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Abstract
The overexpression of urokinase-type plasminogen activator receptor (uPAR) is associ-

ated with inflammation and virtually all human cancers. Despite the fact that docosahexae-

noic acid (DHA) has been reported to possess anti-inflammatory and anti-tumor properties,

the negative regulation of uPAR by DHA is still undefined. Here, we investigated the effect

of DHA on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced uPAR expression and

the underlying molecular mechanisms in ECV304 human endothelial cells. DHA concentra-

tion-dependently inhibited TPA-induced uPAR. Specific inhibitors and mutagenesis studies

showed that PKCδ, JNK1/2, Erk1/2, NF-κB, and AP-1 were critical for TPA-induced uPAR

expression. Application of DHA suppressed TPA-induced translocation of PKCδ, activation

of the JNK1/2 and Erk1/2 signaling pathways, and subsequent AP-1 and NF-κB transacti-

vation. In conclusion, these observations suggest a novel role for DHA in reducing uPAR

expression and cell invasion by inhibition of PKCδ, JNK1/2, and Erk1/2, and the reduction

of AP-1 and NF-κB activation in ECV304 human endothelial cells.

Introduction

Tumor metastasis is the most common cause of poor prognosis and deaths in cancer patients.
Urokinase-type plasminogen activator (uPA) and urokinase-type plasminogen activator recep-
tor (uPAR) system is thought to play a role in tumor angiogenesis [1] and tumor metastasis
[2]. uPAR is over-expressed in tumors by multiple tumor-associated cell types including the
tumor cells themselves, stromal cells and endothelial cells [3]. Coordination of extracellular
matrix proteolysis and cell signaling by uPAR underlies its important function in tumor
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metastasis and make it an attractive therapeutic target in cancer [4]. uPAR appears to also elicit
a plethora of cellular responses include cellular adhesion, differentiation, proliferation and
migration [5, 6]. Moreover, uPAR expression increase with grade of tumor and maybe enriched
in metastatic lesions [7]. The expression of a catalytically inactive enzyme or an antisense
uPAR cDNA, which results in the decreasing of uPAR decreases cell invasiveness [8]. There-
fore, agents with the ability to block uPAR expression may hold potential as treatments for
human cancers. The level of uPAR expression is stimulated by a diverse set of agents, including
vascular endothelial growth factor [9], epidermal growth factor [10], hepatocyte growth factor
[11], and fibroblast growth factor [12] in a number of different cell types. uPAR is also stimu-
lated by hypoxia in breast cancer cells [13].

TPA, a potent tumor promoter, stimulates renal tumor cell proliferation through activation
of protein kinase C (PKC) [14]. TPA-induced uPAR is mediated by the activation of MAPK
signaling pathways and transcription factors such as NF-κB and AP-1 in human ovarian and
gastric cancer cells [15, 16]. Because of the critical roles of PKC, MAPKs, NF-κB, and AP-1 in
TPA-induced uPAR expression and cancer cell metastasis, substances that inhibit these factors
may confer anti-tumor activity.

Polyunsaturated fatty acids (PUFAs) can be divided into two major groups: ω-3 and ω-6
PUFAs [17]. Docosahexaenoic acid (DHA), a major ω-3 PUFAs that is enriched in fatty fish
and fish oil supplements, is well known for its anti-inflammatory and anticancer properties
[18, 19]. Regarding its anticancer effect, DHA was reported to inhibit MMP-9 expression in
human breast cancer MCF-7 cells [20]. In addition, DHA has been shown to reduce monocyte
chemoattractant-1 (MCP-1) through PPARγ and NF-κB in human epithelial cells [21].

In the present study, we aimed to investigate DHA’s effect on TPA-induced uPAR expres-
sion in ECV304 human endothelial cells, and to reveal its underlying molecularmechanisms.

