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Abstract It has been suggested that the basic building

blocks of music mimic sounds of moving humans, and

because the brain was primed to exploit such sounds, they

eventually became incorporated in human culture. How-

ever, that raises further questions. Why do genetically

close, culturally well-developed apes lack musical abili-

ties? Did our switch to bipedalism influence the origins of

music? Four hypotheses are raised: (1) Human locomotion

and ventilation can mask critical sounds in the environ-

ment. (2) Synchronization of locomotion reduces that

problem. (3) Predictable sounds of locomotion may stim-

ulate the evolution of synchronized behavior. (4) Bipedal

gait and the associated sounds of locomotion influenced the

evolution of human rhythmic abilities. Theoretical models

and research data suggest that noise of locomotion and

ventilation may mask critical auditory information. People

often synchronize steps subconsciously. Human locomo-

tion is likely to produce more predictable sounds than those

of non-human primates. Predictable locomotion sounds

may have improved our capacity of entrainment to external

rhythms and to feel the beat in music. A sense of rhythm

could aid the brain in distinguishing among sounds arising

from discrete sources and also help individuals to

synchronize their movements with one another. Synchro-

nization of group movement may improve perception by

providing periods of relative silence and by facilitating

auditory processing. The adaptive value of such skills to

early ancestors may have been keener detection of prey or

stalkers and enhanced communication. Bipedal walking

may have influenced the development of entrainment in

humans and thereby the evolution of rhythmic abilities.

Keywords The origins of music � Vocal learning �
Primate � Entrainment � Auditory masking �
Collective behavior

Introduction

Throughout human history, music has played a major role in

all cultures, but the origins of music remain mysterious (Ha-

user and McDermott 2003). Some suggest that music evolved

as a system to attract mates and to signal mate quality (Darwin

1871/1981; Miller 2000; Pinker 1997), and others suggest that

music functions to coordinate coalitions (Hagen and Bryant

2003). Pinker proposed that music may be a fortuitous side

effect of diverse perceptual and cognitive mechanisms that

serve other functions (Pinker 1997). Clarke (2005) stated that

music and language exemplify how culture and biology have

become integrated in complex ways. It has been proposed by

Chater et al. (2009), Darwin (1871/1981), and Wilson (2011,

p. 225–235) that the development of language from its

underlying processing mechanisms arose with language

evolving to fit the human brain, rather than the reverse, and an

analogous situation has been proposed for music (Clarke 2005;

Pinker 1997; Changizi 2011). However, the most advanced

cultures known in animals, those of the chimpanzee and the

bonobo (Wilson 2011), lack even rudimentary musical
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abilities (Jarvis 2007; Fitch 2006). Why and how did humans

evolve musical abilities, despite the fact that their closest rel-

atives, apes, are not vocal learners (Jarvis 2004) and cannot

entrain to external rhythms (Fitch 2006)? Trevarthen (1999)

proposed that the bipedal walk and its accompanying con-

sciousness of body rhythms have implications for our internal

timing system as well as for freeing the arms for communi-

cative purposes. Changizi (2011) hypothesized that the human

brain was harnessed by music because humans are adept at

listening and interpreting the meaning of footsteps. Thus, he

suggests that music evolved to mimic footsteps and sooner or

later became incorporated in human culture. The idea that

sense of rhythm is linked with footsteps is not new. Morgan

(1893, p. 290) wrote, ‘‘I would suggest that the psychological

basis of the sense of rhythm might be found in… the organic

rhythms of our daily life. We cannot walk nor breathe except to

rhythm; and if we watch a little child we should obtain abun-

dant evidence of rhythmic movements’’. Here, possible links

between human walking and rhythmic abilities are further

explored, focusing on incidental sounds and vibrations pro-

duced as a by-product of locomotion and respiration. The

review raises the question whether predictability of such self-

generated sounds may boost the evolution of entrainment to

external rhythms, and whether that in turn may advance vocal

learning abilities. Accordingly, a fundamental question is

whether human locomotion is likely to produce more pre-

dictable sounds than those of non-human primates. Moreover,

what was the primary adaptive value of entrainment to external

rhythms in human ancestors? Could a sense of rhythm aid the

brain in distinguishing among sounds arising from discrete

sources and also help individuals to synchronize their move-

ments with one another? The following hypotheses are raised:

(1) Human locomotion and ventilation can mask critical

sounds in the environment. (2) Synchronization of locomotion

reduces such masking problems. (3) Highly predictable sounds

of locomotion in a species stimulate the evolution of syn-

chronized locomotion. 4) The evolutionary switch to biped-

alism and the associated sounds of locomotion influenced the

evolution of human rhythmic abilities.

Auditory masking, mechanisms that suppress self-gen-

erated sound, and sounds of locomotion and ventilation

across the animal kingdom with focus on primate loco-

motion, and then the synchronization of movements in

human and non-human primates are explored. Finally,

hypotheses are raised with respect to how bipedal loco-

motion may have stimulated the evolution of human

rhythmic and musical abilities.

Masking

Auditory masking occurs when the perception of a sound is

affected by the presence of another sound. Masking effects

are particularly strong when the masker and the signal are

of the same frequency and weaken as the signal frequency

moves further away from the masker frequency (Gelfand

2004). When two sounds are of identical frequency, the

listener cannot distinguish between them and they are

perceived as one sound with the lower-amplitude sound

masked by the louder. Masking of differing frequencies

requires that the amplitude of the competing sound be

greater in order to produce a masking effect. A masker may

be simultaneous, as when a signal is made inaudible by a

competing sound of equal duration, or it may precede

(forward masking) or follow the signal (backward mask-

ing). The effectiveness of forward and backward masking

attenuates exponentially from the onset or offset of the

masker (Marler et al. 2002; Moore 2003, pp. 107–116).

