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A B S T R A C T   

Primary spontaneous pneumothorax (PSP) primarily affects slim and tall young males. Exploring 
the etiological link between chest wall structural characteristics and PSP is crucial for advancing 
treatment methods. In this case-control study, chest computed tomography (CT) images from 
patients undergoing thoracic surgery, with or without PSP, were analyzed using Artificial Intel-
ligence. Convolutional Neural Network (CNN) model of EfficientNetB3 and InceptionV3 were 
used with transfer learning on the Imagenet to compare the images of both groups. A heatmap 
was created on the chest CT scans to enhance interoperability, and the scale-invariant feature 
transform (SIFT) was adopted to further compare the image level. A total of 2,312 CT images of 
26 non-PSP patients and 1,122 CT images of 26 PSP patients were selected. Chest-wall apex pit 
(CAP) was found in 25 PSP and three non-PSP patients (p < 0.001). The CNN achieved a testing 
accuracy of 93.47 % in distinguishing PSP from non-PSP based on chest wall features by iden-
tifying the existence of CAP. Heatmap analysis demonstrated CNN’s precision in targeting the 
upper chest wall, accurately identifying CAP without undue influence from similar structures, or 
inappropriately expanding or minimizing the test area. SIFT results indicated a 10.55 % higher 
mean similarity within the groups compared to between PSP and non-PSP (p < 0.001). In 
conclusion, distinctive radiographic chest wall configurations were observed in PSP patients, with 
CAP potentially serving as an etiological factor linked to PSP. This study accentuates the potential 
of AI-assisted analysis in refining diagnostic approaches and treatment strategies for PSP.   

1. Introduction 

Commonly afflicting young men between the age of 15–25 years, primary spontaneous pneumothorax (PSP) occurs with an 
incidence rate as high as 7.4–18 per million men [1]. In many instances, small pneumothorax may resolve on their own, and in-
dividuals may not require extensive medical intervention [2]. However, the severity of PSP can vary, and larger pneumothorax may 
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cause more significant respiratory distress. Rarely, a tension pneumothorax, where air accumulates and progressively compresses the 
lung and mediastinum, can lead to life-threatening complications [3,4]. Pneumothorax may be spontaneous, traumatic, or iatrogenic 
in nature. Spontaneous pneumothorax occurs without an outside force, and PSP occurs without any underlying diseases [5,6]. 

With the advances in surgical optical resolution and instrumentation, all the ruptured lung cases in PSP can be identified at the 
apical area of the chest cavity, including the apex of the upper lobe and the superior segment of the lower lobe of the lung [7]. In a 
previous study, chest wall deformity was found to be linked to PSP [8]. In addition, our previous report on the association of vascular 
penetration defects (VPD) and PSP was among the first in medical literature to describe the etiological relationship between chest-wall 
structural defects and PSP [9]. Nevertheless, only nine of 22 patients in the study had VPD, indicating that VPD could not explain most 
of the PSP incidence. It was further confirmed in a recent study where similar structural defects were present in 45 of 297 patients 
(15.2 %) [10]. In recent clinical observations, the presence of a chest-wall apex pit (CAP) has been identified as a noteworthy phe-
nomenon replacing VPD. In this study, our primary objective is to investigate and establish a potential etiological link between specific 
chest wall structural characteristics, particularly CAP, and the occurrence of PSP. 

Current advances in artificial intelligence (AI) and deep learning have enabled computer algorithms to detect subtle patterns in 
medical imaging that may escape human recognition. The cutting-edge development of deep learning technology has helped alert 
clinicians when abnormalities are detected on chest radiographs [11–13]. Briefly, gradient-based learning was applied to the image 
reorganization to extract features from images, which proceeded to the next volume base for further feature extraction [14]. 
Accordingly, the learning efficiency of the neural network was enhanced compared to traditional image recognition. General appli-
cations of neural networks possess a higher learning efficiency and can potentially become the foundation of several AI models in the 
future. In particular, convolutional neural networks (CNNs) can be trained to identify visual features associated with specific diseases 
or outcomes using large labeled datasets; it has been used to detect pulmonary nodules [15]. 