Materials and Methods

Reagents

Dulbecco’s modifiedEagle’s medium (DMEM), OPTI-modifiedEagle’s medium, fetal bovine
serum (FBS), phosphate buffered saline, and penicillin–streptomycin solution were obtained
from HyClone (Logan, UT, USA). TrypLE™ Express was obtained from Gibco (Grand Island,
NY, USA). The bicinchoninic acid protein assay kit was from Pierce (Rockford, IL, USA). TPA,
DMSO, LY294002 hydrochloride, curcumin, rottlerin, and all other chemicals were purchased
from Sigma-Aldrich (St. Louis, MO, USA). BAY11-7082, PD98059, SP600125, and SB203580
were purchased from Calbiochem (San Diego, CA, USA). Antibodies against uPAR, PKCδ,
phos-PKCδ (Tyr 311), phos-Akt (Ser 473), Akt, phos-JNK1/2, JNK1/2, phos-Erk1/2, Erk1/2,
phos-p38, p38, phos-c-jun, phos-c-fos, phos-p65 (Ser 536), phos-IκBα (Ser 32), and IкBαwere
purchased from Cell Signaling Technology (Danvers, MA, USA), and antibodies against c-jun,
c-fos and Clathrin HC were purchased from Santa Cruz Biotechnology (Santa Cruz, CA,
USA).

Cell culture

The ECV304 human endothelial cell line was obtained from American Type Culture Collection
(Manassas, VA, USA) and cultured in DMEM supplemented with 10% fetal bovine serum
(FBS) and 0.6% penicillin–streptomycin at 37°C in a 5% CO2 humidified incubator. In these
experiments, stimulants such as TPA, were added to serum-freemedia for the indicated time
intervals.When the inhibitors were used, they were added 1 h before the TPA treatment.
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Cell viability assay

Cell viability after treatment was determined by the MTT assay. Cells were incubated with
1mg/ml MTT for 3 h, and subsequently solubilized in DMSO. The presence of DHA or the
other chemicals did not interfere with the measurement at 570 nm wavelength measured using
a microplate spectrophotometer (Epoch, Biotek, USA).

Isolation of cell fractions

The cells were harvested and then washed twice with ice-cold PBS. Homogenization buffer A
(200 μL; 20 mM Tris–HCl, pH8.0, 10 mM EGTA, 2 mM EDTA, 2 mM dithiothreitol, 1 mM
phenylmethylsulfonyl fluoride, 25 μg/mL aprotinin, and 10 μg/mL leupeptin) was added to
each dish, and the cells were scraped into a 1.5 mL tube. Cells were centrifuged at 5000× g for
15 min at 4°C. The cell pellet was collected as the nuclear fraction. The supernatant was centri-
fuged at 15,000×g at 4°C for 60 min to yield the pellet (membrane fraction) and the superna-
tant (cytosolic fraction).

Reverse transcription PCR, and real-time PCR

Total cellular RNA was extracted from cells using RNAiso Reagent (TaKaRa Bio, Otsu, Japan).
The complementary DNA was subjected to PCR amplification with the primer sets for glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) and uPAR, using a PCR master mix solution
(iNtRON, Seongnam,Gyeonggi-do, Korea). The specific primer sequences were GAPDH
sense, 50-TTG TTG CCA TCA ATG ACCCC-30; GAPDH antisense, 50-TGA CAA AGT GGT
CGT TGA GG-30(836 bp); uPAR sense, 50-CAC GAT CGT GCG CTT GTG GG-30; and uPAR
antisense, 50-TGT TCT TCA GGG CTG CGG CA-30 (285 bp). The PCR conditions included
denaturation at 94°C for 30 s, annealing at 58°C for 30 s, and extension at 72°C for 45 s. The
products were electrophoresed in a 1.5% agarose gel containing ethidium bromide. PCR prod-
uct formation was monitored continuously during the reaction using SequenceDetection Sys-
tem software, version 1.7 (Applied Biosystems, Foster City, CA, USA). Accumulated PCR
products were detected directly by monitoring the increase of the reporter dye (SYBR1). The
mRNA expression levels of uPAR in the treated cells were compared to the expression levels in
control cells at each time point using the comparative cycle threshold (Ct)-method [22]. The
quantity of each transcript was calculated as described in the instrument manual and normal-
ized to the amount of GAPDH, a housekeeping gene.