Learning reduces backward masking; the brain adapts to

repetitive sequences of masking noise emitted soon after a

signal and learns to discriminate between signal and mas-

ker, thus substantially increasing signal detection (Kidd

and Feth 1982; Moore 2003, pp. 107–116). Moore (2003,

p. 107) states that the adaptive value of this learning effect

is poorly understood. The study of whether learning redu-

ces the masking potential of repetitive self-generated

sounds of locomotion is of interest. No doubt animal

auditory systems have developed other mechanisms to

reduce masking from self-generated sounds.

Suppression of the perception of self-generated sounds

An animal’s locomotion, breathing, and vocalizations

produce sounds that may stimulate its own auditory system.

A possible consequence is excessive stimulation (sensory

reafference) of the auditory system or masking of signals

originating in the surroundings (von Holst and Mittelstaedt

1950). Sensory reafference in relation to vocalization has

been studied (Greenlee et al. 2011; Hawco et al. 2009),

while sounds associated with locomotion and ventilation

have received little attention.

Healthy adults take around 10,000 steps each day

(Tudor-Locke and Myers 2001; Bohannon 2007) and

approximately 15 breaths per minute throughout life. How

does the auditory system avoid overstimulation and dis-

criminate locomotion and ventilation sounds from critical

sounds in the environment? Sperry (1950) coined the term

‘‘corollary discharge’’ (CD) for motor-related signals that

influence sensory processing. Crapse and Sommer (2008a)

have suggested that adaptation processes to compensate for

motor-related sensory problems, such as sensory reaffer-

ence, are remarkably consistent among species. In general,

such adaptation involves concurrent production of a motor

command destined for an effector and a motor-command

copy destined for a sensory structure functioning to
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minimize, eliminate, or compensate for the movement-

related noise (Crapse and Sommer 2008a). In other words,

nervous systems keep track of movement commands and

inform the system’s sensory processing areas about forth-

coming movements (Crapse and Sommer 2008b). At the

lower-order level of reflex inhibition and sensory filtration,

CD is a discriminatory mechanism that prevents mal-

adaptive responses and sensory saturation by restricting or

filtering information. Thus, CD serves as a guard inter-

vening at points along a sensorimotor pathway to regulate

the sensory information entering the system (Crapse and

Sommer 2008a). Higher-order CD signaling involves sen-

sory analysis, sensorimotor planning, and learning (Crapse

and Sommer 2008b). Corollary discharge signaling may

improve human capacity to perceive variations in the

environment and discriminate them from self-generated

sensory consequences (Cullen 2004). Sensory attenuation

of the effects of self-generated action has been described

(Blakemore et al. 1999; Shergill et al. 2003; Aliu et al.

2009; Tsakiris and Haggard 2003; Sato 2008). Martikainen

et al. (2005) found that responses in the human auditory

cortex were significantly weaker to self-triggered sounds.

Baess et al. (2009) compared auditory middle latency

responses (MLR) evoked by self-initiated click sounds to

responses to externally initiated but otherwise identical

sounds and found that MLRs were significantly attenuated

in the self-initiated condition. A self-generated sensory

episode is usually perceived as less powerful than a similar

sensory episode generated externally (Blakemore et al.

1999; Sato 2008). However, Desantis et al. (2012)

observed that the accuracy of discrimination did not sig-

nificantly differ between these conditions, indicating that

self-generation does not necessarily reduce the amount of

perceptual information being processed. Although sounds

of locomotion and ventilation are, by definition, self-gen-

erated and extremely common, studies of their impact on

perception and behavior are scarce.

Incidental sounds of locomotion and ventilation

in the animal kingdom

Invertebrates

The auditory receptors of crickets are located on their

forelegs, and as a consequence, walking produces excita-

tion of auditory receptors in the absence of sound and

suppression of action potentials in response to sounds

(Schildberger et al. 1988). Female crickets orienting to a

male calling song pause frequently and change direction

primarily during pauses (Murphey 1972; Bailey and

Thomson 1977). There is evidence that orientation is less

effective when the song is heard only during moves than

when it is heard only during pauses (Weber et al. 1981).

The tympanic membrane of grasshoppers is situated near

air sacs in the tracheal system; therefore, it is deflected

inward and outward during the respiratory cycle (Meyer

and Elsner 1995; Meyer and Hedwig 1995). These slow

movements change its auditory response properties and

modulate the afferent activity. Ventilation thus distorts the

perception of conspecific communication signals. Singing

males of Chorthippus biguttulus may arrange their venti-

latory and stridulatory activity in a manner that leaves

‘‘windows’’ open for listening (Meyer and Elsner 1995;

Meyer and Hedwig 1995). Parasitoid wasp species that

detect their prey using vibrations in the substrate spend a

higher proportion of time motionless than species that use

their ovipositors to probe for prey (Vet and Bakker 1985)

suggesting that movement interferes with detection of prey

movement (Kramer and McLaughlin 2001).

Spiders

The synchronized and rhythmical activity of the social

spider Anelosimus eximius (Araneae, Theridiidae) is likely

to promote prey localization (Krafft and Pasquet 1991).

Synchronization of movements with resting periods

(respected by all in the group) creates ‘‘silent’’ periods,

during which the spiders may assess and locate the strug-

gling prey.

Vertebrates

Pressure waves/water movements caused by an individ-

ual’s own locomotion or breathing might interfere with

lateral line and electrosensory perception in fish (Russell

1968, 1974; Roberts and Russell 1972) and in Xenopus

laevis (Russell 1971). Swimming fish larvae were shown to

display reduced responsiveness to flow stimuli and were

40 % as likely to respond to flow signals as motionless

larvae, implying sensory benefits of intermittent swimming

cessation (Feitl et al. 2010). Mechanisms to decrease the

masking potential of fish breathing have been described.

An adaptive filter in the medullary nuclei cancels self-

induced breathing noise in the electrosensory and lateral

line systems of fish (Montgomery and Bodznick 1994).

