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Abstract
Background: Adult T-cell leukemia (ATL) is a complex and multifaceted disease associated with
human T-cell leukemia virus type 1 (HTLV-I) infection. Tax, the viral oncoprotein, is considered a
major contributor to cell cycle deregulation in HTLV-I transformed cells by either directly
disrupting cellular factors (protein-protein interactions) or altering their transcription profile. Tax
transactivates these cellular promoters by interacting with transcription factors such as CREB/ATF,
NF-κB, and SRF. Therefore by examining which factors upregulate a particular set of promoters
we may begin to understand how Tax orchestrates leukemia development.

Results: We observed that CTLL cells stably expressing wild-type Tax (CTLL/WT) exhibited
aneuploidy as compared to a Tax clone deficient for CREB transactivation (CTLL/703). To better
understand the contribution of Tax transactivation through the CREB/ATF pathway to the
aneuploid phenotype, we performed microarray analysis comparing CTLL/WT to CTLL/703 cells.
Promoter analysis of altered genes revealed that a subset of these genes contain CREB/ATF
consensus sequences. While these genes had diverse functions, smaller subsets of genes were
found to be involved in G2/M phase regulation, in particular kinetochore assembly. Furthermore,
we confirmed the presence of CREB, Tax and RNA Polymerase II at the p97Vcp and Sgt1
promoters in vivo through chromatin immunoprecipitation in CTLL/WT cells.

Conclusion: These results indicate that the development of aneuploidy in Tax-expressing cells
may occur in response to an alteration in the transcription profile, in addition to direct protein
interactions.
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Background
Human T-cell leukemia virus type 1 (HTLV-I) is a complex
retrovirus that causes adult T-cell leukemia/lymphoma
(ATLL), a CD4 lymphoproliferative disease [1,2]. While
endemic in Japan, South America, Africa, part of the Mid-
dle East and the Carribean, there is an increasing preva-
lence of HTLV-I seropositivity world wide [1-3]. ATL
develops in 2–5% of HTLV-I-infected individuals after a
long latency period of about 20–30 years [4-6]. Different
clinical features have resulted in the division of this dis-
ease into four clinical subtypes characterized by increasing
aggressiveness: smoldering, chronic, lymphoma, and
acute ATL [7].

One important marker for the risk of ATL within patients
is the percentage of abnormal T lymphocytes versus nor-
mal T lymphocytes within the peripheral blood [8]. Binu-
cleated lymphocytes or lymphocytes containing cleaved/
cerebriform nuclei (also termed "flower" cells) have been
observed in blood smears of HTLV-I infected individuals
and in ATLL cells [7,9-12]. These cells are representative of
aneuploidy or abnormal chromosomal content which
develops due to aberrant mitotic divisions [13]. Since ane-
uploidy has been suggested to contribute to tumorigene-
sis, there is a growing interest in deciphering the events in
late G2/mitosis phase and defects therein that lead to ane-
uploidy. Additionally, aneuploidy may be associated with
an acquired resistance to chemotherapeutic agents such as
imatinib or 5-fluorouracil [14]; therefore, therapeutics
disrupting aneuploidy development may improve upon
current therapies for ATLL patients.

There is also a growing body of evidence to suggest that
Tax, a 40 kDa viral oncoprotein encoded by HTLV-I, con-
trols various aspects of cell cycle check points needed for
aneuploidy. In fact, we were one of the first groups to
show that Tax controls the G1/S check point [15], which
was later confirmed by others [16], resulting in failure of
G1 checkpoint and NER deficiency [17]. For a more com-
prehensive review of the cell cycle and check point con-
trols by Tax, we recommend some of the more relevant
reviews published recently [18-21]. In addition to disrupt-
ing checkpoints at the G1/S resulting in continuous cellu-
lar proliferation, Tax also directly targets a number of G2
and mitotic regulators. One of the first indication of Tax's
involvement in the G2 and M phases was shown by Jin
and colleagues [22] who discovered that Tax binds to
hsMAD1. MAD1 and MAD2 are two of several genes that
are involved in the activation of the mitotic spindle check-
point function (MSC) following chromosomal missegre-
gation. Tax interaction hindered the binding of MAD1/
MAD2 complex to kinetochores by inducing translocation
of these factors from the nucleus to the cytoplasm [23].
Furthermore, recent reports have demonstrated that Tax
promotes activation of the anaphase promoting complex

(APC)- APCCdc20p leading to a reduction in Pds1p/securin
and Clb2p/cyclin B levels in yeast, rodent and human cells
[6,24]. Overall, the degradation of these critical check
point proteins results in a delay or failure in mitotic entry
and progression, and is accompanied by a loss of cellular
viability, resulting in aberrant anaphase progression,
chromosomal instability and severe DNA aneuploidy [25-
27].

