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Low solubility, tissue accumulation, and toxicity are chief obstacles to developing

triptolide derivatives, so a better understanding of the pharmacokinetics and toxicity

of triptolide derivatives will help with these limitations. To address this, we studied

pharmacokinetics and toxicity of (5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide

derivative immunosuppressant in a conditional knockout (KO) mouse model with

liver-specific deletion of CYP450 reductase. Compared to wild type (WT) mice, after

LLDT-8 treatment, KO mice suffered severe testicular toxicity (decreased testicular

weight, spermatocytes apoptosis) unlike WT mice. Moreover, KO mice had greater

LLDT-8 exposure as confirmed with elevated AUC and Cmax, increased drug half-life,

and greater tissue distribution. γ-H2AX, a marker of meiosis process, its localization

and protein level in testis showed a distinct meiosis block induced by LLDT-8.

RNA polymerase II (Pol II), an essential factor for RNA storage and synapsis in

spermatogenesis, decreased in testes of KO mice after LLDT-8 treatment. Germ-cell line

based assays confirmed that LLDT-8 selectively inhibited Pol II in spermatocyte-like cells.

Importantly, the analysis of androgen receptor (AR) related genes showed that LLDT-8

did not change AR-related signaling in testes. Thus, hepatic CYP450s were responsible

for in vivo metabolism and clearance of LLDT-8 and aggravated testicular injury may be

due to increased LLDT-8 exposure in testis and subsequent Pol II reduction.

Keywords: (5R)-5-hydroxytriptolide, functional knockout, cytochrome P450, testes, γ-H2AX, RNA polymerase II,

androgen receptor

INTRODUCTION

Triptolide is a structurally unique diterpenoid from Tripterygium wilfordii Hook F, and has
excellent efficiency against cancers, polycystic kidney disease and rheumatic disease (Leuenroth
and Crews, 2008; Zheng et al., 2008; Leuenroth et al., 2010; Mujumdar et al., 2010; Pan, 2010;
Liu, 2011; Liu et al., 2011, 2013a,b; Manzo et al., 2012; Kim et al., 2014; Lu et al., 2014; Sangwan
et al., 2015; Fan et al., 2016). By inhibiting XPB via covalent binding, a DNA helicase and a
component of the TFIIH transcription complex, triptolide induced transcription repression and
Pol II degradation in cancer cells (Titov et al., 2011; Chen et al., 2015). Other mechanisms
such as Hsp70 inhibition, JNK and NF-kB signal pathways may also play a role (Villicana
et al., 2013; Sangwan et al., 2015; Zhang et al., 2016). Triptolide inhibits dCTP pyrophosphatase
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activity, converting CTP to dCMP with a non-covalent
interaction, and attenuates cystic kidney disease (Corson et al.,
2011).

Lack of aqueous solubility, general toxicity, and tissue
accumulation limited the clinical use of triptolide (Ye et al.,
2010; Sun et al., 2013; Zhuang et al., 2013; Kong et al., 2015;
Ma et al., 2015; Patil et al., 2015; Qi et al., 2015; Wang et al.,
2016a,b, 2017; Ruan et al., 2017). Overexposure and subsequent
toxicity of triptolide lead to the clinical trial termination of
F6008, a prodrug of triptolide (Fidler et al., 2003; Kitzen et al.,
2009). While the incomplete cleavage, loss of drug bioactivity
and interpatient variability stopped the clinical trials of other
prodrugs of triptolide, PG490-88, and omtriptolide (Kitzen et al.,
2009). Therefore, clarifying the connection between toxicity and
pharmacokinetics of triptolide and its derivatives may help us
overcome some limitations of triptolide and allow the clinical use
of triptolide and its derivatives (Zhou et al., 2012).

(5R)-5-hydroxytriptolide (LLDT-8) is a novel triptolide
derivative with potent immunosuppressive, anti-inflammatory,
and anticancer activity (Zhou et al., 2005; Wang et al., 2012; Zeng
et al., 2016; Su et al., 2017), and it is now in phase II clinical
trials in China for the treatment of rheumatoid arthritis (Qi et al.,
2016). LLDT-8 reduces the production of Th1 type cytokines
(IFN-γ, IL-2) and inflammatory cytokines (TNF-α, IL-16), and
inhibits NF-kB activation triggered by lipopolysaccharide (Zhou
et al., 2006a,b). LLDT-8 also has potent anticancer activity via
transcription inhibition (Wang et al., 2012).

Compared to triptolide (Xue et al., 2011), LLDT-8 has a
better safety profile and does not induce abnormalities in the
epididymis, liver, kidney, spleen, or circulation (Qi et al., 2016).
The testicular injury is the main adverse effect of LLDT-8 in
rodents, and recently we reported that spermatocytes are the
primary target for LLDT-8 in the testes. Dephosphorylating TGF-
β activated kinase (Tak1) Ser412 contributes to this selectivity
(Qi et al., 2016). However, the interaction between toxicity and
pharmacokinetics of LLDT-8 remained unknown.

The functional redundancy of CYP450 makes it difficult
to determine the isoforms involved in drug metabolism and
toxicity. Wu et al. developed a liver-specific knockout mouse
model of cytochrome P450 reductase (Cpr), the sole electron
donor of CYP450s, to overcome these limitations and reduced
almost 95% hepatic CYP450 activity (Wu et al., 2003). Cpr
knockout inhibited the hepatic P450-dependent metabolism of
monocrotaline, aristolochic acid, and triptolide (Xiao et al., 2008;
Xue et al., 2011; Yao et al., 2014).