Western blot analysis

After each experiment, cells were washed twice with cold PBS and were harvested in 100 μL of
protein extraction solution (iNtRON, Seongnam,Gyeonggi-do, Korea). Cell homogenates were
centrifuged at 10,000×g for 20 min at 4°C. Equal amounts of total cellular protein (50 μg) were
electrophoresed in sodiumdodecyl sulfate (SDS)-polyacrylamidegels, and the protein was
then transferred to polyvinylidene difluoridemembranes (Millipore, Billerica,MA, USA).
Nonspecific binding sites on the membranes were blocked with 5% nonfat dry milk in 15 mM
Tris/150 mM NaCl buffer (pH 7.4) at room temperature for 2 h. Membranes were incubated
with target antibody. The membranes were then probed with secondary antibody labeled with
horseradish peroxidase. The bands were visualized using an enhanced chemiluminescence kit
(Millipore, Billerica,MA, USA) and were scanned by a luminescence image analyzer (Vilber
Lourmat, France).
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Transient transfection with siRNAs and dominant negative mutants

Stealth RNAi duplexes corresponding to human siRNAs of PKC, PKCδ, and Akt were pur-
chased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). The plasmids encoding domi-
nant negative mutants of MEK-1 (pMCL-K97M), JNK (pMCL-TAM67), and p38 MAPK
(pMCL-mP38) were kindly provided by Dr. N.G. Ahn (University of Colorado, Boulder, CO,
USA), Dr. M.J. Birrer (NCI, Rockville,MD, USA), and Dr. J. Han (Scripps Research Institute,
CA, USA), respectively. The phosphorothioated double-stranded oligodeoxynucleotide
(ODNs) with sequences targeting the AP-1 binding site (5'-CAC TCA GAA GTC ACT TC-3'
and 3'-GAA GTG ACT TCT GAG CTG-5') were prepared (Genotech, St. Louis, MO, USA)
and annealed (AP-1 decoy ODNs). The dominant negative mutants of I-κBα and I-κBβ and
NIK were kindly provided by Dr. D.W. Ballard (Vanderbilt University, Nashville, TN, USA)
and Dr. W.C. Greene (University of California, CA, USA), respectively. All mutants were pre-
pared by using Qiagen (Valencia, CA, USA) plasmid DNA preparation kits. Transient transfec-
tions of siRNAs (100 nM) and dominant negative mutants (1 μg) were carried out using
Lipofectamine 2000 from Invitrogen (Carlsbad, CA, USA).

Measurement of uPAR, AP- 1 and NF-κB luciferase activity

The plasmid pGL3/uPAR-promoter was generous gift from Dr. Y. Wang (Australian National
University, Canberra, Australia). The NF-κB and AP-1 luciferase reporter plasmid was pur-
chased from Clontech (Palo Alto, CA, USA). ECV304 were seeded and grown until they
reached 70% confluence. Then, cells were co-transfectedwith siRNAs of PKC, PKCδ, Akt,
scrambled sequence, uPAR luciferase. PRL-TK was transfected as an internal control. Cells
were collectedwith cell culture lysis reagent (Promega, Madison, WI, USA) and the luciferase

Fig 1. DHA inhibits TPA-induced uPAR in ECV304 cells. Cells were pretreated with DHA (25, 50, 100 μM) for 1 h, followed by incubation with 100 nM

TPA for 4 or 16 h. uPAR mRNA level (A), protein level (B), and promoter activity (C) were measured by RT-PCR, western blot, and luciferase activity

assay, respectively. *P<0.05 versus control; **P<0.05 versus TPA only. The data represent the mean ± SD from triplicate measurements.

doi:10.1371/journal.pone.0163395.g001
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Fig 2. DHA inhibits TPA-induced uPAR via suppression of PKCδ. (A) si-PKC or si-PKCδ were transfected into cells.