Second-order electrosensory neurons in elasmobranch fish

and mechanosensory neurons in teleost fish have adapted to

cancel the effects of stimuli that are tied with fish respi-

ratory movements (Montgomery and Bodznick 1994). It

has been suggested that the need to cope with auditory

masking problems associated with incidental sounds of

locomotion influenced the evolution of synchronized

behavior in fish groups. It is likely that schooling fish

produce overlapping and confusing acoustical signals,

which may result in predator confusion (Larsson 2009,
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2012b). Since synchronized locomotion in vertebrate

ancestors may have had highly adaptive functions, the

vertebrate brain may be pre-programmed to develop syn-

chronized behavior in other ecological niches, e.g., birds

flying in formation and surface diving dolphins (Larsson

2012a).

Signaling functions of sounds of locomotion

The fact that incidental sound of locomotion may be a

masker in many situations does not contradict the possi-

bility that sound produced during locomotion may create

essential signals. Wing beats of certain characteristics in

drosophila (Bennet-Clark et al. 1980), mosquitoes (Gibson

and Russell 2006), moths (Bailey 1991), and some bird

species, e.g., the flappet lark (Payne 1973; Norberg 1991)

and hummingbird (Hunter 2008) have been suggested to

produce audible intersexual advertisements. Wingbeats of

certain characteristics may serve as a predator alarm in the

mourning dove (Coleman 2008) and the crested pigeon

(Hingee and Magrath 2009). Locomotion-related sound

and water movements seem to play a crucial role in com-

munication in schooling fish (Pitcher et al. 1976).

Locomotion sounds in primates

Apes show a wide range of locomotion behaviors, includ-

ing brachiation, quadrumanous (four-handed) climbing,

quadrupedal knuckle or fist walking, and regular short

bouts of bipedal locomotion (Schmitt 2003). Little is

known about the sounds they produce during locomotion.

However, studies of primate locomotion may give an idea

to what extent these sounds may be regular and predictable.

The coordination of limb movements of non-human pri-

mates was reviewed by Stevens (2006). While most

mammals use lateral sequence gaits in which a forelimb

follows an ipsilateral hind limb during the stride cycle,

primates have a tendency to utilize diagonal sequence

gaits, i.e., the contralateral forelimb follows a given hind

limb during the stride cycle. Primates demonstrate a high

degree of flexibility in gait sequence pattern, which is

likely to offer advantages for moving through discontinu-

ous and unstable tree limbs (Stevens 2006). Primates

moving in trees usually strive to maintain contact with at

least one limb, resulting in little or no aerial phase (O’Neill

2012; Schmitt et al. 2006). The distance between limbs,

and their degree of flexibility, is likely to vary, leading to

the lack of regular limb sequences (Thorpe et al. 2009).

Orangutans control excess sway by using irregular gait

patterns and multiple support limbs (Thorpe et al. 2009).

Due to the fragmented nature of forest canopies, arboreal

animals must often cross large gaps between trees

(Channon et al. 2011). During locomotion on ground, the

stride length and walking speed of chacma baboons were

reported to vary considerably (Sueur 2011). Many non-

human primates use bipedal gait opportunistically, moving

on flexed limbs, ‘‘bent-hip, bent knee’’, which probably

was the earliest form of bipedal gait in the hominids (De-

mes and O’Neill 2013). Capuchin monkeys, basically

arboreal quadrupeds, come to the ground frequently and,

especially in the context of transport and tool use, often use

bipedal gait (Demes and O’Neill 2013). Although bipedal

gait is not exclusive to humans, data from bearded capu-

chin monkeys and adult African apes indicate that the

average proportion of bipedal gait is no more than 1–2 %

of total locomotion (Duarte et al. 2012). Moreover, non-

human primates’ bipedal gait differs distinctly from human

walking in that primates do not use pendulum-like walking

(Demes and O’Neill 2013).

Human walking shows long-term regularities (Dingwell

and Cusumano 2010; Hausdorff et al. 1996). During

unconstrained over-ground walking, stride time, stride

length, and speed exhibit strong statistical consistency

(Terrier et al. 2005). The first hominids habitually using an

upright bipedal gait probably evolved in Africa five to six

million years ago (Schmitt 2003). Human walking on a flat

surface is combined with oscillating movements of the

legs, arms, and head (Goldberger et al. 2000; Nessler and

Gilliland 2009). Laboratory studies have suggested that the

preferred cadence of walking is approximately 120 steps

per minute (SPM), which has also been demonstrated

during extended periods of unconstrained locomotor

activity (MacDougall and Moore 2005). While data about

the characteristics of non-human primates’ locomotion

sounds are lacking, human locomotor sound has been

thoroughly examined.

Sounds in human bipedal locomotion

Humans and other species often stop and listen if they need

to detect a faint sound or to make a fine auditory dis-

crimination (Kramer and McLaughlin 2001). Locomotion

typically creates audible sounds containing a number of

qualitatively dissimilar acoustical events: isolated impul-

sive signals, sliding sounds, crushing sounds, and complex

temporal patterns of overlapping impulsive signals (Visell

et al. 2009). Other airborne or bone-conducted locomotion

sounds produced by arm movements, irregularities in

joints, or clothing movements may also be perceived by a

walker. Walking conveys information about the properties

of the sound source, and even without explicit training,

listeners learn to draw conclusions based on the features of

the sound (Visell et al. 2009), including such aspects as the

gender (Giordano and Bresin 2006; Li et al. 1991), posture

(Pastore et al. 2008) and emotions of a walker (Giordano
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and Bresin 2006), and properties of the ground surface

