 for AUC in TBX21, and AUC for TGFBR3
was 0.766. Subsequently, we combined the seven key genes
into one variable using logistic linear regression. The diagnostic
proficiency of the linear model in the GSE48060 dataset yielded
an AUC of 0.875 (Figure 6H), indicating a high diagnostic
capability of the key genes, which were defined as diagnostic
indicators of AMI.
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FIGURE 7 | Single-gene GSEA analysis of the seven diagnostic indicators. (A–G) Top 7 GP-BP category terms enrichment.

FIGURE 8 | Single-gene GSEA analysis of the seven diagnostic indicators. (A–G) KEGG pathways enrichment.

Functional Description of the Diagnostic
Indicator
Single-gene GSEA was employed to reveal the potential
function of diagnostic indicators. The top 7 terms of the
GP-BP category enriched by the 7 diagnostic indicators
are shown in Figures 7A–G, respectively. Detailed results
were then reviewed in Supplementary Table 8. Collectively,
we found that the regulatory processes of the cell cycle

(“Regulation Of Cell Cycle Phase Transition,” “Chromosome
Segregation,” “Negative Regulation Of Cell Cycle Process,” etc.)
and immune response (“Activation Of Immune Response,”
“Adaptive Immune Response,” “Immune Response Regulating
Signaling Pathway,” “Negative Regulation Of Immune System
Process,” etc.) were significantly associated with these genes.
Furthermore, the diagnostic indicators were also clearly indicated
to be involved in the “Regulation Of Vasoconstriction,” “Cardiac
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Muscle Cell Differentiation,” “Cardiac ChamberMorphogenesis,”
“Cardiac Muscle Tissue Development,” and “Regulation Of
Heart Contraction.” Moreover, they were intimately linked
to “Response To Acetylcholine,” “Catecholamine Secretion,”
and “Response To Catecholamine.” Figure 8 demonstrated
the KEGG enrichment results. The comprehensive analysis
revealed that these genes were involved in a large number of
immune-related pathways, such as “T Cell Receptor Signaling
Pathway,” “Natural Killer Cell Mediated Cytotoxicity,” “Antigen
Processing And Presentation,” and “Cytokine Cytokine Receptor
Interaction.” In addition, pathways such as “Cell Cycle,” “Calcium
Signaling Pathway,” and neurological disorders (“Huntingtons
Disease,” “Alzheimer’s Disease,” “Parkinson’s Disease”) were
also significantly enriched (Supplementary Table 9). The above
evidence suggested that diagnostic indicators may alter the
outcome of patients with AMI by modulating the cell cycle,
cardiac development, and immune response. Furthermore, we
speculated that diagnostic indicators may also be the targets of
certain clinical drugs.

DISCUSSION

Abnormal immunity/inflammation plays a key role in the
occurrence and development of atherosclerosis, which involves
a variety of immune cells, cytokines, and chemokines (19–21).
It is regarded as the inflammatory response of blood vessels to
injury from the onset of atherosclerosis to every stage of clinical
events, including endothelial dysfunction, fatty streaks and
plaque formation, plaque instability and rupture, thrombosis,
myocardial ischemia and necrosis, left ventricular remodeling,
and heart failure (22, 23). The immune response plays a
bidirectional role in the process of myocardial injury and repair
after AMI. Excessive inhibition or activation will lead to adverse
consequences. The orderly and moderate inflammatory response
can promote the clearance of necrotic myocardium and fiber
repair to limit the expansion of infarction. An inadequate
response would cause disorganized fiber crosslinking, abnormal
hyperplasia of granulation tissue, and myocardial hypertrophy
during repair. Nevertheless, the excessive reaction will only
enlarge the ischemia scope and bring about further myocardial
damage (24–26). This suggests that the inflammatory and
reparative cascade following AMI must be precisely regulated for
optimal outcomes. Anti-inflammatory and immunomodulatory
therapy may be a new approach for MI. Increasing studies have
been conducted, including inhibition of inflammatory mediators,
inhibition of neutrophils, systemic anti-inflammatory drugs, and
autonomic nervous function regulation therapy (27–29). The key
mechanism has not been fully understood due to the complicated
factors involved in inflammatory response after MI. So far there
is no effective immunomodulatory therapy for MI.

A series of studies have found that many inflammatory
factors are also biomarkers for the prognosis of MI (30–33).
Combined diagnosis based on multiple biomarkers can help us
distinguish patients from different pathological and physiological
characteristics to guide the treatment or assess the prognosis.
The specific changes of inflammatory response at different

stages and their specific regulatory factors can provide effective
targets for the control of cardiac remodeling after MI. With the
rapid development of gene detection technology, researchers are
using genomics, high-throughput sequencing, and proteomics
methods to explore ideal markers and regulatory targets for the
diagnosis, evaluation, and treatment of AMI. Several studies have
shown that the change of gene expression pattern may play a key
regulatory role in the occurrence of AMI (34, 35). Screening of
key differential genes can provide more accurate biomarkers and
regulatory targets for AMI.

In this study, 7 key genes were verified based on analysis
of public data set GSE48060 and SGS transcriptomic data,
namely GZMA, NKG7, TBX21, TGFBR3, SMAD7, KLRC4, and
KLRD1. Correlation analysis showed that these genes were highly
correlated with the differential distribution of immune cells. PPI
analysis showed that the pathways involved in the network of key
genes and their interactions weremainly immune-related, further
indicating that they may affect the occurrence and development
of AMI by participating in immune-related BP. The results of
the diagnosis efficiency forecast suggested that they also had
good single molecular diagnosis and joint diagnosis efficiency.
Single-gene GSEA analysis showed that they were significantly
related to the regulation of immune response and involved in
immune-related signaling pathways, including the natural killer
cell-mediated cytotoxicity, T cell receptor signaling pathway, etc.