Here, this study compared the toxicity and tissue distribution
of LLDT-8 between Cpr knockout and wildtype mice.
Inactivation of hepatic cyp450s increased the exposure of LLDT-
8 and blocked meiosis in the testes by selectively downregulating
γ-H2AX and RNA polymerase II in spermatocytes.

MATERIALS AND METHODS

Chemicals
(5R)-5-hydroxytriptolide (LLDT-8, 99.9%) was from by Professor
Yuanchao Li (Shanghai Institute of Materia Medica, Shanghai,
China). All other chemicals were commercially available and

purchased as reagent grade from Sigma-Aldrich (St. Louis, USA).
The following antibodies were used for western blotting: γ-H2AX
(Cat. No: 2577, Lot. No: 11, CST, USA), RNA polymerase II (Cat.
No: 05-623, Lot. No: 2397109, Millipore, USA), β-actin (Cat. No:
sc-47778, Lot. No: 2533, Santa Cruz, USA). γ-H2AX (Cat. No:
ab26350, Lot. No: GR305763-3, Abcam, USA) was used for
immunofluorescence assay.

Animal Treatments
Animal use protocols were approved by the Institutional Animal
Care and Use Committee of the Shanghai Institute of Materia
Medica (Shanghai, China), IACUCNo. 2016-10-RJ-136. The Cpr
knockout (KO) mice were a gift from Professor Xinxin Ding
(Wadsworth Center, Albany, NY, USA). Procedures for animal
breeding and genotyping were reported previously (Wu et al.,
2005). Eight to twelve weeks old male KO mice and their WT
littermates on a mixed C57BL/6 and 129/Sv genetic background
were used in this study. All animals were provided with a certified
standard diet and tap water ad libitum during experiments. All
animals were maintained under controlled temperature with a
12 h:12 h light/dark cycle. All efforts were made to minimize
animal discomfort and illness, and mice were anesthetized with
pentobarbital sodium (150 mg/kg, i.p.) before sample collection.
No animals died during the experiment.

Toxicological Study
The LD50 of LLDT-8 was 9.3 mg/kg (p.o.) in mice (Zhou et al.,
2005), and we used a more clinically relevant dose in our animal
experiments. For toxicity experiments, mice (n = 3/group)
were treated with LLDT-8 (0.5 or 1.0 mg/kg) consecutively
administered by gavage for 15 days. Controls received saline.
Mice were killed on the 15th-day post-administration and blood,
liver, kidney, spleen, testes, and epididymis were collected. About
500 µL blood samples were collected from the heart. The main
lobe of the liver, kidney, spleen, and epididymis was fixed in
10% neutral buffered formalin for histological examination, and
the left testicle was fixed in modified Davidson’s buffer (30%
of a 37–40% solution of formaldehyde, 15% ethanol, 5% glacial
acetic acid, and 50% distilled H2O) for 16 h followed by 10%
neutral buffered formalin for 24 h (Latendresse et al., 2002).
Tissue sections were stained with hematoxylin and eosin (H&E).
Remaining tissues were stored at −80◦C for RNA and protein
extraction.

Sera were assayed for Urea, creatine (CRE), alanine
aminotransferase (ALT), and aspartate transaminase (AST)
using an automatic HITACHI Clinical Analyzer Model 7080
(Hitachi High-Technologies Corporation, Tokyo, Japan). The
intercoefficients of variability in this assay were1.1% (ALT),
0.9% (AST), 1.2% (Urea) and 1.4% (CRE). The intracoefficients
of variability in this assay were 2.0% (ALT), 0.9% (AST), 1.2%
(Urea) and 5.1% (CRE).

Toxicokinetics of LLDT-8 in Mice
For toxicokinetic experiments, mice (n = 5–6/group for each
time point) were treated with a single dose of LLDT-8 at (0.5 or
1.0 mg/kg) by oral gavage, creating 4 treatment groups: 0.5 mg/kg
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LLDT-8-treated WT and KO mice, and 1.0 mg/kg LLDT-8-
treated WT and KO mice. After LLDT-8 treatment, 20 µL blood
samples were collected at 5, 10, 20, 30, 45, 60, 90, 120, and 180min
from tail vein. Plasma was separated by centrifugation at 3,000
rpm for 5min and kept at−80◦C until analysis. Tissues including
the liver, kidney, testes, and epididymis were also collected from
individual mice at 30 and 180min after dosing and were weighed
and homogenized in saline (1.0 g wet weight/mL) on ice. LLDT-
8 was then extracted from the plasma or the tissue homogenates
with an equal volume of ethyl acetate and dried under nitrogen.
The residues were reconstituted in 50 µL of mobile phase for
analysis.