Concurrently, Tax has been shown to repress cellular DNA
repair by binding to Chk2 [24,28] and Chk1, thus impair-
ing kinase activities in vitro and in vivo [25]. Moreover, Tax
silences cellular checkpoints, which guard against DNA
structural damage and chromosomal missegregation,
thereby favoring the manifestation of a mutator pheno-
type in cells [18]. In such cells, rapidly induced cytoge-
netic damage can be measured by a significant increase in
the number of micronuclei (MN) in cells knocked-out for
DNAPKcs [29,30]. Therefore, it is possible that Tax per-
turbs many dynamic complexes that coordinate the proc-
esses of cell cycle regulation and DNA repair.

Here we present evidence that cytotoxic T cells (CTLL) sta-
bly expressing wild type Tax (CTLL/WT) exhibited a
higher incidence of aneuploidy when compared to a Tax
clone deficient for CREB transactivation (CTLL/703) [31].
Given the role of Tax as a strong activator of both viral and
cellular transcription, we address the role of Tax-depend-
ent transcription through the CREB/ATF pathway in the
possible development of aneuploidy. We performed gene
expression microarray analysis comparing CTLL/WT to
CTLL/703 cells. Those genes that were either up or down-
regulated in CTLL/WT cells were functionally annotated
using the NIH's Database for Annotation, Visualization,
and Integrated Discovery (NIH-DAVID). Next, we used an
online database – PromoSer – to extract promoters of
annotated genes to determine which of these genes con-
tained CREB binding sites. Finally, chromatin immuno-
precipitation was used to determine if DNA binding
proteins such as Tax, Pol II and CREB were present at the
promoters of the few selected genes. Our results clearly
indicate that Tax/CREB binds to promoters of many
genes, including Sgt1 and p97 (Vcp), which have func-
tions in spindle formation and disassembly, respectively.
The consequences of their over-expression and involve-
ment in aneuploidy will be discussed.

Results and discussion
Aneuploidy prevalence in CTLL/WT cells
Tax deregulates the expression of genes that encode inter-
leukin-2 (IL-2) and the multisubunit (IL-2R alpha, IL-2R
beta, and IL-2R gamma) IL-2 receptor (IL-2R) in the early
phases of HTLV-I induced ATL [32]. In the later phases of
ATL, cells no longer produce IL-2 but still continue to
express the IL-2R [32]. Fujii and colleagues developed an
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IL-2 independent system where Tax was stably expressed
in a mouse IL-2-dependent T-cell line, CTLL-2, and exam-
ined the growth property of these cells in the absence of
IL-2 [31]. While the Tax M47 (703) mutant activates NF-
κB-dependent transcription but not CRE-dependent tran-
scription, the reverse is true for the Tax M22 mutant [31].
They also noted that in addition to Tax's role in cAMP-
responsive element (CRE) and NFκB activation pathways,
Tax also increases expression of mRNAs coding for various
AP-1 transcription factor family members including c-Jun,
JunB, JunD, c-Fos and Fra-1. Genes encoding AP-1 are
immediate-early genes whose products play important
roles in cell activation, proliferation and transformation.
Thus, an alternate pathway, i.e., AP-1, may be involved in
the dysregulated phenotypes of T cells expressing Tax
(CTLL) or infected with HTLV-1 [33].