After incubation with 100 nM TPA for 16 h, uPAR levels were evaluated by western blotting. (B) si-PKC or si-PKCδwere co-

transfected with PGL3-uPAR into cells. After incubation with 100 nM TPA for 4 h, luciferase activity was measured using a

luminometer. (C) Cells were treated with DHA (50, 100 μM) followed by TPA for 20 min, and the phosphorylation of PKCδ
was analyzed by western blotting. (D) Cells were treated with TPA for 10–40 min, the subcellular components of cells were
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activity was determined using a luminometer (Centro XS lb960 microplate luminometer,Bert-
hold Technologies, USA) according to the manufacturer’s protocol.

Matrigel invasion assay

The cell invasion assay was carried out using 10-well chemotaxis chambers (Neuro Probe, Gai-
thersburg, Maryland, USA) with an 8-μM pore membrane (Neuro Probe) in DMEM with 10%
FBS as the chemoattractant in the lower chamber. The non-invading cells on the upper surface
of each membrane were removed from the chamber by using cotton swabs, and the invading
cells on the lower surface of each membrane were stained using the Quick-Diff stain kit (Bec-
ton-Dickinson, Franklin Lakes, NJ, USA). After two washes with water, the chambers were
allowed to air dry. The number of invading cells was counted using a phase-contrast
microscope.

Statistics analysis

Data are shown as the mean ± standard deviation (SD) and represent the mean of at least three
separate experiments performed in triplicate. Differences between data sets were determined
by t-tests. Differences described as significant in the text correspond to P values of<0.05.

Results

DHA inhibits TPA-induced uPAR in ECV304 cells

To investigate the suppressive effect of DHA on the up-regulation of uPAR, ECV304 cells pre-
treated with DHA were incubated with TPA. TPA-stimulated uPAR mRNA expression (Fig
1A), protein expression (Fig 1B), and promoter activity (Fig 1C) were inhibited by DHA in a
concentration-dependentmanner as illustrated. These results suggested that DHA inhibited
TPA-induced uPAR expression in ECV304 cells.

DHA inhibits TPA-induced uPAR by suppressing PKCδ activation

Activation of PKCs has been shown to correlate with tumor metastasis [23]. However, contri-
butions of PKC isoforms to TPA-induced uPAR in ECV304 cells are still unclear. As shown in
Fig 2A and 2B, transfection of si-PKC and si-PKCδ inhibited TPA-induced uPAR protein
expression and promoter activity. Next, we found that DHA inhibits TPA-induced phosphory-
lation of PKCδ (Fig 2C). Activation of PKC by TPA involves in the translocation of PKC iso-
forms to the plasma membrane. Translocation of the PKCδ protein from the cytosol to the
membrane was detected in TPA-treated cells, but was blocked by the addition of DHA (Fig 2D
and 2E). This illustrated that PKCδ activation is involved in TPA-induced uPAR, which was
inhibited by the addition of DHA.

DHA suppresses Erk1/2 and JNK1/2 activation downstream of PKCδ
To determine the signaling molecules involved in TPA-induced uPAR expression, we investi-
gated the levels of phosphorylated Akt and changes in MAPKs (Erk1/2, JNK1/2, and P38

extracted, and the levels of PKCδ in the cytosolic and membrane fractions were analyzed by western blotting. (E) Cells were

treated with DHA (25, 50, 100 μM) followed by TPA for 20 min, and PKCδ in the cytosol and membrane was evaluated as

described above. *P<0.05 versus control; **P<0.05 versus TPA only. The data represent the mean ± SD from triplicate

measurements.