The quantification of LLDT-8 in samples was performed
on Shimadzu 20A HPLC system (Shimadzu, Kyoto, Japan)
equipped with an autosampler coupled to Shimadzu 8030
triple quadrupole mass spectrometer (Shimadzu, Kyoto, Japan).
Separations were conducted under isocratic conditions. The
mobile phase consisting of acetonitrile and water with 0.1%
formic acid (50:50, v/v) was set at a flow rate of 0.2 mL/min.
An electrospray interface in negative ionization mode was used.
ESI source parameters were as followed: high purity drying-
gas (N2) flow rate 8 L/min, temperature 400◦C, nebulizer
pressure 25 psi. Multiple reactionmonitoring (MRM)was used to
quantify LLDT-8 (m/z 421.20 [M+COO]- → 45.10, fragmentor
110 eV, collision energy −20 eV). Analytical data were processed
using the labsolution software package (Shimadzu, Kyoto, Japan)
consisting of qualitative and quantitative software.

Standard curves for LLDT-8 were prepared by spiking
known amounts of the LLDT-8 standard into plasma or
tissue homogenate samples prepared from untreated mice.
LLDT-8 concentrations in biological samples were determined
by comparisons with standard curves. Pharmacokinetics were
calculated using Kinetica software (version 4.4.1; Thermo Fisher
Scientific Inc, Woburn, MA).

Metabolic Profile of LLDT-8
Metabolic profiles of LLDT-8 in liver microsomes from WT
and KO mice were compared. In brief, 1mM NADPH (Cat.
No: 10107824001, Lot. No: 20595625, Sigma, USA), 5mM
MgCl2, 10 µL mouse liver microsomes (20 mg/mL, microsomes
were prepared from the liver of mouse pretreated with 80
mg/kg dexamethasone for 3 days), 4 µL LLDT-8 (12.5–50µM)
in a 100mM phosphate buffer (pH 7.4). There was a 3min
preincubation step at 37◦C before initiating the reaction by
adding the NADPH into the microsomal suspension. The
reaction was stopped with ice-cold acetonitrile after 60min
incubation. Identification of LLDT-8 metabolites was performed
on an Agilent 1200 HPLC system (Agilent technologies Inc, Palo
Alto, CA) equipped with a CTC PAL autosampler coupled to an
API4000 QTRAP LC-MS/MS system (Thermo Fisher Scientific,
USA). Separations were conducted under gradient conditions.
The mobile phase consisting of 0.1% formic acid in acetonitrile
and 0.1% formic acid in water (50:50, v/v) was set at a flow rate
of 0.6 mL/min. An electrospray interface in negative ionization
mode was used. ESI source parameters were as followed: high
purity drying-gas (N2) flow rate 8 L/min, temperature 550◦C, and
nebulizer pressure 25 psi. Single ion monitoring with EMS/EPI

scan mode was used to quantify LLDT-8 (positive: m/z 377.1,
collision energy 60 eV; Negative: m/z 375.1, collision energy
60 eV; negative: m/z 375.1), andmono-hydroxylated LLDT-8 was
selected with EPI scan mode (CE:−45 v, CES:−15).

Chemical Inhibition Study
The chemical inhibition assay was performed as previously
reported (Li et al., 2008). A 400 µl typical incubation mixture
contained 0.2mg rat liver microsomes (20 mg/ml, Cat. No:
LM-DS-02M, Lot. No: BDVH, Research Institute for liver
Diseases, Shanghai, China), 2µM LLDT-8, 5mM MgCl2, 1mM
NADPH (Cat. No: 10107824001, Lot. No: 20595625, Sigma, USA)
and selective inhibitors of each CYP isoforms in a 100mM
phosphate buffer (pH 7.4). The inhibitors used were as follows:
quercetin (2µM) for CYP1A and CYP2C8, 8-methoxypsoralen
(2.5µM) for CYP2A6, sulfaphenazole (10µM) for CYP2C9,
omeprazole (20µM) for CYP2C19, quinidine (10µM) for
CYP2D6, clomethiazole (50µM) for CYP2E1, ketoconazole
(1µM) for CYP3A4 and aminobenzotriazole (50µM, a broad
CYP inhibitor) (Tsyrlov et al., 1994; Li et al., 2008). After
incubation for 0, 0.5, and 1 h, 100 µl supernatant was collected
and quenched by the addition of 100 µl of ice-cold acetonitrile.
The mixtures were then centrifuged for 10min at 20,000 × g.
An aliquot of the supernatant was analyzed by LC-MS/MS to
monitor the residual LLDT-8 without extraction.

Cell Culture
Mouse GC-1spg (spermatogonia-like, ATCC number: CRL-
2053), TM4 (Sertoli cell-like, ATCC number: CRL-1715), and
GC-2spd (spermatocyte-like, ATCC number: CRL-2196) were
purchased from ATCC (Manassas, VA). Cells were grown in
a 5% CO2 atmosphere at 37◦C. TM4 was cultured in DMEM
supplemented with 5% horse serum, 2.5% fetal bovine serum and
1x antibiotic-antimyotic (Cat. NO. 15240062, Life technologies).
GC-1spg and GC-2spd were cultured in DMEM supplemented
with 10% fetal bovine serum (Cat. No. F2442, Sigma, USA) and
1x antibiotic-antimyotic (Cat.NO. 15240062, Life technologies).