(Giordano et al. 2012). Due to the lack of data concerning

the frequency and intensity of the sounds of locomotion at

ear level, I obtained some preliminary data of sounds

generated by a man walking on a beach and in shallow

water. Locomotion sound was recorded approximately

5 cm from the walker’s ear with a portable dB meter

(Table 1). Walking on sand and gravel increased the sound

level 24 dB LAeq above baseline (from 38 to 62 dB) and

walking in shallow water 32 dB LAeq (from 34 to 66 dB).1

The sound level and masking potential of locomotion

sound are likely to be variable and be influenced, e.g., by

locomotion patterns, the size of the walker, the substrate,

and the characteristics of the signal. Self-generated loco-

motion sounds are likely to have a potential to mask the

analogous footsteps’ sounds produced by a nearby indi-

vidual, since footsteps on similar ground are likely to

generate sounds of a similar bandwidth. Self-generated

locomotion sounds (the masker) will usually have higher

amplitude than those of a second individual (the signal)

since the former is produced nearer to the listener. In

addition, walking will result in self-generated sound

transmitted to the inner ear via the bones of the skull

(Moore 2003, pp. 22–23), which is likely to contribute to

their masking potential. In the simple trial cited here, fre-

quencies of locomotion sounds overlapped substantially

with speech, indicating the potential to mask vocal

communication.

Walking and running are periodic activities, with a

single period known as the gait cycle (GC). By definition,

the GC begins when one foot comes into contact with the

ground and ends when the same foot contacts the ground

again (Novacheck 1998). Human walking rates are gener-

ally in the range of 75 and 125 SPM (Sabatier et al. 2008),

corresponding to a GC of 0.8–0.5 s. The GC is comprised

of stance and swing phases (Novacheck 1998). In walking,

the two initial portions of the stance phase (initial contact

and the loading response) normally produce more sound

energy than other stance phase portions, although their

combined duration is less than 10 % of the GC (Novacheck

1998). A walking sound is usually a sequence of isolated

impact sounds generated by a temporally limited interac-

tion between two objects (Visell et al. 2009). The foot and

ground exert an equal and opposite force on one another,

the ‘‘ground reaction force’’ (GRF) (Novacheck 1998),

which is associated with the movement of the center of the

mass of the individual (Galbrait and Barton 1970). It has

been demonstrated in capuchin monkeys that GRFs are

larger in bipedal gait than in quadrupedal locomotion

(Demes and O’Neill 2013). In acoustics, the term GRF

usually refers to sounds of frequencies lower than

approximately 300 Hz (Ekimov and Sabatier 2006). The

net force, F, exerted by the foot against the ground will

produce a time-varying sound spectrum, in which the

higher frequencies (in contrast to the GRF) depend on

footwear and ground surface characteristics (Ekimov and

Sabatier 2006).

Running is defined as a gait in which there is an aerial

phase, a time when neither foot touches the ground.

Walking has by definition no aerial phase. The stance of

each foot is shorter in running, while the swing shows the

opposite trend (Novacheck 1998). Pacing of barefoot run-

ning in athletes is usually greater than 170 SPM

(GC \ 0.35 s) (Lieberman 2012). Barefoot locomotion

produces a greater disturbance than running when shod

(Light et al. 1980). During barefoot running at 4 m/s on a

hard surface, the magnitude of the peak of the GRF is

between 1.5 and 2.5 body weight. This sends a shock wave

Table 1 Sound levels 5 cm from the right ear of a 182 cm man

Environment/condition dB value expressed in (LAFmin) LAeq (LAFmax)

Stationary Walking

Gravel/sand at beach (28) 38 (52) (30) 62 (71)

Water’s edge (26) 34 (48) (32) 66 (75)

Stationary, no breathing Stationary, breathing (freq. 1/s)

Silent room (17) 19 (26) (24) 53 (66)

Recorded with a dB meter

LAFmin = minimum sound level, dB(A), LAeq = equivalent continuous level (see fact square), LAFmax = maximum sound level, dB(A)

1 Decibel (dB) is a logarithmic scale, which means that doubling the

sound energy will increase the dB value by 3 dB. Equivalent

continuous level or LAeq (A = average) is equivalent to the level of

continuous noise given in decibels A (dBA) and integrates sound

energy measured over a period of time (approximately 10 s in these

recordings) to adjust for fluctuation of usual noise levels. The dBA

filter is widely used. dBA roughly corresponds to the inverse of the

40 dB (at 1 kHz) equal-loudness curve for the human ear; using the

dBA filter, the sound level meter is less sensitive to very high and

very low frequencies. Measurements made with this scale are

expressed as dBA (Meyer-Bisch 2005). These recordings (using

LAeq) did not demonstrate differences in amplitude between

relatively silent and relatively noisy phases of the gait cycle.
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up the body that can be measured in the head about 10 ms

later (Lieberman et al. 2010). In theory that shock wave is

likely to produce substantial sound due to bone conduction.

Data of the magnitude, characteristics, and duration of

sounds produced are scarcer for running than for walking.

Since the body has no contact with the ground during the

swing, the amplitude of air-conducted and bone-conducted

sounds of locomotion is likely to be significantly lower in

the swing phase. Due to a short stance and long swing

period with no contact with the ground, the proportion of

relatively silent periods is likely to be longer in running

than in walking.

Human sounds of ventilation

Data concerning non-human primate breathing sounds

are not available, and in humans, data on the amplitude

and bandwidth of respiratory sound at the ear canal are

lacking. Inspiratory sound recorded outside of the mouth

at a roughly average flow rate of 60 L/min has been

shown to have a mean amplitude of 51 dB (Forgacs

et al. 1971). The sound waves were of random amplitude

with a regularly spread frequency distribution ranging

from about 200 to 2,000 Hz. Groger and Wiegrebe

(2006) reported that the external amplitude of human

respiration sounds in non-exercise, calm nose breathing

range from 25 to 35 dB. In unpublished experiments, I

found that breathing of a human male instructed to

maintain normal breathing volume, inspiring through the

nose and expiring through the mouth at a frequency of

15 breaths per minute, increased the sound level by

34 dB LAeq (from 19 to 53 dB) approximately 5 cm

from the ear (Table 1). These studies measured sound

transmitted by air conduction. In addition, breathing will

result in self-generated sound transmitted to the inner ear

via the bones of the skull (Moore 2003, pp. 22–23),

which is likely to contribute to their masking potential.