doi:10.1371/journal.pone.0163395.g002
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Fig 3. DHA inhibits TPA-induced uPAR via suppression of JNK1/2 and Erk1/2. (A) Cells were incubated with 100 nM

TPA for 0–90 min, and cell lysates were blotted using specific antibodies. (B) Cells pretreated with LY (20 μM), SP (20 μM),

PD (20 μM), or SB (20 μM) for 1h were incubated with 100 nM TPA for 4 h. After incubation, uPAR mRNA levels were

determined by RT-PCR. (C) Cells were pretreated with LY (20 μM), SP (20 μM), PD (20 μM), or SB (20 μM) for 1 h in the

presence or absence of 100 nM TPA for 4 h. After incubation, uPAR mRNA levels were determined by real-time PCR. (D)
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MAPK) in ECV304 cells exposed to TPA for various periods.As shown in Fig 3A, induction of
Akt, JNK1/2, and Erk1/2, and p38 phosphorylation elicited by TPA were detected. Pharmaco-
logical inhibitors of Akt and MAPK were used to determine the molecularmechanisms by
which TPA induces uPAR expression. As shown in Fig 3B and 3C, treatment of SP (a JNK
inhibitor) and PD (an Erk inhibitor) decreasedTPA-induced uPAR mRNA expression,
whereas treatment with LY or SB did not. As expected, treatment of SP and PD also decreased
TPA-induced uPAR protein expression (Fig 3D). Consistent with these results, dominant neg-
ative mutants of JNK (TAM67) and MEK-1 (K97M) inhibited TPA-induced uPAR promoter
activity. However, si-Akt or the dominant negative mutants of p38 MAPK (mp38) showed no
effect (Fig 3E). These findings demonstrated that uPAR induction by TPA was mediated
through JNK1/2 and Erk1/2 activation, and that these were blocked by pretreatment with
DHA (Fig 3F). Furthermore, phosphorylation of JNK1/2 and Erk1/2 was blocked by treatment
with rottlerin (a PKCδ inhibitor) (Fig 3G), suggesting that DHA suppression of JNK1/2 and
Erk1/2 occurs downstream of PKCδ.

DHA inhibits TPA-induced uPAR by suppressing DNA-binding activities

of AP-1

Accumulating evidence showed that AP-1 plays a pivotal role in tumorigenesis [24]. To study
the role of transcription factors AP-1 in TPA-induced uPAR expression, the effect of TPA on
the activation of AP-1 was investigated in ECV304 cells. As shown in Fig 4A, TPA treatment
induced the phosphorylation of c-fos and c-jun, both of which are members of the AP-1 family.
Consistently, TPA treatment resulted in an increase in AP-1-dependent transcriptional activity
in cells transiently transfected with the AP-1 luciferase reporter construct (Fig 4B). Moreover,
treatment of cells with 5–20 μM curcumin, an AP-1 inhibitor, suppressed uPAR mRNA (Fig
4C) and protein expression (Fig 4D). Similarly, when ECV304 cells were transiently transfected
with an AP-1 decoy, ODN, TPA-induced uPAR promoter activity was decreased by the decoy
oligonucleotide in a dose-dependentmanner (Fig 4E). Pretreatment with DHA resulted in sig-
nificant inhibition of TPA-induced activation of c-fos and c-jun (Fig 4F). AP-1 promoter activ-
ity was also identified (Fig 4G). These results suggested that DHA inhibits TPA-induced uPAR
through the suppression of AP-1 activation.

DHA inhibits TPA-induced uPAR by suppressing DNA-binding activities

of NF-кB p65

NF-κB is a pleiotropic, multifunctional transcription factor, involved in cancer proliferation,
migration and apoptosis [25, 26]. Activation of NF-κB is usually associated with the induc-
tion of IκB phosphorylation; as expected, TPA enhanced the activation of serine 536-phos-
phorylated NF-κB p65 and serine32-phosphorylated I-κBα and caused the degradation of

Cells pretreated with SP (20 μM), PD (20 μM), SB (20 μM) or LY (20 μM) for 1 h were incubated with 100 nM TPA for 16 h.