Utilizing these AI methodologies for the examination of chest CT scans has the potential to unveil previously unrecognized 
radiographic indications associated with the onset of PSP. This is particularly crucial as such anomalies are challenging for medical 
professionals to quantify without a standardized model for distinguishing abnormalities in the chest wall. Determining structural 
factors associated with PSP holds great clinical significance, as this could point to new strategies for treatment and prevention in 
susceptible individuals. This study employs AI-powered image recognition to uncover potential chest wall abnormalities that may 
represent an important etiological discovery in PSP. 

2. Study design and methods 

2.1. Study design 

In this retrospective study, participants were categorized into two groups: the PSP group and the non-PSP group. The PSP group 
consisted of patients who underwent thoracic surgery at a medical center in central Taiwan during the years 2020 and 2021. The non- 
PSP group comprised individuals who received thoracic surgery in the year 2021 and were specifically selected for their younger age to 
as closely match the age range of the PSP group as possible. The subject and control were matched 1:1 with age. Inclusion criteria 
encompassed patients from both groups who underwent thoracic surgery within the designated timeframe and possessed preoperative 
chest CT images. Exclusion criteria were applied to exclude patients with secondary spontaneous pneumothorax resulting from un-
derlying lung disease, traumatic or iatrogenic pneumothorax, a history of prior thoracic surgery, and instances where imaging artifacts 
or poor image quality precluded rigorous analysis. The diagnostic criteria for PSP involved clinical presentation and radiographic 
evidence of pneumothorax without an identifiable cause. The control group, consisting of non-PSP patients, underwent thoracic 
surgery for reasons such as lung cancer resection. The most recent preoperative CT images for each patient were scrutinized, with those 
displaying significant motion artifacts or inadequate image quality being excluded from the analytical process. 

2.2. Chest-wall apex pit 

All the blebs that occurred in structural defects were named the chest-wall apex pit (CAP, Fig. 1A–C). CAP was defined as a convex 
area surrounded by the first or second rib and mainly by the subclavian artery. Structurally, the apex of the chest wall was smoothly 

Abbreviations 

AI artificial intelligence 
BB Bleb and bullae 
CNN Convolutional Neural Network 
CAFAP Chest-wall apex fat pad 
CAP Chest-wall apex pit 
ELC emphysematous-like change 
PSP Primary spontaneous pneumothorax 
SIFT Scale-invariant feature transform 
VPD vascular penetration defect  
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rounded in shape in individuals without PSP but was irregular with inward sharp angle pits at the apex among PSP patients. The 
computed tomography (CT) of the patients with and without PSP was reviewed by a thoracic surgeon. The demography and the CAP 
were collected. CAP identification was performed through a round of CT image review by two thoracic surgeons blinded to any clinical 
information. 

2.3. Convolutional neural network (CNN) 

This study used the CNN-based binary classification models to identify CAP. The establishment of the model was divided into two 
stages: data preprocessing and CNN model training, as shown in eAppendix. 

Data preprocessing was performed as illustrated (eFig. 1). Multiple images per patient were used, leading to a larger overall sample 
size for model development. Patients were selected for training, validation, and testing randomly. The testing was done before and 
after the data augmentation. “Data Filtering” coronal views were selected as ten approximately 5 mm images around the level of the 
aorta, capturing complete chest wall contours. Air was erased from the images; only the chest wall and great vessels were retained. We 
also performed data augmentation techniques, including rotation, flipping, noise addition, and brightness variation, to increase the 
size of the dataset and make the model more robust [16,17]. 