In analogy with locomotion sound, self-generated venti-

lation sounds may have a potential to mask the analo-

gous breathing sounds produced by a nearby individual.

Self-generated ventilation sounds (the masker) will usu-

ally have higher amplitude than those of a second indi-

vidual (the signal) since the former is produced nearer to

the listener. In the simple trial (see Table 1), frequencies

of ventilation sounds overlapped substantially with

speech, indicating the potential to mask vocal commu-

nication. People typically cease breathing in hearing

experiments when they are trying to perceive speech of

very low amplitude (Parivash Ranjbahr, personal com-

munication). The term ‘‘breathtaking’’ may indicate a

tendency of humans to inhibit breathing in moments of

fear or excitement, however, that has not been reported

in the scientific literature.

Respiratory–locomotor coupling

Breathing and locomotion are interrelated, and respiratory–

locomotor coupling (RLC) is evident in all classes of

vertebrates (Bramble and Carrier 1983; Funk et al. 1992);

however, I have not found any data of RLC in non-human

primates. The adaptive value of RLC is poorly understood.

Energy saving has been suggested, although supporting

evidence is lacking (Boggs 2001; Funk et al. 1997; Tytell

and Alexander 2007). Human coupling of locomotion and

breathing does not seem to result in energy gain or obvious

mechanical benefits (Banzett et al. 1992; Bernasconi and

Kohl 1993; Wilke et al. 1975). Human runners employ

several phase-locked patterns (4:1, 3:1 2:1 1:1, 5:2, and

3:2), with 2:1 appearing to be most common (Bramble and

Carrier 1983). Wilke et al. (1975) suggested that the

entrainment of breathing and locomotory cycles in humans

is an expression of the ease with which breathing becomes

entrained to various rhythmic events. Breathing in humans

can be subconsciously entrained to many kinds of rhythmic

events, such as finger tapping, that have no mechanical link

to the respiratory system (Haas et al. 1986). Banzett et al.

(1992) concluded that coordination of breathing and stride

in humans belongs to this class of coupling phenomena and

has no obvious mechanical advantage.

Reduced masking through RLC

The benefits of RLC may include enhanced hearing

through concurrent noise production and silent intervals

along with auditory grouping of self-produced noise. RLC

is also likely to produce rhythmic and more predictable

noise (Larsson 2012a). The amplitude of respiration is

positively correlated to the flow rate (Forgacs et al. 1971);

therefore, inspiratory sounds, as well as the amplitude of

locomotion sounds, are likely to increase during exercise.

This may produce enhanced benefits in situations when

breathing and locomotion generate high-amplitude noise.

This suggestion is supported by the fact that the tendency

of humans to entrain respiration and locomotion is stronger

in running than when walking (Bechbache and Duffin

1977), since running usually produces more noise.

Synchronization of breathing

In resting humpback whales, synchronized breathing is

commonly observed (Cynthia D’Vincent, personal com-

munication). Surface diving dolphins are another example

of synchronized breathing in animals (Larsson 2012a). An

adaptive result of synchronization of self-produced noise,

leading to extended silent periods, may be reduced masking
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(Larsson 2012a). Yawn contagion has been demonstrated

in humans and several non-human animal species such as

dogs (Madsen and Persson 2013) and chimpanzees (Mas-

sen et al. 2012). Contagious yawning has been suggested to

lead to synchronization of behavior, and in chimpanzees, it

is most apparent among males (Massen et al. 2012). In

humans, auditory cues have been reported to be stronger

than visual contagious yawn cues (Arnott et al. 2009).

Social coherence has often been suggested as the function

of synchronized yawning (Massen et al. 2012), while its

influence on hearing perception of animal groups has

scarcely been explored.

Synchronization of body movements in primates

Oullier et al. (2008) evaluated phase synchrony by requiring

pairs of humans facing each other to actively produce actions,

while seeing, or not seeing similar actions being performed.

Phase synchrony (unintentional in-phase coordinated behav-

ior) emerged when they were exchanging visual information,

whether or not they were explicitly instructed to coordinate

with each other. However, rhythmic movement in humans is

more robustly connected to acoustic than to visual cues (Repp

and Penel 2004). Little is known about spontaneous syn-

chronization in other species than humans. Nagasaka et al.

(2013) examined spontaneous behavior synchronization in

Japanese macaques. Synchronization was quantified by

changes in button-pressing behavior while pairs of monkeys

were facing each other. Participant-/partner-dependent syn-

chronization was observed. Visual information from the

partner induced a higher degree of synchronization than did

auditory information (Nagasaka et al. 2013). Zarco et al.

(2009) conducted a comparison of psychometric performance

in humans and rhesus monkeys. The tasks involved tapping on

a push button to measure the participants’ ability to produce

accurate time intervals. Their results suggested that the spe-

cies have a similar timing mechanism when passage of time

needs to be quantified for a single interval. Overall, human

subjects were more accurate than monkeys and showed less

timing variability, especially during the self-pacing phase

when multiple intervals were produced. The authors sug-

gested that the internal timing machinery in macaques is not

capable of producing multiple consecutive intervals. The

typical human bias toward auditory as opposed to visual cues

for the accurate execution of time intervals was not evident in

rhesus monkeys.

Synchronization of steps

Walking side by side, people often subconsciously syn-

chronize steps, suggesting that the perception of one’s

partner directly influences gait in the absence of conscious

effort or intent (Nessler et al. 2009, 2012; Nessler and

Gilliland 2010; van Ulzen et al. 2008; Zivotofsky and

Hausdorff 2007). When two individuals stroll on neigh-

boring treadmills, the walking pattern of both is substan-

tially changed (Nessler et al. 2009, 2011a). Each person

makes fine adjustments of the locomotion kinematics in

order to resemble their partner’s behavior (Nessler et al.