After incubation, uPAR protein levels were determined by western blotting. (E) si-Akt, dominant negative mutants of JNK

(TAM67), MEK-1(K97M), or mutant p38 MAPK (mp38) were co-transfected with PGL3-uPAR into cells. After incubation with

100 nM TPA for 4 h, luciferase activity was measured using a luminometer. (F) Cells were treated with DHA (25, 50 and

100 μM), followed by TPA treatment for 15 min, and cell lysates were blotted using specific antibodies. (G) Cells were

treated with Ro (1, 2, and 5 μM), followed by TPA treatment for 15 min. Expressions of phosphorylated JNK1/2 and

phosphorylated Erk1/2 were evaluated by western blotting. *P<0.05 versus control; **P<0.05 versus TPA only. The data

represent the mean ± SD from triplicate measurements.

doi:10.1371/journal.pone.0163395.g003
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Fig 4. DHA inhibits TPA-induced uPAR by suppressing the DNA-binding activities of AP-1 in ECV304 cells. (A) Cells were treated

with TPA for 0–90 min, and the cellular extracts were blotted using specific antibodies. (B) Cells were transiently transfected with the pAP-1

luciferase reporter construct. The transfected cells were incubated with TPA for 4 h and the luciferase activities were determined using a

luminometer. (C) Cells were treated with 0–20 μM curcumin (Cur) for 1 h prior to exposure to 100 nM TPA for 4 h. After incubation, the

uPAR mRNA levels in the cell lysates were determined by RT-PCR. (D) Cells were treated with 0–20 μM curcumin (Cur) for 1 h prior to

DHA Inhibits uPAR in ECV304 Cells
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IκBα in ECV304 cells (Fig 5A). Furthermore, TPA increased transcriptional activity of NF-
κB in a concentration-dependent manner (Fig 5B). BAY11-7082 (a NF-κB inhibitor) pre-
treatment decreased TPA-induced expression of uPAR mRNA (Fig 5C) and protein expres-
sion (Fig 5D). Additionally, the expression of dominant negative mutant forms of I-κBα, I-
κBβ, or NIK resulted in a decrease in TPA-induced uPAR promoter activity (Fig 5E). More-
over, DHA blocked the activation of serine 536-phosphorylated NF-κB p65 and serine32-
phosphorylated I-κBα (Fig 5F) and NF-B promoter activity (Fig 5G). Together, the above
data implied that DHA inhibits TPA-induced uPAR through the suppression of NF-κB p65
activation.

DHA inhibits TPA-induced cell invasiveness

To examine the effect of DHA on TPA-induced cell invasion, we examined cell invasion
through a modifiedBoyden invasion chamber. Incubated of ECV304 cells in TPA resulted in
an increased number of invasive cells that passed through the artificialmatrigel. However, in
the presence of DHA or uPAR antibody, the number of invasive cells decreased, suggesting
that DHA may suppress TPA-induced cell invasiveness by inhibiting uPAR expression in
ECV304 cells (Fig 6A and 6B). Next, we investigated the effect of a signaling inhibitor on TPA-
induced cell invasion. As shown in Fig 6C, uPAR antibody, DHA, Ro, SP, PD, Cur, and BAY
inhibited cell invasion induced by TPA, indicating that DHA probably inhibits TPA-induced
uPAR via suppression of PKCδ, JNK1/2, and Erk1/2, and reduction of AP-1 and NF-κB activa-
tion in ECV304 cells.