Initially, these mutants were used to investigate the
involvement of the transcription pathways in the transfor-
mation of CTLL-2 cells by Tax. Wild type Tax expression in
CTLL-2 cells resulted in IL-2 independent growth. The Tax
M47 mutant still activated the NF-κB-dependent tran-
scription, and was able to support the growth of CTLL-2 in
the absence of exogenously added IL-2. Therefore, the
CREB dependent activity of Tax may not be as critical for
IL-2 dependent growth, but may be needed for Tax
induced transformation of cells. Tax M47 induced trans-
formation may be accomplished through deregulation of
cellular oncogenes, tumor suppressor genes, or check-
point genes for DNA damage.

Our previous work utilizing these cell lines have shown
that depending on which phase of the cell cycle DNA
damage occurred, two different phenotypes were
observed. Using centrifugal elutriation, we were able to
fractionate cells at G1, S, or G2/M based on differences in
cell volume at these distinct phases [34]. These cell frac-
tions were gamma irradiated and harvested 24 hrs later for
cell cycle analysis by propidium iodide staining and FACS.
We observed that the CTLL/WT cells exhibited a distinct
phenotype; at G1, these cells were able to induce a G1/S
checkpoint, while at S or G2/M phase, these cells apop-
tosed after gamma irradiation. Conversely, CTLL/703 cells
continued to proliferate without any apoptosis. We
believed these differences were due, at least in part, to the
differing gene expression profile of these cells and the
induction of DNA damage at a particular point in the cell
cycle. Interestingly, it was also observed that unirradiated
CTLL/WT cells displayed a higher prevalence of aneu-
ploidy than CTLL/703. The appearance of aneuploidy
occurred in the later fractions (G2/M phase) which repre-
sented the largest cell populations. Consistent with our
findings, previous reports have also indicated that centrif-
ugal elutriation was capable of separating mixed popula-
tions of diploid and aneuploid cells [35,36].

To examine the chromosomal instability in CTLL/WT
cells, we first performed a metaphase chromosome spread
to determine the average number of chromosomes [6,37].
Both CTLL/WT and CTLL/703 cells were processed as
described in the Methods section. Thirty-five cells were
analyzed for each cell type. As shown in Figure 1, CTLL/
WT cells displayed higher numbers of chromosomes with
an average number of 61 in contrast to CTLL/703 cells,
where the average number of chromosomes were 44. The
basic karyotype of the Mus musculus species is 2N = 40
[38]. These results support our earlier observation that
wild-type Tax expressing cells (CTLL/WT), as compared to
the CREB deficient Tax clones (CTLL/703), had a higher
incidence of aneuploidy.

Since both of these cells are transformed, i.e. IL-2 inde-
pendent [31], differences in transformation status cannot
explain the presence of aneuploidy in one cell line and
not the other. While it is possible that mutation of the Tax
protein, resulting in a CREB transactivation deficient Tax
(CTLL/703 cells), may disrupt interactions of Tax with late
cell cycle checkpoint proteins whose dysregulation con-
tributes to aneuploidy, however, this seems to be an
unlikely event. For instance, Tax interaction with hMAD1
(also known as Txbp181) appears to be dependent on the
zinc finger motif located within the N-terminus of Tax
[22], and not the N-terminal domain as seen in the M47
mutant. Therefore, it appears probable that Tax may con-
tribute to aneuploidy development, at least in part,
through transcriptional activation of cellular genes critical
for aneuploidy. This result would not be without prece-
dence, since the involvement of Tax in immortalization
has been shown to be mediated both at the transcriptional
level and by direct protein:protein interactions [18]. Fur-
thermore, since Tax-dependent CREB transactivation was
deficient in CTLL/703 and not in CTLL/WT cells (see
below), it would appear that those genes involved in ane-
uploidy development may be CREB-dependent.