2012). In paired walking, participants can be phase locked

with a phase difference close to 0� (in phase), or they can

be phase locked with a phase difference close to 180� (anti-

phase) with walkers contacting the ground simultaneously

with opposite-side feet (Nessler et al. 2012). The latter

means that the right foot of one walker and left foot of the

partner will reach the ground almost simultaneously. Leg

length difference has been found to be significantly related

to locking of step (Nessler and Gilliland 2009). Since the

level of frequency locking did not significantly differ with

varying visual and auditory information, the authors sug-

gested that only a small amount of sensory information was

sufficient to cause unintentional synchronization. Inter-

views following these experiments indicated that a small

amount of sound was often detectable while wearing ear-

plugs or sound-restricting earmuffs, and several partici-

pants indicated that they could feel mechanical vibrations

resulting from their partner’s steps (Nessler and Gilliland

2009). Such sound and vibrations may have provided

sensory information about the partner’s locomotion even in

the experimental conditions with restricted visual or audi-

tory information. In healthy individuals attempting to walk

in time with a metronome at 120 beats per minute (BPM),

the average pace was 119.52 ± 3.12 SPM, demonstrating a

high degree of synchronization with rhythmic auditory

sounds (Bilney et al. 2005).

No doubt similarity of the biomechanical characteristics

of the individuals influences synchronization (Nessler et al.

2009, 2011b). However, selective regulation of treadmill

velocity and inclination can lead to synchronization among

persons with large differences in leg length and preferred

pace that otherwise would not exhibit this kind of inter-

action (Nessler et al. 2011b). There are limits to this syn-

chronization behavior (Nessler et al. 2009, 2012; van Ulzen

et al. 2008). Synchronization between partners is often

transient (Nessler et al. 2009; Zivotofsky and Hausdorff

2007). Pedestrian-induced lateral vibration of footbridges

has been described (Fujino et al. 1993; Dallard et al. 2001).

Typically, the walkers have no intention to march in step,

but have naturally fallen into step with each other, appar-

ently after the bridge begins to sway (Dallard et al. 2001).

Dallard et al. (2001) suggest that people in a crowd also

tend to synchronize with one another when there is no

pavement motion, but that the probability of synchroniza-

tion increases with increasing pavement motion amplitude.
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People have a stronger tendency to synchronize their steps

to an oscillating bridge when it has a frequency close to

their natural walking or running frequency. Thus, lateral

deck movement encourages pedestrians to walk in step, and

this step synchronization increases the human force and

makes it resonate with the bridge deck (Fujino et al. 1993;

Dallard et al. 2001). Data on synchronization in runners are

lacking; however, my own observations of running couples

of similar leg length suggest a clear tendency toward

pacing. Synchronized locomotion in non-human primates

seems not to have been reported, but in light of the irreg-

ularity of most primate locomotion, discussed above, it

seems unlikely to be prominent.

Why do humans tend to synchronize movements?

Social dynamics have been proposed to influence syn-

chronization, and an individual’s movement pattern has

been characterized as the result of interaction between her/

his ideal movement pattern and that of nearby individuals

(Issartel et al. 2007). Walking at speeds that differ from

one’s preferred pace may result in increased energy

expenditure, and it has been suggested that energy cost

may play a role in unintentional entrainment, i.e., walkers

may compromise on a cadence in light of metabolic

energy consumption (Nessler and Gilliland 2009).

McNeill (1995) suggested that synchronization of move-

ments in a group is a potent way of creating and sus-

taining community and communication. Merker (2000)

hypothesized a potentially confusing auditory effect based

on the mimicry of a large animal or the possibility of

frightening enemies when groups of ancestors walked in

synchrony. Acoustic effects of synchronization have

otherwise been little discussed.

Silent periods

Synchronization of movements in animal groups, such as

surface diving dolphin groups synchronizing splashdown,

might reduce auditory masking problems through periods

of relative silence (Larsson 2009, 2012a, b). Human

groups walking or running out of step are likely to pro-

duce a roughly consistent amount of sound energy over

the entire time span. Noisy phases of the GC will rarely

overlap; thus, the total time of relatively silent periods

will be reduced compared to walking in pace. For

example, three similar-sized men running in phase will

produce relatively little noise during the swing. During

the relatively noisy stance period, the sound energy will

be three times that of one man. However, this means that

the perceived sound will increase less than 6 dB (If the

footstep sound of one man has a level of 60 dB, two men

will produce roughly 63 dB, four men 66 dB, and an

intermediate value for three men).

Predictable noise

The ability to segregate and identify sound sources in an

auditory scene, for example a listener’s ability to group

signal components into auditory objects and consequen-

tially separate discrete sources from a complex mixture of

sounds, is known as ‘‘auditory scene analysis’’ and onset

time is suggested to be a useful grouping cue (Bregman

1990). Synchronization of human gait may improve the

capacity to discriminate sound sources, since the onset

time of the sounds of GC will coincide. In synchronized

walking, one’s own and an accompanying person’s foot-

steps may be grouped together to form an auditory object,

improving the brain’s ability to discriminate footsteps

from other sound sources. Moreover, it is likely that two

humans walking in pace on a consistent surface will be

familiar with the sound patterns produced. Predictability

of masking sounds may reduce backward masking (that

caused by noise following the signal) due to a learning

effect (Kidd and Feth 1982; Moore 2003, pp. 107–116),

which in turn may favor speech perception. Human speech

perception often takes place against a background of

intense and irrelevant noise (Darwin 2008). However,

familiarity with the noise seems to reduce its masking

potential. Word identification has been shown to be better

in the presence of familiar background music than in that

of unfamiliar background music (Russo and Pichora-Fuller

2008). A masker’s rhythmic properties seem to influence

speech perception. Ekström and Borg (2011) investigated

the masking effect of a piano composition, played at 60,

120, or 180 BPM, on speech perception thresholds. All

masking sounds were presented at an equivalent sound

level (50 dBA). Low octave and fast tempo had the largest

masking effect. The normal walking tempo of humans is

close to 120 SPM. Two people walking in pace at this

tempo will produce a regular rhythm of 120 while unp-

aced walking, for instance 110 BPM combined with 130

BPM, will produce a faster and more unpredictable

rhythm.