Quantitative Real-Time PCR (qPCR)
Total mouse testes RNA was isolated using a UNIQ-10 total
RNA isolation kit (Sangon Biotech, Shanghai, China). One micro
gram RNA per sample was reverse-transcribed into cDNA using
a PrimeScript RT reagent kit (Cat. No. RR036A, Takara, Dalian,
China). The purity and quality of RNA and cDNA were checked
by A260/A280 ratio and agarose gel. The qPCR was executed in
20 µL volume containing 10 µL SYBR Premix Ex Taq (Cat. No.
RR820A, Takara, Dalian, China), 8 µL of cDNA (80 ng cDNA), 1
µL forward primer (500 nM) and 1 µL reverse primer (500 nM).
The sequences of primers for Androgen-binding protein (ABP)
and cystatin 12 (Cst12) were referenced from PrimerBank. The
sequences for other genes were described elsewhere [Deleted
in azoospermia-like (Dazl), Heat shock protein a2 (Hspa2),
Phosphoglycerate kinase-2 (Pgk2), Protamine 1 (Prm1), GATA
binding protein 1 (Gata1) and Zbtb16 zinc finger and BTB
domain containing 16 (Plzf) (Qi et al., 2016); AR (Ma et al.,
2013); Reproductive homeobox 5 (Rhox5) (Kurek et al., 2015);
Fatty acid binding protein (FABP) (Vanschoonbeek et al., 2008);
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Claudin 11 (Cldn11) (Sumigray et al., 2014); β-actin (Wan et al.,
2017)]. All the sequences of primers were listed in Table 1. The
qPCR process was performed using a Rotor Gene Q PCR system
(QIAGEN, Shanghai, China). The qPCR amplification program
consisted of polymerase activation at 98◦C for the 30 s and 40
cycles of denaturation at 95◦C for 5 s, annealing, and extension at
60◦C for 40 s. The melting curve analysis was carried out for each
reaction from 50 to 99◦C. The CT values for the samples were
normalized to the corresponding β-actin CT values.

Western Blot Analysis
Cells were washed twice with ice-cold PBS (137mM NaCl,
2.7mM KCl, 10mM Na2HPO4, and 1.8mM KH2PO4, pH 7.4)
and lysed in SDS sample buffer. Cell lysates, containing 20 µg
of protein, were separated with SDS-PAGE (8%) and transferred
to polyvinylidene difluoride membranes. After blocking in 5%
non-fat milk in tris-buffered saline containing 0.1% Tween-20
(pH = 7.6), membranes were incubated with the appropriate
primary antibodies at 4◦C overnight. The primary antibodies
γ-H2AX (Cat. No: 2577, Lot. No: 11, CST, USA) and Pol II
(Cat. No: 05-623, Lot. No: 2397109, Millipore, USA) diluted
1:1000 in 5% bovine serum albumin (BSA, Cat. No. B2064-
50G, Sigma, USA). Then the membranes were exposed to
secondary antibodies (1:10,000, Cat. No.111-035-003, 115-035-
003, Jackson ImmunoResearch Laboratories, USA) in 5% non-fat

TABLE 1 | Primers sequences for qPCR.

Gene Accession number Primer sequences (5′-3′)

Dazl NM_010021 Forward:CCTCCAACCATGATGAATCC

Reverse: TCTGTATGCTTCGGTCCACA

Hspa2 NM_008301 Forward: CATCATCAATGAGCCCACAG

Reverse:TCTTGTGTTTGCGCTTGAAC

Pgk2 NM_031190 Forward: CTGTTGCTGATGAGCTCAAG

Reverse: ACTCCGACCATAGAACTGTG

Prm1 NM_013637 Forward: ATGCTGCCGCAGCAAAAGCA

Reverse: CACCTTATGGTGTATGAGCG

Gata1 NM_008089 Forward: CAGGTTTCTTTTCCTCTGGG

Reverse: AAAGGACTGGGAAAGTCAGC

Plzf NM_001033324 Forward: TGAGATCCTCTTCCACCGAA

Reverse: GTAGGACTCATGGCTGAGAGA

AR NM_013476 Forward: CTGGGAAGGGTCTACCCAC

Reverse: GGTGCTATGTTAGCGGCCTC

Rhox5 NM_008818 Forward: ACTCGGAAGAACAGCATGATG

Reverse: CCCTGGTGCCACTATCCTT

ABP NM_011367 Forward: TCTGCTGTTGCTACTACTGATGC

Reverse: GGGCCATTGCTGAGGTACTTA

FABP NM_024406 Forward: AAGGTGAAGAGCATCATAACCCT

Reverse: TCACGCCTTTCATAACACATTCC

Cst12 NM_027054 Forward: CGTGTTCCACTTCAACGAAAAC

Reverse: GCCCATCTCCAGGTCTACTAAAT

Cldn11 NM_008770 Forward: ATGGTAGCCACTTGCCTTCAG

Reverse: AGTTCGTCCATTTTTCGGCAG

β-actin NM_007393 Forward: GCATTGCTGACAGGATGCAG

Reverse: GAGCCACCGATCCACACAGA

milk for 1 h at room temperature. Immunoreactive proteins were
visualized using an enhanced chemiluminescent system (Cat. No.
WBKLS0500, Millipore, Shanghai, China).

TUNEL
TUNEL assays were performed according to the manufacturer’s
protocol (In SituCell Death Kit, Roche Diagnostics, Indianapolis,
IN). In brief, the paraffin-embedded testis tissue samples were
deparaffinized three times in exchanges wash of xylene. The
testis sections were then gradually rehydrated using decreasing
ethanol concentrations (100, 95, 90, 80, and 70%) followed by
PBS (pH = 7.4). After digestion with proteinase K (15µg/mL,
Cat. No. 539480, Lot. No. D00148754, Millipore, USA), paraffin-
embedded tissue sections were labeled with a TUNEL reaction
mixture, which contained terminal deoxynucleotidyl transferase
incorporated with fluorescein. And 1µg/mL DAPI (Sigma,
USA) to used to reveal nuclear DNA. After staining, images
were obtained with a fluorescent microscope (NIKON TS2,
Japan).