Gene expression profiling and promoter analysis
To begin to examine the contribution of Tax/CREB-
dependent transcription in aneuploidy development, we
compared the transcription profiles of CTLL/WT and
CTLL/703 cells by microarray analysis. Our method for
comparing the contribution of Tax/CREB to the aneu-
ploidy phenotype is depicted in Figure 2. Through this
analysis we obtained a global expression profile of the
wild-type Tax-expressing cells as compared to Tax-703
expressing cells and subsequently narrowed our list by
determining which genes contained CREB-response ele-
ments and potential aneuploidy associated genes. Micro-
array analysis was performed utilizing cytoplasmic mRNA
from both cells and the Affymetrix Murine Genome U74A
Array. Analysis was performed in duplicate to minimize
inter-chip variability. After normalizing the fluorescence
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intensity of each probe and filtering for differentially
expressed genes with a difference of at least 2-fold across
experiments, a gene list was compiled. These genes were
then functionally annotated utilizing the Database for
Annotation, Visualization, and Integrated Discovery pro-
gram (DAVID) [39] to generate a list of 439 genes differ-
entially regulated in CTLL/WT cells [Additional files 1 and
2]. The majority of these differentially regulated genes
were up-regulated in CTLL/WT cells (412 genes increased
out of a total of 439 annotated genes, 94%) and many
have been shown to be up-regulated in wild-type, and not
in M47, Tax-expressing cells, including p21/waf1 [40],
cyclin D2 [15], and Jun B [41], suggesting a correlation

between our gene expression profile and previously pub-
lished results.

Recent studies have utilized microarray analysis to deter-
mine whether gene sets were under the control of similar
transcription factors by analyzing the promoter sequences
for transcription factor binding sites [42-46]. We hypoth-
esized that those genes differentially regulated in CTLL/
WT cells would probably be CREB/ATF-dependent either
directly or indirectly. This is based on the assumption that
CTLL/703 cells contain mutated Tax, which is unable to
transactivate viral or cellular transcription through the
CREB/ATF pathway [31]. To determine which promoters

Aneuploidy in CTLL/WT cellsFigure 1
Aneuploidy in CTLL/WT cells. CTLL/WT and CTLL/703 cells were treated with 10 μg/ml colcemid, centrifuged, and 
resuspended in hypotonic solution to swell the cells. Cells were then fixed and dropped onto slides. After being stained with 
Giemsa and dried, slides were analyzed using the Olympus BX-60 microscope. A total of 35 metaphase spreads were counted. 
Representative chromosome spreads of CTLL/WT (panel A) and CTLL/703 (panel B) are displayed with 100 and 42 chromo-
somes, respectively. Panels C) and D) are graphical representations of the raw counts from these two cell types.
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Overview of microarray analysis, annotation, and promoter analysisFigure 2
Overview of microarray analysis, annotation, and promoter analysis. A schematic depicting the workflow of the 
project. Gene expression analysis of CTLL/WT and CTLL/703 cells was performed utilizing the Affymetrix's Murine Genome 
U74A GeneChip. Genes that were either up-or down-regulated in CTLL/WT cells by a magnitude of at least two-fold were 
functionally annotated using NIH's DAVID bioinformatics program. Next, promoter sequences (2100 bp surrounding the pre-
dicted TSS) were retrieved from PromoSer. One third of the promoter sequences retrieved were checked for proper align-
ment against the mouse genome using Blastn and MapViewer tools through NCBI. CREB (TGACGT/C, A/GGGAGT) 
consensus sequences were obtained through TRANSFAC database and searched within the promoters obtained. Factors that 
contained the CREB sequences within their promoters were further probed for genes that contribute directly to mitosis, cyto-
kinesis, and microtubule organization.
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were in fact directly CREB/ATF-dependent, we extracted
promoter sequences of the differentially expressed mouse
genes utilizing PromoSer, a web-based promoter database
extraction tool [47,48]. This retrieval database utilizes the
mm4 draft release of the mouse genome. Promoter
sequences encompassing 2000 bp upstream and 100 bp
downstream of the predicted transcription start site (TSS)
were retrieved. Of the 439 differentially regulated genes,
only 341 promoter sequences could be extracted from the
database (77% recovery) under the conditions used. One
third of the promoters retrieved were initially compared
against the mouse genome using NCBI's Blastn to verify
that these sequences were properly aligned. Next, pro-
moter sequences were searched for CREB consensus
sequences (obtained through the Transfac database and
literature searches [49-52]) to determine which promoters
might be CREB-responsive. Interestingly, 28% of these
promoters (95 out of 341 extracted promoter sequences)
were found to contain CREB binding sites. These anno-
tated genes with corresponding fold change are depicted
in Table 1. Most of the genes identified are involved in a
number of pathways including transportation, signaling,
cell cycle, transcription and RNA processing, metabolism,
stress response, and cytoskeletal protein binding. To
determine whether CREB-dependent promoters were
preferentially activated, we also performed searches for
NFκB and SRF response elements within the extracted
promoters. Both of these transcription factors have been
shown to be responsive to Tax [53]. Of these promoters,
only 2% (7 out of 341 promoters) were found to contain
NFκB recognition sequences and less than 1% (2 out of
341 promoters) contained SRF sequences (data not
shown). Therefore, there was a selective preference in Tax
expressing cells to activate CREB-dependent promoters.
Through a comprehensive PubMed and DAVID search, we
determined which genes were involved in mitosis/cytoki-
nesis and thus were likely candidates to contribute to the
development of aneuploidy Table (1).