Steps in evolution?

Primitive hominids lived and moved around in small

groups (Wilson 2011, pp. 57–105). The noise generated by

the locomotion of two or more individuals can result in a

complicated mix of footsteps, breathing, movements

against vegetation, echoes, etc. The ability to perceive
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differences in pitch, rhythm, and harmonies, all of which

are components of ‘‘musicality,’’ could help the brain to

distinguish among sounds arising from discrete sources,

and also help the individual to synchronize movements

with the group. Endurance and an interest in listening

might, for the same reasons, have been associated with

survival advantages eventually resulting in adaptive

selection for rhythmic and musical abilities and rein-

forcement of such abilities. Listening to music seems to

stimulate release of dopamine in humans (Meyer-Bisch

2005) and other animals (Panksepp and Bernatzky 2002;

Sutoo and Akiyama 2004). Aiding in discrimination of

important signals has been discussed as a major function of

dopamine (Durstewitz et al. 1999). Rhythmic group loco-

motion combined with attentive listening in nature may

have resulted in reinforcement through dopamine release.

To speculate further, a primarily survival-based behavior

may eventually have attained similarities to dance and

music, due to such reinforcement mechanisms. Since music

may facilitate social cohesion, improve group effort,

reduce conflict, facilitate perceptual and motor skill

development, and improve transgenerational communica-

tion (Huron 2001), music-like behavior may at some stage

have become incorporated into human culture. Changizi

(2011) proposed that the human brain was well prepared to

exploit incidental sounds of locomotion throughout cultural

development.

Similarities between human movement, breathing,

and music

According to Changizi (2011), the most informative sounds

of moving individuals are the basic building blocks of

music. Four properties of moving individuals correspond

directly to four fundamental ingredients of music: (1) the

distance to the sound source (i.e., the moving individual)

corresponds to loudness in music, (2) directionality influ-

ences pitch through the Doppler effect, (3) the moving

individual’s speed corresponds to tempo in music, and (4)

the moving individual’s gait pattern corresponds to the

rhythm in music. He presents a list (pp. 191–195) with 42

potential similarities between music and human movement.

To this list may be added that passive listening to music, or

imagining it, activates areas of the brain associated with

motor behavior (Chen et al. 2006; Janata and Grafton

2003). Listening to a rhythm often stimulates body

movements (Grahn and Brett 2007). Rhythm information

may be represented and retained in the brain as information

about bodily movements (Konoike et al. 2012). Interac-

tions between auditory and motor systems are important for

the execution of rhythmic movements in humans, and

music has a remarkable ability to drive rhythmic,

metrically organized, motor behavior (Zatorre et al. 2007).

Phillips-Silver and Trainor (2005) demonstrated a strong

multisensory connection between body movements and

auditory rhythm processing in infants. To tap or move in

rhythm to music is rare during the first year of human life

but steadily increases until the age of puberty (Drake 1997;

Hugardt 2001; Merker 2005), a timetable that shows some

analogies with the child’s increasing capacity to walk.

Music often influences emotions and vice versa. Interac-

tions between locomotion sound and emotions have also

been demonstrated. Giordano and Bresin (2006) suggested

that locomotion sounds may be influenced by the emotion

of the walker, and according to Bresin et al. (2010), the

sounds produced on a more firm surface lead to more

aggressive walking patterns. Runners changed step length

and thereby the speed when music of different ‘‘emotional’’

character was recorded, although the pace was the same in

all conditions (130 BPM) (Leman et al. 2013). Walking

and running will usually produce rhythms in the range of

75–190 BPM. People can synchronize walking movements

with music over a broad spectrum of tempos, but this

synchronization is optimal in a narrow range around 120

BPM (Styns et al. 2007). Music is often played at a tempo

similar to walking (Changizi 2011, p. 191). Respiration

frequency can be increased by musical stimuli, and the

increased breathing rate secondarily increases heart rate

and blood pressure. This increase has been shown to be

proportional to the tempo of music (Bernardi et al. 2006).

A slow tempo (60–80 beats per minute) is related to

relaxation and pain relief. Silence (a pause from music)

further increases relaxation (Bernardi et al. 2006). The

phase-locked patterns in human runner and walker RLC,

4:1, 3:1, 2:1, contribute to similarities between locomotion/

ventilation sounds and rhythms in music.

Discussion and conclusions

Human locomotion and ventilation noise seem to have the

potential to mask critical sounds in the environment, such

as the footsteps and breathing of a stalker or prey. Syn-

chronized walking of people in small groups is likely to

reduce the masking properties of locomotion sounds. Pos-

sible adaptive advantages could be early detection of

stalkers and enhanced perception of vocal communication

within the group. Thus, the acoustic advantages that have

been suggested for schooling fish, dolphin, and bird groups

(Larsson 2009, 2012a, b) may also be relevant for humans

moving in synchrony. Moreover, limited data suggest that

locomotion sounds may be used subconsciously to achieve

synchronization of group locomotion (Nessler and Gilli-

land 2009; Fujino et al. 1993; Dallard et al. 2001). Chan-

gizi (2011) suggests that the brain became ‘‘harnessed by
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music,’’ proposing that the fundamental ingredients of

music developed to be similar to the sounds produced by a

moving individual, since the human brain was adept at

interpreting and analyzing such sounds in nature. The

evidence presented here suggests an evolutionary adapta-

tion of the auditory system to perceive and analyze

rhythmic locomotion sound, complementing Changizi’s

premise.