Immunofluorescence
For immunofluorescence analysis, the paraffin-embedded testis
tissue samples were deparaffinized three times in exchanges
wash of xylene. The testis sections were then gradually
rehydrated using decreasing ethanol concentrations followed
by PBS (pH = 7.4). After antigen retrieval in boiling 0.1M
citrate buffer (pH = 6.0), the tissue sections were placed
in humidity chambers and incubated with 4% BSA in PBS
for 2 h at room temperature. Then 1:400 1% BSA diluted γ-
H2AX primary antibody (Cat. No: ab26350, Lot. No: GR305763-
3, Abcam, USA) and isotope control Mouse IgG1 (Cat. No:
sc-3877, Lot. No: F1316, Santa Cruz, USA) was used. After
incubated with primary antibody overnight at 4◦C, testis

tissue samples were washed three times with PBS. Then the

samples were incubated with 1:500 diluted secondary antibody

(Alexa Fluor 594 (red)-conjugated Affinipure Donkey Anti-

mouse IgG (Cat. No. 715-585-150, Life Technologies, USA)
for 0.5 h at room temperature. And 1µg/mL DAPI (Sigma,

USA) to used to reveal nuclear DNA. After mounted in an
antifade solution (Cat. No. S36963, Life Technologies, USA),
tissue samples were observed using a confocal microscope
(LEICA, USA).

Statistical Analysis
Statistical analysis was performed using two-tailed
Student’s t-tests or one-way ANOVA followed by LSD’s
post hoc test (p < 0.05 was considered statistically
significant).

RESULTS

Knockout of Hepatic Cpr Aggravated
Testicular Injury Induced by LLDT-8
The dosage of LLDT-8 (0.5–1 mg/kg) in this study was

clinically relevant. Chronic administration of LLDT-8 did not

alter the body weight of WT and KO mice, but dose-
dependently reduced the testes (Figures 1A,B). The epididymis
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FIGURE 1 | Hepatic Cpr knockout aggravated LLDT-8 induced testicular injury. (A) Body weights of WT and KO mice; (B) Testis relative weight (absolute testis weight

vs. body weight); (C) Epididymis relative weight (absolute epididymis weight vs. body weight); H&E sections of the left testicle of WT (D) and KO (E) mouse (×10,

×40); Star: reduction of germinal layers; Asterisk: vacuolar degeneration; Arrow: abnormally developed spermatids. Significant difference was determined by one way

ANOVA, mean ±SD, n = 3, *p <0.05, ***p <0.001 vs. Saline group.

weight was not changed by LLDT-8 treatment LLDT-8 treatment

(Figure 1C). Compared to WT mice, the testes in KO mice
showed reduced germinal cell layers (Figures 1D,E, Star),
severe vacuolar degeneration (Figure 1E, asterisk) and absence
of spermatids development (Figure 1E, arrow). TUNEL assay

found the number of TUNEL positive foci in KOmice testis were
much higher than that in WT mice (Figures 2A,B) after LLDT-
8 weight after LLDT-8 treatment in WT mice, consistent with

another experiments using C57BL/6mice (Supplementary Figure
S1A). Noticeably, compared to WT mice with saline, TUNEL-
positive foci in the testes of WT mice with LLDT-8 treatment
apparently increased (Figures 2A,C).

LLDT-8 also induced hematological change and enlarged
spleen in KO mice (Supplementary Figure S2). LLDT-8 did
not cause liver injury and kidney damage (Supplementary
Figures S3, S4).
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FIGURE 2 | TUNEL assay of LLDT-8 induced testis injury. The paraffin-embedded testis sections of WT (A) and KO (B) mice were labeled with TUNEL reaction

mixture to distinguish the TUNEL positive cell (×10, ×40). Arrow: TUNEL positive cell. (C) Quantification of TUNEL positive cells. A significant difference was

determined by one way ANOVA, mean ± SD, n = 3, **p < 0.01, ***p < 0.001 vs. Saline group, #p < 0.05 vs. WT mice at the same dosage.

Inactivation of Hepatic CYP450 Increased
the Exposure of LLDT-8
WT and KO mice were treated with a single dose of LLDT-8
at 0.5/1.0 mg/kg by oral gavage. There is a significant increase
in half-life (1.9 folds to WT mice), Cmax (1.9 folds to WT
mice) and AUC (3.1 folds to WT mice) of LLDT-8 in KO
mice, accompanied by a marked decrease in the clearance,
compared to those in WT mice (Figures 3A,B; Table 2). LLDT-
8 levels in liver, kidney, testis, and epididymis of KO mice
were about 2–3 folds higher than those of WT mice at
30min following a dose of LLDT-8 treatment at 1.0 mg/kg
(Figure 3C).