Several of the candidate genes that may contribute to the
development of aneuploidy (Table 2) were found to be
associated with and/or regulate kinetochore assembly,
including dynactin 3 (Dctn3), protein phosphatase 1, cat-
alytic subunit beta isoform (Ppp1cb), suppressor of G2
allele of SKP1 (Sugt1 or Sgt1), and ZW10 interactor
(Zwint-1). Kinetochores are multi-subunit complexes
(over 70 proteins in yeast kinetochores alone) that assem-
ble on centromeric DNA and during mitosis act as the
attachment site of chromosomes to the microtubules of
the mitotic spindle [54-56]. The kinetochore, in addition
to engaging microtubules, promotes correct attachment
and corrects errors in attachment [57]. During metaphase,
the centromeres of replicated sister chromatids are ori-
ented on the spindle apparatus. In a dynamic interaction,
the kinetochore associated microtubules associate with

constant oscillatory movements until all chromosomes
are bi-oriented at the metaphase plate.

While depletion of these particular factors have been
shown to cause aneuploidy, over-expression of these fac-
tors may prove to be equally problematic. There are
instances where over-expression of kinetochore or associ-
ated proteins such as dynamitin (p50; [58]), CENP-H
[59], and CENP-A [60] led to disruption of the dynactin
or kinetochore complex. In the case of CENP-H, over-
expression contributed to the appearance ofaberrant
micronuclei, a sign of aneuploidy. Therefore we envision
a similar scenario where over-expression of dynactin 3
(p24), whichacts as a light-chain subunit of the dynactin
complex that tethers microtubules to the kinetochore and
was found to bepresent stoichiometrically at one mole-
cule per complex, leads to sequesteration of other compo-
nents of the dynactin complex away from microtubules
leading to aneuploidy.

In vivoconfirmation of CREB binding sites
Chromatin immunoprecipitation (ChIP) has been used
to determine if specific proteins bind to regions of a
genome in vivo [61], to identify transcription factor bind-
ing to promoters [62,63], and to identify the binding of
modified proteins to DNA in vivo [64,65]. To confirm that
genes regulating aneuploidy were in fact transcriptionally
activated in a CREB-dependent manner, a ChIP assay was
performed on a few of the Tax regulated genes in CTLL
cells. Sgt1 and p97 were amongst the list of the genes iden-
tified based on the presence of potential binding sites for
CREB. Sgt1 has been shown to be an essential protein and
a critical assembly factor for kinetochore assembly [66].
Experiments have been carried out in the past to demon-
strate the functional significance of Sgt1. RNAi mediated
Sgt1 depletion in HeLa cells leads to mitotic delay due to
activation of the spindle checkpoint. Sgt1 depletion also
led to the reduction in kinetochore levels of three MSC
components – Mad1, Mad2 and BubR1 [66].

As shown in Figure 3A, the results from an initial ChIP
assay demonstrated that RNA Polymerase II (Pol II) was
present at the promoter for Sgt1 in CTLL/WT and not in
CTLL/703 cells. This indicated that Pol II was not recruited
in the Tax mutant CTLL/703 cells and that the Sgt1 pro-
moter in CTLL/WT cells was transcriptionally active. His-
tone H3- phosphorylated serine 10 (denoted as H3S10)
was used as a positive control for our ChIP assay in CTLL/
WT and CTLL/703 cells. To determine whether CREB
bound in vivo to the promoters of Sgt1 and p97/Vcp genes,
we utilized CREB and phosphorylated CREB (active form
of CREB, denoted as p-CREB) antibodies. Results from the
ChIP assay for the promoters of Sgt1 and p97/Vcp are
shown in Figure 3B. Pol II recruitment was used as a pos-
itive control. While CREB, p-CREB and Pol II were present
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Table 1: Cellular genes containing CREB response element activated by Tax