Preprocessed chest CT images underwent CNN model training, validation, and testing. In this study, EfficientNetB3(Google, 
Mountain View, California) [18] and InceptionV3(Intel Corporation, Santa Clara, California) [19] were used for feature identification 
of PSP and, through transfer learning, the model parameters were trained on the ImageNet [20] (Stanford Vision Lab, Stanford, CA) 
dataset and were used as the initial parameters of the models. 

EfficientNetB3 architecture was a new benchmark network proposed by Google. The model applied a new network scaling method 
that uniformly scaled the network depth (number of network layers), width (number of channels), and image resolution (input image 
size) using compound coefficients to scale within a fixed resource limit and achieve higher accuracy. The network architecture diagram 
can be found at Towards Data Science [21]. 

The network architecture of InceptionV3 can be found at Intel [22]. The most significant improvement in its model architecture was 
factorization, which decomposed the 7 × 7 and 3 × 3 convolutions into four (two each) one-dimensional convolution series (1 × 7 and 
7 × 1) and (1 × 3 and 3 × 1), respectively. This not only speeds up the calculation but also further increases the nonlinearity of the 

Fig. 1. The formation of the bleb in the chest wall apex pit. 
A. The chest wall of a PSP patient. The prominent subclavian artery and 1st rib encircled a convex area at the apex of the chest wall. The corre-
sponding CT scan on the right upper side showed the same pit. The chest-wall apex pit (CAP) was encircled. The right middle picture is a 3D lung 
image showing an abnormal extra-growth project from the smooth round normal part of the lung which herniated into the CAP, modeling the 
correspondent chest wall on the right upper coronal CT. The insert at the lower right confirms that the blebs fit into the CAP. 
B. The chest wall apex of a 165 cm 67 kg male. The area circled by the 1st and 2nd rib was cushioned with chest-wall apex fat pad (CAFAP). The 
subclavian vessels and rib hid in the fat. The chest wall surface was smooth. 
C. A resected ELC lung was found with bleb. The lung above the clamp was fragile, whereas below the clamp showed an ELC. BB denotes the original 
bleb. Arrowhead, the bleb just generated due to the grasp of the ring clamp, where one bleb was produced in the ring. CAP, chest wall apex pit; SA, 
subclavian artery; SC, sympathetic chain; VPD, Vascular penetration defect; VV, Vertebral Vein. 
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network. 
Transfer learning is a machine learning method that transfers knowledge from one domain (source domain) to another (target 

domain) so that the target domain can achieve better learning effects [22,23]. The CNN network structure found in the preliminary 
selection of this study has been pre-trained in the ImageNet image data set, thus greatly improving the training efficiency of this study 
[20]. 

2.4. Valuation indicators of measurement of classification performance 

The true and false positive and negative rates were calculated, respectively. The indicators of performance measurement in CNN 
classification included accuracy, precision (positive prediction value), recall (sensitivity), and F1-score (1 = perfect). These indicators 
are used to measure the performance of the model in identifying CAP accurately [24]. 

2.5. Interpretability validations 

2.5.1. Heatmap 
To further verify whether the model can accurately capture the lesion features of the data, this study extracted the CNN attention 

features and used the heat map visualization method [17]. 

2.5.2. Chest wall similarity comparison by the scale-invariant feature transform 
The feature point extraction method, scale-invariant feature transform (SIFT), is an algorithm for detecting local features [25–27]. 

Dr. Lowe proposed this method to identify extreme values in the spatial scale point and to find out the position, scale, and orientation 
information of the extreme point [28]. In the field of image recognition, local features can be used to help identify objects through 
description and detection. The features extracted by SIFT were so prominent that accurate detection results could be achieved even in 
variable angles of view, distances, rotations, and color temperatures, which can subsequently be applied to robot map perception and 
navigation, impact stitching, 3D model building, gesture recognition, and image tracking. 

2.6. Image preprocessing 

The drawing software Labelme [29], was used to mask the lungs (air) and left chest wall specifically to avoid the feature extraction 
method SIFT used in the subsequent comparison methods from capturing excessive and unnecessary image features, as shown in 
eFig. 2A. Each datum was pre-processed, reconstructed by LabelMe using three-dimensional images, converted into a 2-dimensional 
image, and underwent grayscale data preprocessing [16], as shown in eFig. 2B. 