Hepatic microsomes isolated from the liver of WT and KO
mice were used to identify the potential metabolites of LLDT-8.
Based on our previous findings on triptolide (Xue et al., 2011),
we hypothesized hydroxylation is an elimination route of LLDT-
8 in vivo. After 60 min-incubation, the recovered samples were
subjected to API400 QTRAP LC-MS/MS system, single ion
monitoring (SIM) with EMS/EPI scan mode was used to identify
LLDT-8 (Negative: m/z 375.1), mono-hydroxylated LLDT-8
(Negative: m/z 391.1). Two mono-hydroxylated metabolites M1

and M2 (m/z = 391.1) were identified in the microsomal
samples from WT mice, but not in those of KO mice
(Figures 3D–F). The response of mass spectrometric response
of M1 and M2 increased with the concentration of LLDT-
8 (Table 3). There were no di-hydroxylated metabolites of
LLDT-8 (m/z = 407.1) were identified in both WT and KO
mice.

To identify the CYP isoforms responsible for the
metabolism of LLDT-8, various selective inhibitors of
CYPs were employed (Figure 3G). The metabolism
of LLDT-8 was inhibited by aminobenzotriazole (a
broad CYP inhibitor), omeprazole (CYP2C19 inhibitor),
quinidine (CYP2D6 inhibitor), clomethiazole (CYP2E1
inhibitor) and ketoconazole (CYP3A4 inhibitor) in rat liver
microsomes.

LLDT-8 Decreased the Expression and
Changed the Distribution of γ-H2AX, a
Marker of Meiosis
To clarify the potential mechanisms of LLDT-8 induced testicular
injury in KO mice, we examined the expression and distribution
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FIGURE 3 | Levels of LLDT-8 in the blood, liver, kidney, testis, and epididymis of KO and WT mice following a single oral dose of LLDT-8. Levels of LLDT-8 in the

plasma from 0.5 mg/kg (A) and 1.0 mg/kg (B) group, and the LLDT-8 level in the liver, kidney testis, and epididymis (C) were determined by LC–MS/MS. ND, not

detectable; mean ± SD, n = 5 for each time point, **p < 0.01, ***p< 0.001 vs. WT 1.0 mg/kg, t-test. (D) LLDT-8 metabolites (M1 and M2, m/z 391.1) were detected

(Continued)
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FIGURE 3 | Continued

in the microsomal samples from WT mice. Mass spectrometry of metabolite M1 (E) and M2 (F) were characterized by fargments m/z 391.1-373.1. The retention time

and peak area of each metabolite were summarized in Table 3. Inhibitory effects of CYP inhibitors on the metabolism of LLDT-8 in rat liver microsomes (G). LLDT-8

(2µM) was incubated with rat liver microsomes for 0.5 and 1 h, the residual LLDT-8 was analyzed by LC-MS/MS, mean ± SD, all incubations were carried out in three

independent experiments in triplicate. #p < 0.05, ##p < 0.01, ###p < 0.001 vs. 0 h.

TABLE 2 | Pharmacokinetic parameters for plasma LLDT-8 in WT and KO mice.

T1/2(h) Tmax (h) Cmax(ng/ml) AUC ([ng/ml]×h) CL(L/kg/h)

LLDT-8 WT 0.31 ± 0.03 0.17 ± 0.00 29.95 ± 2.81 241.48 ± 30.64 4.13 ± 0.53

KO 0.59 ± 0.06*** 0.33 ± 0.11** 57.97 ± 8.28*** 753.52 ± 76.39*** 1.33 ± 0.12***

Plasma LLDT-8 levels after the administration of 1.0 mg/kg LLDT-8 were used to calculate pharmacokinetic parameters, including Cmax (the maximum concentration), Tmax (time to

reach Cmax ), AUC (area under the curve), T1/2 (the elimination half-life) and CL (oral clearance). Data are mean ±SD, n = 5. **p<0.01, ***p<0.00.1 vs. WT group.

of γ-H2AX, a marker of meiosis and XY body formation
in the testes of mice (Hamer et al., 2003; Noguchi et al.,
2008; Ahmed et al., 2013). In WT and KO mice with saline,
the nuclei distribution of γ-H2AX indicated the presence of
leptotene or zygotene spermatocytes, characterized by the ring-
like property of seminiferous tubules, which was reduced in
WT mice or even disappeared in the testes of KO mice after
LLDT-8 treatment (Figures 4A,B). The XY bodies indicated by
γ-H2AX foci (cloud like, yellow arrow) were normal in the
testes of WT and KO mice with saline, while decreased in the
testes of WT mice with 1.0 mg/kg LLDT-8 and disappeared
in the testes of KO mice treated with LLDT-8 (Figures 4E,F).
Immunoblotting also confirmed the reduction of γ-H2AX
protein level in the testes but not in the liver (Figures 4C,D).
These results strongly suggested that accumulated LLDT-8
may induce a severe meiotic block in the testes of KO
mice.

We also detected other germ cell markers in the testes of
WT and KO mice (Supplementary Figures S5, S6) and found a
marked decrease of Dazl (a marker for type B spermatogonia and
primary spermatocytes), Prm1 (a marker for spermatids) and a
mild decrease of Hspa2 in the testes of WT mice (Supplementary
Figure S5).