Discussion

Cancer has attracted considerable attention in recent decades, because it is a leading cause of
death globally [27]. Much effort has been directed at defining the role of DHA as a cancer che-
mopreventive agent in humans. This interest has been stimulated by the following observa-
tions. i) The ω-3 PUFAs are important constituents of cell membranes that play multiple roles
in regulating membrane fluidity, eicosanoid synthesis, cell signaling, and gene expression [28].
Ye et al reported that DHA reduces oxidative stress induced calcium influx by altering lipid
composition in membrane caveolar rafts [29]. ii) DHA modulates multiple molecular path-
ways. DHA was reported to activate large-conductance Ca2+- dependent K+ channels [30]. iii)
DHA are natural ligands of several nuclear receptors and transcription factors that regulate
gene expression in some tissues [31]. iv) Accumulating evidence indicates that DHA inhibits
various genes, including VEGF and COX-2, that are related to inflammation and tumor
metastasis [32–34]. v) DHA enhances chemotherapy. In one study, DHA was shown to
increase butyrate-mediated apoptosis through promoter methylation [35]. Additionally, DHA
is essential for normal brain growth and cognitive function [36]. In this study, we explored the
effects of DHA on uPAR expression and cell invasion in ECV304 human endothelial cells.

exposure to 100 nM TPA for 16 h. After incubation, the uPAR protein levels were determined western blotting. (E) The AP-1 decoy

oligonucleotide was co-transfected with pGL3-uPAR into cells. After incubation with 100 nM TPA for 4 h, the luciferase activities were

determined using a luminometer. (F) Cells were treated with DHA (25, 50, 100 μM) prior exposure to 100 nM TPA, and the expressions of

phos-c-fos, phos-c-jun were analyzed by western blotting. (G) Cells were transiently transfected with the pAP-1 luciferase reporter

construct, after being pretreated with DHA (25, 50, 100 μM), and then were incubated with 100 nM TPA for 4 h. After incubation, the cells

were lysed and luciferase activity was determined. *P<0.05 versus control; **P<0.05 versus only TPA. The data represent the mean ± SD

from triplicate measurements.

doi:10.1371/journal.pone.0163395.g004
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Fig 5. DHA inhibits TPA-induced uPAR by suppressing the DNA-binding activities of NF-кB p65 in ECV304 cells. (A) Cells were

treated with TPA for 0–90 min, and the cellular extracts were blotted using specific antibodies. (B) Cells were transiently transfected with the

pNF-кB luciferase reporter construct. The transfected cells were incubated with TPA for 4 h and the luciferase activities were determined

using a luminometer. (C) Cells were treated with 0–10 μM BAY11-7082 for 1 h prior to exposure to 100 nM TPA for 4 h. After incubation, the

uPAR mRNA levels in the cell lysates were determined by RT-PCR. (D) Cells were treated with 0–10 μM BAY11-7082 for 1 h prior to

DHA Inhibits uPAR in ECV304 Cells
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Our results provide novel evidence that DHA effectively inhibits TPA-induced uPAR and cell
invasion.

TPA, a protein kinase activator, has been used as a tumor promoter in chemical-induced
carcinogenesis in vitro and in vivo. Several studies indicate that up-regulation and activation of
PKCs are highly correlated with tumor metastasis [23, 37]. In the present study, using a PKC
si-RNA (si-PKC) and PKCδ si-RNA (si-PKCδ), attenuated TPA-induced uPAR, and the ability
of DHA to suppress TPA-induced translocation of PKCδ from the cytosol to the plasma mem-
brane may have reduced the metastatic potential. It is noteworthy that PKC degrades with
chronic TPA treatment [14], which deserves further rigorous research. MAPKs comprise a
highly conserved cascade of serine/threonine kinases connecting cell surface receptors to regu-
latory targets in response to various stimuli [38]. Pharmacological studies have shown that
incubation of ECV304 cells with JNK1/2 inhibitor or Erk1/2 inhibitor attenuated TPA-induced
uPAR and that expression of JNK1/2 and Erk1/2 could be diminished by DHA treatment.
EGFR is known to play a role in TPA-induced glioblastoma cell proliferation [23, 39]. EGFR
was also reported to serve as downstream element in the signaling triggered by uPAR [40]. The
Src tyrosine kinase has well established roles in the expression of uPAR and progression of
human cancers [41, 42]. In this respect, many additional signaling modulators should be inves-
tigated to explore DHA suppression of TPA-induced uPAR and cell invasiveness in ECV304
cells.