2.7. Scale-invariant feature transform of the chest wall 

The scale-invariant feature transform of the chest wall was evaluated using structural similarity comparisons categorized into PSP 
versus non-PSP, PSP versus PSP, and non-PSP versus non-PSP. In the case of PSP versus non-PSP, the comparisons were conducted 
sequentially, starting with PSP 1st versus non-PSP 1st, 2nd, 3rd; followed by PSP 2nd versus non-PSP 2nd, 3rd, 4th, and so forth, 
resulting in a total of 30 comparisons. Similarly, for PSP versus PSP and non-PSP versus non-PSP, the comparisons involved pairs such 
as 1st versus 2nd, 3rd, 4th; 2nd versus 3rd, 4th, 5th, and continued up to the 30th comparison, ensuring a systematic and compre-
hensive analysis. 

3. Results 

Several demographic factors varied between the PSP and non-PSP patients. Firstly, the mean age of PSP patients was lower than 
that of the non-PSP group. Secondly, higher male-to-female percentage of participants was found in the PSP group, compared to the 

Table 1 
Demography of patients with and without primary spontaneous pneumothorax.   

PSP non-PSP P  

N/mean %/SD N/mean %/SD   

26  26   

Age 23.5 8.4 35.9 2.7 <0.001a 

Gender (M/F) 21/5 80.8/19.2 13/13 50/50 0.021a 

Height (cm) 172.3 8.3 166.8 8.1 0.019a 

Weight (kg) 55.8 9.3 68.3 13.3 <0.001a 

BMI 32.3 4.4 40.8 6.6 <0.001a 

Smoking 4 15.4 2 7.7 0.385 
CAP 25 92.2 3 11.5 <0.001a  

a P < 0.05. 
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non-PSP group. Thirdly, the BMI indicated that PSP patients were more underweight. Additionally, surgeons verified one PSP without 
CAP and three non-PSP with CAP on CT. The complete patient demographic profile is shown in Table 1. 

The dataset had a total of 3,434 thoracic image datasets, in which the data were divided into two categories: 26 non-PSP patients 
with a total of 2,312 images and 26 PSP patients with a total of 1,122 images. Data filtering operations were conducted to lay a good 
foundation for model training. Consequently, 237 and 218 coronal images with complete chest contours were selected from non-PSP 
and PSP patients, respectively. After filtering out images that did not match the criteria set by our research team, we randomly divided 
and assigned patients into training, validation, and testing datasets for both PSP and non-PSP (eTable 1A). We adjusted the assignment 
until the number of images in training, validation, and testing datasets matches 8:1:1 ratio before the augmentation process. From the 
218-PSP dataset, 4 patients were randomly selected with a total of 22 and 22 images for validation and test. From the 237-non-PSP 
dataset, 5 patients were randomly selected with a total of 23 and 24 images. This approach avoids using same patients’ data be-
tween training set, validation set, and test set while ensuring appropriate ratios across each set. The data augmentation included flat 
flip, Gaussian noise, filtering, brightening and darkening once each, and rotating every 24◦ for a total of 15 times. In addition, the non- 
PSP category was enhanced by 20 times to 4,740 images and PSP category was enhanced by 20 times to 4,360 images. The data 
augmentation is shown in eFig. 1. 

eTables 1B and C showed the recorded hyperparameter combinations and orthogonal table results of EfficientNetB3 model 
training. In this study, five factors were selected for parameter optimization, and each factor contained four levels, resulting in a total 
of 1,024 experimental groups and sums. To save the experiment time and ensure that the optimal parameter results were found, the L16 
orthogonal table was used according to the Taguchi method. As shown in eTable 1B, the unified size of the picture input was 300 ×
300. The model training material included 7,280 CT images of the training data set, using the environment of Python 3.7 and Ten-
sorflow 1.15 on Win 10, Intel Core i5-8400 2.8 GHz CPU, NVIDIA GeForce RTX 2080 Ti GPU computer, training for 50 rounds, and 164 
pictures per round, which lasted approximately 4.5 h. 