LLDT-8 Selectively Decreased RNA
Polymerase II of Spermatocytes
In spermatogenesis, the formation of RNA granule and specific
transcription activation at some genomic foci (including histone,
piRNA.etc) are entirely dependent on RNA Polymerase II
(Pol II) (Voronina et al., 2011; Pandey and Pillai, 2014). In
KO mice, LLDT-8 decreased Pol II protein in the testes and
did not change its level in the livers (Figures 5A,B). In WT
mice, the expression of Pol II in the testes and liver did
not change significantly (Figures 5A,B). Three immortalized
germ cell lines derived from mouse testes, spermatogonia-
like GC-1spg, Sertoli-like TM4, and spermatocyte-like GC-
2spd were used to evaluate the effects of LLDT-8. LLDT-
8 dose- and time-dependently reduced Pol II protein in
GC-2spd cells, but not in GC-1spd and TM4 cell lines
(Figures 5C–E).

LLDT-8 Did Not Lessen the Expression of
AR-Related Genes in Sertoli Cells
Spermatogenesis is tightly regulated by androgen from Leydig
cells and androgen receptor (AR) signaling in Sertoli cells
(SCs) (Tan et al., 2005). Here, we selected AR-dependent
two genes: Rhox5 and Cldn11 as the key indexs of AR-
related signaling in sertoli cells (Willems et al., 2010). We
also selected AR-independent three genes: Cst12, ABP and
FABP as the indexs of sertoli cell function (Johnston et al.,
2004; Li et al., 2005; Tan et al., 2005). LLDT-8 treatment
did not reduce the expression of all these genes including
AR in the testes of WT mice (Figures 6A–F), while increased
the expression of Cldn11, Cst12 and FABP, particularly in
1.0mg/kg group.

DISCUSSION

Many efforts have been made to modify triptolide and overcome
three major problems: low solubility, toxicity and tissue
accumulation (Zhou et al., 2012). One of the outcomes is LLDT-8,
(5R)-5-hydroxytriptolide, which shows a favorable safety profile
and is well-tolerated in Phase I and II clinical trials in a
female population (Supplementary Figure S1). The testicular
injury is the major adverse effects in male rodents and dogs
(data not shown). As the sole triptolide derivative entering
Phase II clinical trial, it’s well deserved to clarify the potential
contribution of the pharmacokinetics of LLDT-8 to its toxicity,
which will be helpful to its Phase III clinical trial in various
populations.

Compared to triptolide, LLDT-8 has better pharmacokinetics

properties than those of triptolide: lengthened Tmax and
non-cumulative property (Xue et al., 2011). Unlike triptolide
(Xue et al., 2011), LLDT-8 did not induce hepatotoxicity

in the liver of KO mice, while attenuating the liver injury
caused by hepatic Cpr knockout (Supplementary Figure S3).

Hepatic Cpr knockout inhibits Cyp51 activities, a key
enzyme of cholesterol synthesis, interferes hepatic lipid
metabolism and induces hepatocytes injuries (Lorbek
et al., 2015). Thus, LLDT-8 has a wider therapeutic
window.
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TABLE 3 | Metabolite characteristics and abundances of LLDT-8 generated in liver microsomal incubations.

Metabolite m/z Retention Time (min) Metabolite peak ia (counts)

LLDT-8 (50µM) LLDT-8 (25µM) LLDT-8 (12.5µM)

M1 391.1 15.98 1.47E+08 6.63E+07 4.69E+07

M2 391.1 17.63 6.54E+07 3.61E+07 1.59E+07

LLDT-8 375.1 18.49 – – –

Potential mono-hydroxylated metabolites (m/z 391.1) were identified by single-ion monitor method with API4000 QTRAP LC-MS/MS. The samples recovered from the incubation of

LLDT-8 in liver microsomes fromWT and KOmice were subjected to LC-MS/MS. The retention time and peak area of each metabolite were summarized here. M1 and M2 were detected

at three LLDT-8 concentration levels, and their mass spectrometric response levels (Metabolite peak area) increased with increasing LLDT-8 concentration (12.5–50µM).

FIGURE 4 | LLDT-8 dose-dependently decreased γ-H2AX in testis but not in liver. The localization of γ-H2AX in the testes of WT (A,E) and KO (B,F) mice were shown

(A,B ×20, Scale bar: 100µm; E,F ×63, Scale bar: 20µm); The protein level of γ-H2AX in the testes (C), liver (D) of WT and KO mice. Yellow arrow heads indicated

leptotene or zygotene spermatocytes marked by the nuclei distribution of γ-H2AX, and the yellow arrows pointed the XY bodies in the process of meiosis. The protein

level was quantified with ImageQuant software (C,D). Beta-Actin was used as a loading control. Significant difference was determined by one way ANOVA, mean ±

SD, n = 3, *p<0.05, ***p<0.001 vs. Saline group (0 mg/kg).

Hydroxylation via CYP450s and the subsequent
glucuronidation, sulfation, and glutathione conjugation is
the primary phase I/II elimination pathways of triptolide

(Du et al., 2011). We only found positive signal of potential
mono-hydroxylated metabolites of LLDT-8 (m/z: 391.1) in WT
mice, actively supporting the role of hepatic cyp450s in the
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FIGURE 5 | LLDT-8 decreased RNA Pol II in vivo and in vitro. The protein levels of Pol II were detected by western blot in the testes (A), liver (B), spermatogonia-like

GC-1spg cells (C), sertoli-like cells (D) and spermatocyte-like cells (E). The protein level was quantified with ImageQuant software. Beta-Actin was used as a loading

control. Significant difference was determined by one way ANOVA, mean ± SD, n = 3, *p < 0.05, **p < 0.01, ***p < 0.001 vs. control group.