Genbank 
Accession 
Number

Gene Fold
Change

Transcription/
RNA

Processing

Peptidase Cytoskeletal
Protein
Binding

Transport M etabol

AF064071 Apaf1 a po pto tic protease 
activating factor 1

2.5 X

D87898 Arf1 ADP-ribosylation factor 1 2.6 X
BC010700 Atp5c1 ATP synthase, H+ 

transporting, m itochondrial 
F1 com plex, gam m a 
polypeptide 1

2.1 X

NM_009729 Atp6v0c ATPase, H+ transporting, 
V0 subunit C

2.3 X

AF183960 Ccrn4l CCR4 carbon catabolite 
repression 4-like (S. 
cerevisiae)

2.1

BC054097 Cetn3 centrin 3 2.2
AF016583 Chek1 checkpoint kinase 1 

homolog (S. pom be)
2.3

NM_009942 Cox5b cytochrom e c oxidase, 
subunit Vb

2.3 X

BC010197 Cpe carboxypeptidase E 17.3 X
U73445 Dld dihydrolipoam 

idedehydrogenase
2.4 X

NM_007897 Ebf1 early B-cell factor 1 2.9 X
D43689 Fdx1 ferredoxin 1 4.3 X
AJ534939 Sm c2l1 SM C2 structural 

maintenance of 
chromosomes 2-like 1 
(yeast)

2.8

AB093214 Lpin1 lipin 1 2.4 X
NM_010239 Fth ferritin heavy chain 2.4 X
AF024620 Gabrr1 gam m a-am inobutyric acid 

(GABA-C) receptor, 
subunit rho 1

2.3 X

M63801 Gja1 gap junction m em brane 
channel protein alpha 1

7.4

NM_010306 Gnai3 guanine nucleotide binding 
protein, alpha inhibiting 3

2.0

BC005683 Grcc10 gene rich cluster, C10 gene 2.2
NM_022310 Hspa5 heat shock 70kD protein 5 

(glucose-regulated protein)
3.0

U53514 Guk1 guanylate kinase 1 4.2 X
M 21931 H2-Aa histocom patibility 2, class II 

antigen A, alpha
3.8

BC010322 H2-Ab1 histocom patibility 2, class II 
antigen A, beta 1

3.1

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF064071
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=D87898
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC010700
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_009729
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF183960
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC054097
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF016583
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_009942
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC010197
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U73445
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_007897
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=D43689
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AJ534939
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB093214
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_010239
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF024620
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M63801
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_010306
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC005683
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_022310
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U53514
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M 21931
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC010322
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M 58595 H2-D1 histocom patibility 2, D 
region locus 1

2.7

U35330 H2-DM b1 histocom patibility 2, class II, 
locus M b1

2.5

NM_013820 Hk2 hexokinase 2 2.5 X
BC052727 Hspa9a heat shock protein, A 3.3
M 59821 Ier2 im m ediate early response 

2
2.9

J03236 Junb Jun-B oncogene 2.0 X
NM_010724 Psm b8 proteosome (prosom e, 

macropain) subunit, beta 
type 8 (large m 
ultifunctional protea

2.6 X

M16229 M dh2 m alate dehydrogenase 2, 
NAD (m itochondrial)

3.4 X

AY176058 Nfkbib nuclear factor of kappa light 
chain gene enhancer in B-
cells inhibitor, beta