eTable 1A, B also demonstrate the hyperparameter combination and orthogonal table results trained by the InceptionV3 model, 
with uniform input image size, and the image sequence randomized and divided repeatedly according to the ratio. The model training 
materials included CT images of 7,372 training data sets, training for 50 epochs lasting approximately 4.5 h. 

The true positive/negative and false positive/negative rates, described in Table 2, recorded the classification between PSP and non- 
PSP results of the CNN models after training on the test data set. Overall, the EfficientNetB3 model achieved an accuracy of 93.47 % 
and an F1-score of 93.32 % on the 46-test set. In light of the small size of the test set, a Receiver Operating Characteristic (ROC) curve 
was employed to investigate the impact of this size limitation. With an ROC curve area of 0.936 and a significance level of p < 0.001, it 
can be concluded that the model has successfully developed a dependable PSP classification system. After augmentation, the Effi-
cientNetB3 model achieved an accuracy of 95.60 % and an F1-score of 95.84 % on the 903 CT coronal imaged tested exceeding the 
performance of InceptionV3. 

The heatmap revealed that the CNN model specifically targeted the upper part of the chest wall while distinguishing the PSP/non- 
PSP, further suggesting that the CNN model could effectively capture the lesion features and their location correlation (Fig. 2). 

An example of a similarity comparison between PSP and non-PSP is demonstrated in eFig. 3. The comparison results of the two 
groups, such as the average similarity between PSP and non-PSP images, are shown in Table 3. The mean similarity of the within-group 
comparison was almost 60 %, which was higher than those of the between-group comparison with approximately 50 % similarity; the 
mean similarity for the within-group was about 10.55 % higher than that of the between-groups, with p < 0.001 in student’s inde-
pendent t-tests. 

4. Discussion 

This is the first study to demonstrate the marked structural difference in the chest wall of patients with and without PSP. The CAP 
was found in all except one of PSP, in contrast to three of 26 non-PSP, patients. The EfficientNetB3 CNN correctly depicted the dif-
ference in the chest wall structure between PSP and non-PSP patients with an accuracy of 93.47 %. The heatmap showed that the 
differences in the CNN workings were in the apex area. The SIFT further confirmed the structural differences in the visible image level, 
where the images were similar within each group with or without PSP and were different between the PSP and non-PSP groups. This 
observation was more prominent in the lung apex, and the findings provide solid evidence of the distinct chest wall structures of PSP, 
as identified by CAP. 

The etiology of PSP remains unclear. Based on previous studies, three factors were considered possible causes of PSP, i.e., 

Table 2 
Testing results of PSP classification performance by CNN models.  

Model TP TN FP FN Accuracy Precision Recall F1-score 

EfficientNetB3 
Non-augmented 

21 22 2 1 0.9347 0.9130 0.9545 0.9332 

EfficientNetB3 
Augmented 

426 444 11 26 0.9560 0.9748 0.9425 0.9584 

InceptionV3 
Augmented 

414 427 28 41 0.9242 0.9367 0.9099 0.9231 

TP, TN, FP, FN: true positive, true negative, false positive, false negative. Precision = specificity. Recall = sensitivity. 
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inflammation, emphysematous-like change (ELC), and bleb/bullae (BB) formation. Hypoxia, inflammation, and apoptosis were found 
in the PSP resected tissue with macrophages, lymphocytes, interleukins, tumor necrotic factors, and post-inflammatory fibrosis [6,30]. 
Accordingly, the overexpression of matrix metalloproteinases could only partially explain the occurrence of PSP [31]. Therefore, in 
patients with PSP, an inflammatory change with mesothelial cell disruption was observed, potentially creating an ELC and developing 
BBs; however, the cause of inflammation has not yet been established. 