FIGURE 6 | LLDT-8 did not reduce the expression of AR-related genes in sertoli cells. AR (A), Rhox5 (B), Cldn11(C), Cst12 (D), ABP (E), and FABP (F) were

determined by qPCR. Mean ± SD, n = 3, *p < 0.05, ***p < 0.001 vs. control group (0mg/kg, Saline group).
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hydroxylation of LLDT-8. Under the context of inactivation
of hepatic cyp450s, two pathways may be responsible for the
clearance of LLDT-8 in KO mice. Firstly, glucuronidation et
al phase II metabolism may be responsible for the elimination
of LLDT08; Secondly, the remnant 5% the hepatic cyp450s
activity via cytochrome b5 as electron donor may also promote
the elimination of LLDT-8 in KO mice (Riddick et al., 2013).
Hydroxylation decreased the bioactivity of triptolide (Li
et al., 2009). It is reasonable to deduce that hydroxylation
could subdue the activities of LLDT-8. Our recent work
has excluded the potentiality of hydroxylation at position
6 and 20 on LLDT-8. More work is needed to confirm the
exact hydroxylation sites on LLDT-8. Additionally, chemical
inhibition assay showed that Cyp3a, Cyp2c, Cyp2d and
Cyp2e1 may be the main CYP450 isoform responsible for
the metabolism of LLDT-8 in the liver of rodents. Here,
clomethiazole, an inhibitor of Cyp2e1 seems to completely
inhibit the metabolism of LLDT-8, which may be due to its
less inhibition on other Cyp450s including Cyp2c and Cyp3a
(Stresser et al., 2016).

Serine 139 phosphorylation H2AX (γ-H2AX), a marker for
DNA double-strand-breaks, distributes mainly at the leptotene,
zygotene, pachytene, diplotene stages of spermatocytes, and
indicates the meiotic process, synapsis and XY body formation (a
γ-H2AX-positive foci) (Rogakou et al., 1998). RNA polymerase II
is essential for the formation of RNA granules in spermatogenesis
(Pandey and Pillai, 2014). In this study, LLDT-8 decreased the
protein levels of γ-H2AX and RNA pol II in the testes of KO
mice. It was a reasonable assumption that the reduction of γ-
H2AX and Pol II in the testes of KO mice might be due to
the loss of germ cells. Here, we observed a noticeable reduction
of γ-H2AX by immunofluorescence, but no apparent loss of
spermatocytes in many seminiferous tubules. Thus, we suggested
that LLDT-8 may disrupt meiosis by decreasing Pol II and γ-
H2AX in KO mice, then induce the spermatocytes apoptosis.
In WT mice, immunoblotting did not find a statistically
significant reduction of γ-H2AX and Pol II in the testes
of WT mice, but the reduction of γ-H2AX in the testes of
WT mice was up to 40%. As a derivative of triptolide, LLDT-
8 may induced transcription arrest through two mechanisms:
(1) LLDT-8 covalently binds XPB, inhibits its DNA-dependent
ATPase activity (IC50: 2,900 nM), and leads to the inhibition
of Pol II-mediated transcription (Titov et al., 2011); (2) LLDT-
8 may trigger CDK7-dependent degradation of Pol II (Manzo
et al., 2012). Thus, the reduction of γ-H2AX by LLDT-8 and
potential transcription inhibition via XPB binding may mediate
the mild but significant damage in the testes of WT mice.
Additionally, unlike the normal spermatogenesis in vivo, GC-
2spd and GC-1spg cell lines are absent of the meiosis process,
and the genome is intact under normal culture condition.
The increase of γ-H2AX induced by LLDT-8 in vitro may be
due to the DNA damage caused by LLDT-8 (Supplementary
Figure S7).

In our study, histology investigation did not find any
abnormality in Leydig cells. Importantly, LLDT-8 treatment
could not reduce the expression of AR-dependent and
independent genes in sertoli cells. In special, Rhox5, a lead
gene for searching SCs and a major androgen response gene,
was not influenced by LLDT-8 treatment, strongly supporting
that AR-related signaling may be not involved in the testis injury
of LLDT-8 (Supplementary Figure S8). We used mouse testis
derived GC-1spg (spermatogonia-like), TM4 (Sertoli cell-like)
and GC-2spd (spermatocyte-like) in vitro. Some previous
reports have shown that GC-2spd cells are more sensitive to
apoptosis (McKee et al., 2006; Lizama et al., 2011; Qi et al.,
2016). Here, the selective reduction of RNA Pol II by LLDT-8
in GC-2spd cells may partly explain this sensitivity difference.
However, the detailed mechanisms for this selectivity are still
unclear.

In summary, our results indicate that hepatic P450s
inactivation can influence the pharmacokinetics and distribution
of LLDT-8 in vivo and may increase the risk of LLDT-
8-induced testicular toxicity. Inactivation or inhibition of
P450s is often caused by genetic polymorphism and drug–
drug interactions, which contribute to individual differences
in xenobiotic metabolism and drug toxicity. Personalized
prescription based on the blood concentration could be
employed to maximize the therapeutic efficacy of LLDT-8 and
reduce its adverse effects in the clinic use, especially in therapies
that other drugs with P450 inhibitory property must be utilized
along with LLDT-8.
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