2.6

AF026124 Pld3 phospholipase D3 2.4 X
BC046832 Ppp1cb protein phosphatase 1, 

catalytic subunit, beta 
isoform

2.5 X

NM_011186 Psm b5 proteasome (prosome, 
macropain) subunit, beta 
type 5

2.3 X

D87911 Psm e3 proteasome (prosome, 
macropain) 28 subunit, 3

2.2 X

X61940 Dusp1 dual specificity phosphatase 
1

8.1

NM_008989 Pura purine rich elem ent binding 
protein A

2.4 X

BC026915 Rab6 RAB6, m em ber RAS 
oncogene fam ily

2.4 X

U67187 Rgs2 regulator of G-protein 
signaling 2

2.5

AF065924 Ccl1 chem okine (C-C m otif) 
ligand 1

0.3

X84037 Glg1 golgi apparatus protein 1 2.4
BC034674 Slc31a1 solute carrier fam ily 31, 

mem ber 1
2.9 X

BC021537 Srp14 signal recognition particle 
14

2.5 X

BC028507 Tnfrsf9 tum or necrosis factor 
receptor superfam ily, 
member 9

4.2

AF159593 Plscr1 phospholipid scram blase 1 5.2
AF033353 Ubl1 ubiquitin-like 1 2.3 X
AY162409 Vwf Von W illebrand factor 

homolog
2.3

Table 1: Cellular genes containing CREB response element activated by Tax (Continued)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M 58595
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U35330
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_013820
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC052727
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M 59821
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=J03236
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_010724
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M16229
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY176058
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF026124
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC046832
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_011186
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=D87911
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X61940
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_008989
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC026915
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U67187
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF065924
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X84037
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC034674
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC021537
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC028507
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF159593
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF033353
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY162409
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AF077002 Ywhah tyrosine 3-m onooxygenase/
tryptophan 5-m 
onooxygenase activation 
protein, eta po

2.0 X

U77667 Zap70 zeta-chain (TCR) associated 
protein kinase

2.6

BC005589 Cfdp craniofacial development 
protein 1

2.1

BC008265 Psm b2 proteasome (prosome, 
macropain) subunit, beta 
type 2

2.3 X

AF132726 Casp8ap2 caspase 8 associated protein 
2

2.3 X

AF123312 H2afy H2A histone fam ily, 
member Y

2.1 X

BC012241 Atp5o ATP synthase, H+ 
transporting, m itochondrial 
F1 com plex, O subunit

2.5 X

BC014798 Tax1bp1 Tax1 (hum an T-cell 
leukemia virus type I) 
binding protein 1

2.3

AF406651 Hnrpa2b1 heterogeneous nuclear 
ribonucleoprotein A2/B1

2.5 X

AF098508 Dctn3 dynactin 3 2.4 X
AF133818 Zfp265 zinc finger protein 265 2.1 X
BC037732 Rragc Ras-related GTP binding C 2.7 X
AF148447 Uchl5 ubiquitin carboxyl-terminal 

esterase L5
2.3 X

AB025406 Dstn destrin 2.6 X
BC002126 Gabarap gam m a-am inobutyric acid 

receptor associated protein
2.1 X X

BC018430 Asna1 arsA (bacterial) arsenite 
transporter, ATP-binding, 
hom olog 1

2.2 X

AB015652 Park7 Parkinson disease 
(autosomal recessive, early 
onset) 7

2.1 X

BC022751 Isg20 interferon-stimulated 
protein

4.8

BC005469 Vps35 vacuolar protein sorting 35 2.3 X
BC005620 Cyc1 cytochrom e c-1 2.2 X
BC024355 Usm g5 upregulated during skeletal 

m uscle growth 5
2.2

BC051934 Sdhb succinate dehydrogenase 
com plex, subunit B, iron 
sulfur (Ip)

2.5 X X

BC009167 Sugt1 SGT1, suppressor of G2 
allele of SKP1 (S. cerevisiae)

2.3 X

Table 1: Cellular genes containing CREB response element activated by Tax (Continued)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF077002
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U77667
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC005589
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC008265
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF132726
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF123312
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC012241
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC014798
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF406651
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF098508
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF133818
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC037732
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF148447
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB025406
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC002126
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC018430
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB015652
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC022751
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC005469
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC005620
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC024355
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC051934
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC009167
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BC013510 Ndufb2 NADH dehydrogenase 
(ubiquinone) 1 beta subcom 
plex, 2

2.3 X

AF276965 Ubap2 ubiquitin-associated protein 
2

2.1 X

BC003843 St13 suppression of tum 
origenicity 13

2.1

NM_146087 Csnk1a1 casein kinase 1, alpha 1 2.5
BC040794 Klf7 Kruppel-like factor 7 