As an important pathological mediator of various chronic
inflammation and injury,GZMA has attracted extensive attention
in recent years (36). High levels of circulating GZMA have
been found in patients with coronary artery disease and were
verified to correlate with the severity of the disease. Chen et al.
detected the mRNA levels of candidate hub genes in PBMCs
in the peripheral blood of patients with AMI using RT-PCR
and verified that the expression trends of 8 key genes were
consistent with that of bioinformatics analysis, including the
down-regulated expression of GZMA and TBX21. Combined
with the transcription factor regulatory network analysis, TBX21
may serve as a potential diagnostic biomarker and possible
regulatory target in AMI (37). GZMA was down-regulated in
AMI and may be correlated with immune response. CCL5,
GZMA, GZMB, TLR2, and FPR1 were predicted as crucial nodes
in the PPI network (38). T-box expressed in T cells (TBET),
encoded by TBX21, could inhibit the expression of GATA3
and prevent the differentiation of TH1 to TH2 cells. A recent
study found a significantly increased TBET/GATA3 mRNA ratio
in patients with AMI throughout most of the first 20 h after
symptom onset, which suggested that TBX21 could promote the
progression of acute coronary syndrome (39).

TGF-β/ SMAD was a key signaling pathway in myocardial
muscle fibrosis and apoptosis in myocardial injury. As the major
negative regulator in this pathway, SMAD7 was considered to be
a protective protein of MI. It has been reported that simvastatin
improved myocardial fibrosis in rats withMI by down-regulating
TGF-β1 and downstream SMAD3 expression and up-regulating
SMAD7 expression (40). Up-regulation of SMAD7 may prevent
cardiac apoptosis induced by hypoxia/reoxygenation. After 48 h
of hypoxia, the expression of SMAD7 in the boundary region
of H9c2 cells was significantly decreased (41). Exosomes from
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human umbilical cord mesenchymal stem cells may promote
the expression of SMAD7 by inhibiting mir-125b-5p to promote
cardiac repair (42).

As members of the killer cell lectin-like receptor subfamily C,
KLRC4 and KLRC2 have also been found to be enriched in BP
related to defense responses and are a part of the membrane-
related CC. A bioinformatics analysis of database GSE62646
found that KLRC4 and KLRC2 were differentially expressed
in patients with MI and closely related to biological processes
related to immune response (43). The bioinformatics among
ST-elevated MI, stable CAD patients, and healthy subjects were
analyzed and the screened seed genes had been verified as
diagnostic and prognostic biomarkers for plaque status changing
in CAD progression and MI recurrence, including KLRD1,
FOSL2, and LILRB3 (44).

The high specific expression of let-7 family members was
closely related to cardiovascular disease. A recent study found
that the expression of let-7 was significantly downregulated
after MI by targeting TGFBR3 through p38 MAPK pathway
activation. The let-7-TGFBR3-p38 MAPK signaling may play an
important role in cardiomyocyte apoptosis after MI. MicroRNA
let-7 and TGFBR3 may serve as therapeutic targets and
potential biomarkers for MI (45). A dynamical change of
TGFβR3 expression in the border region of the heart during
MI was also found in another study. When stimulated with
H2O2, overexpression ofTGFβR3would promote cardiomyocyte
apoptosis and p38 signaling activation, whereas knockdown of
TGFβR3 had the opposite effect. The results indicated that
TGFβR3 could promote the apoptosis of cardiomyocytes via a
p38 pathway-associated mechanism and may serve as a novel
therapeutic target for MI (46).

In conclusion, we roughly identify seven potential biomarkers
for AMI through a series of comprehensive analyses of
bioinformatics from the perspective of immunity, namely
GZMA, NKG7, TBX21, TGFBR3, SMAD7, KLRC4, and KLRD1.
These key genes all came from CD4+ T cells, natural killer
cells, and neutrophils. They may play a role in regulating
immune and inflammation responses. These key genes and
possible underlying molecular mechanisms still need to be tested
and validated in combination with patients on a large scale to
determine the optimal biological targets for AMI.

Coronary heart disease (CHD) is a multi-gene disease
resulting from the interaction of genetic and environmental
factors, and its occurrence, development, and prognosis
are influenced by many factors. At present, the genotype–
intermediate phenotype–clinical phenotype of CHD and
AMI are not comprehensively studied. Single nucleotide
polymorphism and copy number variation (CNV) also exist
in genes related to lipoprotein processing, endothelial injury,
vascular immune inflammatory response, and thrombosis (47).
It has always been a research hotspot to search for CHD and
MI-related disease-causing genes. The value of bioinformatics
analysis lies in that it can screen out the disease-related possible
key genes through systematic analysis of microarray expression

profile and shed new light on the study of multi-gene diseases.
Validation of bioassay results with a large sample of clinical data
is an important next step. In this study, we used our own SGS
results and public data sets for cross-analysis to find key genes
with consistent expression trends. However, a small sample size
may increase the bias of results caused by individual differences.
Therefore, the guiding significance of our research for clinical
diagnosis and prognosis is still uncertain. We should increase the
sample size in subsequent clinical studies to carry out multi-party
validation to ensure the clinical application value of our research.
We will also screen CNV of patients with AMI in China and
evaluate the association between candidate CNV and AMI to
identify AMI-related genes and CNV as much as possible.
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