BBs were found to have a high correlation with PSP incidence [5–7,32]. BBs predicted recurrent pneumothorax with a positive 
predictive value of 68.1 %, a negative predictive value of 93.9 % for ipsilateral, a positive predictive value of 19 %, and a negative 
predictive value of 100 % for contralateral [33]. Blebs (Reid type 1 bulla) are defined as air in the visceral pleura separating the lamina 
elastica externa and interna and are the most frequently found among non-smoker PSP patients [34]. The mesothelial cells were 
disrupted and replaced by inflammatory and fibrotic cells. 

One of the major findings of surgery and pathology in PSP is the ELC at the apex of the lung, which can explain some of the cases 
where no bleb was noted [5–7,35]. Smoking is the primary etiology of emphysema, but for non-smoking PSP patients, the etiology is 
indeterminate. Under pathological examination, emphysematous changes occur around the BB. A previous study revealed that blind 
resection of the apex area without BB did not prevent further recurrence [36]. An air leak site occurs without often being observed 
during surgery. Noppen et al. examined the air leak area and found that not all were located at BBs [37–39]. In some cases, the in-
flammatory reaction disrupted the mesothelium without forming the bleb with a pore diameter of 10–20 μm in the visceral pleura [5,6, 
39]. A staple line recurrent BB was noted in 16 of 30 recurrent post-operative PSPs [40], possibly indicating the weakness and 
traumatic nature of the staple line on the ELC area that could trigger a new BB formation. 

PSP occurs commonly among tall and lightweight males [35], especially in those with a height increase that was ahead of the body 
weight at the age of 11–14 years, with taller, narrower, and flatter thoraces [41]. The difference in the body configuration growth 
might have created a structural difference at the apex of the thoracic cage and affected the CAP. Because of low BMI, the chest-wall 
apex fat pad (CAFAP) was minimal in these patients and the ribs and vessels were protruded in the pleural cavity, where abnormalities 
frequently occurred (eFig. 4). On the other hand, females of the same age have, on average, more fat than their male counterparts, 
which may explain the gender difference in the incidence of PSP. As age increases, the BMI and the fat, including CAFAP, increase, 
providing a plausible explanation for the decreased CAP and incidence of PSP among older individuals. Furthermore, the VPD is also 
concentrated in the CAP and absent in other areas; hence, the vessel penetrates the chest wall in the absence of a CAFAP cushion, 
precipitating a hole. The relationship of chest wall deformities and pneumothorax has been previously established [8,42,43]. Contrary 
to previous assumptions, this study proposes that VPD may not be the primary cause of PSP; rather, CAP emerges as a potential culprit. 
The strong correlation observed between VPD and PSP may be attributed to a shared factor—the absence of the CAFAP cushion. This 

Fig. 2. The heatmap of non-PSP and PSP. B. The CNN working area was concentrated at the apex of the chest wall. A and B represent images from 
two different patients. 

Table 3 
Comparison of similarities of SIFT.   

mean SD P 

PSP vs. non-PSP 48.6 5.1 <0.001a 

PSP vs. PSP 59.2 2.6 0.900 
non-PSP vs. non-PSP 59.1 2.7  

a P < 0.05, unit: percentage. 
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perspective offers a nuanced understanding, suggesting that CAP, rather than VPD, may play a pivotal role in the development of PSP, 
with the association to VPD arising from a common root cause, the deficiency of the CAFAP cushion. BB were observed in 26.5 % of 
cases with an elevated Haller index in individuals with pectus excavatum, demonstrating a bleb formation odds ratio of 2.221 (95 % 
confidence interval 1.481–3.330, p < 0.001) [8]. 