Our results agree with earlier reports regarding the role of NF-кB and AP-1 in uPAR expres-
sion by macrophage-stimulating protein in gastric cancer AGS cells [43]. AP-1 is composed of
members of the c-fos and c-jun families, which have been shown to regulate the expression of a
number of genes involved in tumorigenesis. Here, activation of c-fos and c-jun was observed in
TPA-treated cells, and they may be key molecules involved in uPAR expression in ECV304
cells. Moreover, DHA’s significant suppression of phosphrylation of c-fos and c-jun accompa-
nied by a reduction in AP-1 transcription factor activity therefore inhibited uPAR expression.
The sequestration of NF-κB by IκB in the cytoplasm and IκB phosphorylation leading to the
proteasomal degradation of IκBα results in activation and translocation of NF-κB into the
nucleus, and it is essential for the expression of several genes [44]. Treatment with DHA atten-
uated TPA-induced NF-кB DNA binding complex formation, and these results were consistent
with a recent study [21]. A prior study suggested that the EGFR signaling activates NF-кB via
mTORC2 [45]. The upstream signaling for AP-1 was Erk1/2 and JNK1/2 in cadmium-induced
ECV304 cells [46]. It is likely that cross-talk between reactive oxygen species (ROS) and NF-кB
might exit and modulate cellular signaling events [47]. Furthermore, the transcription factor
SP1 binds to the uPAR promoter [48].

In summary, as shown in Fig 7, our results suggest that DHA inhibits TPA-induced uPAR
expression and that it is, at least in part, involved in the inhibition of the PKCδ, JNK1/2 and
Erk1/2, signaling pathways and in the reduction of AP-1 and NF-κB transcriptional activation.
DHA may represent a novel target molecule or therapeutic approach to repress cancer
progression.

exposure to 100 nM TPA for 16 h. After incubation, the uPAR protein levels were determined by western blotting. (E) The dominant negative

mutant of I-κBα, I-κBβ, and NIK were co-transfected with pGL3-uPAR into cells. After incubation with 100 nM TPA for 4 h, the luciferase

activities were determined using a luminometer. (F) Cells were treated with DHA (25, 50, 100 μM) prior exposure to 100 nM TPA, and the

expressions of phos-p65 (Ser 536), phos-IкB-α (Ser 32), and IкB-αwere analyzed by western blotting. (G) Cells were transiently transfected

with the pNF-кB luciferase reporter construct, after being pretreated with DHA (25, 50, 100 μM), and then were incubated with 100 nM TPA

for 4 h. After incubation, the cells were lysed and luciferase activity was determined. *P<0.05 versus control; **P<0.05 versus only TPA.

The data represent the mean ± SD from triplicate measurements.

doi:10.1371/journal.pone.0163395.g005
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Fig 6. DHA inhibits ECV304 cell invasion by suppressing uPAR. (A) (B) Cells (105) were incubated with

100 nM TPA in the presence or absence of 100 μM DHA or 200 ng/mL uPAR antibody or 200 ng/ml IgG

antibody in a BIOCOAT™Matrigel apparatus for 48 h. (C) Cells (105) were incubated with 100 nM TPA in the

presence of non-specific IgG (200 ng/mL), anti-uPAR antibody (200 ng/mL), 2 μM Ro, 20 μM PD, 20 μM SP,

20 μM Cur, and 20 μM BAY. After incubation, the cells invaded the undersurface of the chambers and were

counted using a phase contrast light microscope after staining with a Diff-Quick Stain Kit. *P<0.05 versus

control; **P<0.05 versus TPA only. The data represent the mean ± SD from triplicate measurements.

doi:10.1371/journal.pone.0163395.g006
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