Archaeological data indicate that, in primitive societies,

anywhere from 10 to 60 % of men died by homicide or in

warfare (Bowles 2009). Thus, abilities to reduce masking

and increase the chance of hearing an approaching enemy

would have had high adaptive value in bipedal hominids.

However, reducing masking from incidental sounds of

locomotion is as likely to have adaptive value in non-

human primates. Groups of arboreal primates would also

benefit from simultaneous movement and pauses to pro-

duce silent intervals. The spontaneous behavior synchro-

nization demonstrated among Japanese macaques

(Nagasaka et al. 2013) may offer such acoustic benefits in

nature. The higher degree of synchronization induced by

visual information from the partner, as opposed to auditory

cues, does not preclude a contribution of reduced auditory

masking. Since auditory cues created by their locomotion

are less repetitive and predictable than human steps, tree-

climbers’ visual cues to synchronize locomotion may be

more reliable than auditory cues. This may also provide a

rationale for the non-human primates’ inability to accu-

rately produce multiple tap intervals (Zarco et al. 2009),

and possibly explain why monkeys detect rhythmic groups

in music, but not the beat (Honing et al. 2012). Beat

induction is the cognitive skill that let us pay attention to a

regular pulse in music to which we can then synchronize.

Perceiving this regularity in music allows humans to dance

and create music together. Beat induction is a fundamental

musical characteristic that, possibly, played a crucial role

in the origins of music (Honing 2012). It is clearly corre-

lated with motor activities, and increasing evidence shows

that the neural circuits involved in beat perception overlap

with motor circuitry even in the absence of overt move-

ment (McAuley et al. 2012). Successful beat induction was

diminished when the implied beat was at a slower cadence

(1,500 ms or 40 BPM) compared with a quicker tempo

(600 ms or 100 BPM) (McAuley et al. 2012) that corre-

sponds to a normal human gait tempo.

The lack of empirical research on locomotion and ven-

tilation sounds is a major limitation and should be an

incentive for further research, e.g., about the prevalence of

human walking in step and the neurophysiological mech-

anisms behind. The list of further research topics could also

include perceptual factors such as acoustics (background

noise, hearing acuity, level of sound generated) and the role

of vision in synchronization of steps; how pacing

influences vocal communication and vice versa; the

masking potential of locomotion and ventilation sounds,

not least the masking potential of different phases of the

GC and the respiratory cycle; masking due to bone-con-

ducted locomotion and ventilation sounds; the possible

suppression effect of self-generated locomotion/ventilation

sounds in the CNS; acoustic consequences of RLC in

vertebrates; and comparative analyzes of acoustic and

rhythmic properties of human bipedal walking versus

arboreal locomotion and quadruped walking in apes.

Most, if not all, vertebrates are capable of auditory

learning, which essentially means an ability to make

associations with sounds heard, but few are capable of

vocal learning, the ability to modify acoustic and/or syn-

tactic structure of sounds produced, including imitation and

improvisation (Jarvis 2007). Vocal learning has been found

in humans, bats, cetaceans, pinnipeds, elephants, parrots,

hummingbirds, songbirds (Jarvis 2007), and recently also

in the ultrasound register of mice (Arriaga et al. 2012). The

vocal learning and rhythmic synchronization hypothesis

proposes that vocal learning provides a neurobiological

foundation for auditory/motor entrainment (Patel 2006).

Schachner et al. (2009) suggested that entrainment to

auditory beats emerged as a by-product of the capacity for

vocal mimicry. Spontaneous motor entrainment to music

has been demonstrated in vocal learners such as parrot and

elephant species (Patel et al. 2009; Schachner et al. 2009).

However, entrainment has recently been demonstrated in

the less vocally flexible California sea lion, which has been

suggested to be a limitation of the vocal learning and

rhythmic synchronization hypothesis (Cook et al. 2013).

This review article suggests the alternative view: that

repetitive and predictable locomotion sounds influenced

the development of entrainment in humans. It is likely that

animal species that display oscillating, predictable loco-

motion patterns also produce rhythmic and predictable

sounds of locomotion. An interesting question for the

future is whether exposure to repetitive sounds of loco-

motion may stimulate the evolution toward auditory–motor

entrainment. A related question is whether auditory–motor

entrainment may stimulate the evolution of vocal abilities.

Several vocal learning species produce oscillating move-

ment patterns for long periods when they are moving in

groups, for example human and elephant gait; coast and

burst swimming in cetaceans and pinnipeds; wing flapping

in bats, parrots, hummingbirds, and not least swarms of

songbirds. At least bats and birds use their forelimbs to a

large extent during locomotion. Brain structures involved

in vocal communication in vertebrates are closely linked to

motor processing of the forelimbs (Bass and Chagnaud

2012). Developmental studies of sound-producing fishes

and tetrapods reveal that structures in the nervous system

dedicated to vocalization originate from the same caudal
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hindbrain rhombomere (rh) 8-spinal compartment (Bass

and Chagnaud 2012). Midshipman fish and the hitherto

investigated tetrapods have forelimb motoneurons that

function in both sonic and gestural signaling, and vocal and

pectoral systems seem to have a shared developmental

origin. In addition, vocal and pectoral systems have been

proposed to possess shared social signal functions (Bass

and Chagnaud 2012). Although the hypothesis presented

here proposes a connection of music with motor processing

of the hind limbs, a high degree of neuronal coordination of

arm and leg movements has been demonstrated during

human locomotion (Dietz et al. 2001).

Studies of interactions between movements and sound

perception may increase the understanding of synchronized

flock behavior in animals, including humans. Human syn-

chrony phenomena related to walking, its acoustic and

social significance, and the brain processes involved are

little understood and may provide interesting areas for

future research, not least bipedal walking and the evolution

of rhythmic and musical abilities.
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