The apex of the lung sustains the most negative pressure, with an associated expanded alveolar space, where ELC and BB occur 
[44]. This may explain the anteriorly located BB among bedridden patients [45]. In cases where the chest wall is not smooth with a pit 
in the chest wall, upon negative pleural pressure, the lung will “balloon” to fit the CAP, which may lead to further abnormalities. As 
described by Yang et al. [46], the lung apex might be strangled in the CAP, and the trapped part would be desynchronized with other 
parts of the lung in respiratory movement. This would induce shearing forces and stretch injuries, resulting in inflammation. Stretch 
injury theory has not been mentioned in pneumothorax but in ARDS, as it causes physical injury and inflammation [47]. Cyclic 
stretching and opening/closing of the alveoli physically detach the cells from the basement membrane, leading to cell death and the 
potential damage of fluid circulation and induction of proinflammatory cytokines and chemokines. Consequently, compensatory 
emphysema may occur, which overinflates a part of the lung in response to either surgical removal or decreased size of another part of 
the lung. The apex of the lung herniates to CAP, and the extra space induces compensatory emphysema. The lung is protected from 
vigorous respiration movement against the chest wall since friction happens between the two layers of the pleura where a lubricant is 
present [48]. Subsequently, friction of the trapped lung to the chest wall increases due to the irregularity of the chest wall and less 
pleural fluid due to gravity. The prominent subclavian artery provides vibration at this fixed lung, which may cause abrasion injury to 
the emphysematous lung that forms blebs. Furthermore, the strong negative pressure of the apex and the inflammatory lung may trap 
air in the herniated lung, similar to that in ELC and BB. This pathogenesis explains the occurrence of inflammation, ELC, and BB among 
patients with PSP. The body configuration, gender difference, and reason for the association of chest wall deformity with PSP were also 
answered. 

In our CNN model, the accuracy of the PSP prediction was 96.94 %; however, the CT from the EfficientNetB3 model may further 
predict the risk of PSP. This evidence may warn young people with similar chest wall structures. According to this critical finding, an 
ongoing novel surgical design aims to prevent the recurrence of PSP. 

The relatively small sample size is a limitation of our study and confirmation in larger cohorts is warranted. Machine learning 
techniques can be trained better with a larger size dataset, despite the fact that these images originated from the same source. 
Augmentation also allows the model to perform well under different image conditions. Importantly, the model demonstrated high 
accuracy not just on the training data but also on the held-out test set, supporting its generalizability. The study also acknowledges the 
potential for confounding arising from uneven matching between the PSP and non-PSP groups. Specifically, it has been observed that 
male, young, tall, and thin individuals are at a higher risk of developing PSP. The non-PSP group was carefully selected based on age, 
with a preference for younger individuals. However, despite these efforts, there remains a notable age difference of 12.5 years between 
the PSP and non-PSP groups, along with variations in other traits. The limited availability of young non-PSP patients who have un-
dergone thoracic surgery contributes to this imbalance and explains the observed skew in age distribution. Nonetheless, the mean 
similarity for the within-group was about 10.55 % higher than that of the between-groups, with p < 0.001, which further supports that 
the influence of biases in this study was minimal. 

For future investigations, a chest wall deformity model inducing bleb and PSP should be established in animals or in a phantom to 
test the hypothesis directly. Additionally, the structure of the thoracic cage should be studied according to sex since 80 % of PSPs were 
detected in males [49], who could have proportional differences in the CAFAP. PSP is noted to be rare among those aged 30 and above. 
Therefore, a cohort study could follow the thoracic cage structures of PSP patients and identify structural changes to further establish 
visceral pleural thickening according to age. 

With the use of Artificial Intelligence processes such as CNN, heatmap, and SIFT, the radiographic chest wall structure of patients 
with PSP was found to be different from those without, with the presence of CAP and possible VPD. These chest wall abnormalities may 
be an important structural etiological factor for PSP. Hence, the detection of CAP on chest CT should warrant a keen watch out for the 
occurrence of PSP. Furthermore, the findings of this study also point to the future development of potential treatment modalities to 
prevent the recurrence of PSP. 
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