(ubiquitous)
2.7 X

BC020132 Rars arginyl-tRNA synthetase 2.7 X
BC058078 Ppp1r15b protein phosphatase 1, 

regulatory (inhibitor) 
subunit 15b

2.0 X

M19279 Gus beta-glucuronidase 2.6 X
AF356006 Atp6v0b ATPase, H+ transporting, 

V0 subunit B
2.5 X

BC004045 Lactb2 lactam ase, beta 2 2.0 X
BC021510 Appbp1 am yloid beta precursor 

protein binding protein 1
2.1

BC026611 Aars alanyl-tRNA synthetase 2.3 X
BC024857 Eif2c2 eukaryotic translation 

initiation factor 2C, 2
2.6 X

NM_009503 p97(Vcp) valosin containing protein 3.0 X
AF353669 Flnb filam in, beta 31.9 X
9 Unknowns: BC021353, BC037019, NM_026452, BC016544, AL023058, BC004013, BC032165BC032165, BC030844, and BC027100

Table 1: Cellular genes containing CREB response element activated by Tax (Continued)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC013510
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF276965
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC003843
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_146087
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC040794
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC020132
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC058078
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M19279
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF356006
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC004045
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC021510
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC026611
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC024857
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_009503
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF353669
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC021353
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC037019
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_026452
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC016544
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AL023058
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC004013
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC032165
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC030844
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC027100
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Table 2: Tax activated genes involved in aneuploidy

Genbank 
Accession 
Number

Gene Fold change Function

D87898 Arf1 ADP-ribosylation factor 1 2.6 Membrane vesicle formation, inactivation nec. for mitotic 
Golgi breakdown, chromosome segregation, and 
cytokinesis [95–97]

BC054097 Cetn3 centrin 3 2.2 spindle cell body duplication need for bipolarity in 
cytokinesis [98–103]

AF016583 Chek1 checkpoint kinase 1 homolog
(S. pombe)

2.3 needed for S and G2 checkpoints after DNA damage; Tax 
has been shown to disrupt its function [24,25,104–106]

AF098508 Dctn3 dynactin 3 2.4 light-chain subunit of dynactin complex (p24); dynactin 
complex involved in vesicle movement; dynactin complex 
interacts with NuMA and dynein in order to tether 
microtubules at the spindle poles and that are essential for 
mitotic spindle pole assembly and stabilization; recruitment 
by ZW10 protein to the kinetichore [107–110]

NM_009503 p97(Vcp) valosin containing protein 3.0 aka cdc48; needed for spindle disassembly after 
segregation; Golgi disassembly-assembly [111–113]

BC046832 Ppp1cb protein phosphatase 1, catalytic 
subunit, beta isoform

2.5 antagonist of Aurora B kinase during mitosis, i.e. regulating 
the protein interface between the centromeres and the 
mitotic spindle; possible downstream targets include 
kinetochore protein Ndc10, CENP-A, which substitutes 
for histone H3 in centromeric nucleosomes, and inner 
centromere protein INCENP; mutation of PP1 or 
inactivation was shown to result in cytokinesis defects. 
[114]

NM_008989 Pura purine rich element binding protein A 2.4 involved in DNA replication and transcription; 
overexpression results in G2 blockage [115,116]

AJ534939 Smc2l1 SMC2 structural maintenance of 
chromosomes 2-like 1 (yeast)

2.8 aka CAP-E protein, that is part of the condensin protein 
complex originally identified in Xenopus; protein complex 
is needed for chromosome condensation; CAP-E has been 
found to interact with DNA ligase IV (DNA double-strand 
break repair protein) possible interaction important for 
genome stability [117–120]

BC009167 Sugt1 SGT1, suppressor of G2 allele of SKP1 
(S. cerevisiae)

2.3 recent study shows that SGT1 is needed for kinetechore 
assembly [66,76]

AF077002 Ywhah tyrosine 3-monooxygenase/
tryptophan 5-monooxygenase 
activation protein, eta polypeptide

2.0 binds to CDC25B in a phosphorylation independent 
mechanism [121,122]

BC027100 Zwint-1 ZW10 interactor 2.1 specifies the kinetochore association of ZW10 which may 
act as part of, or immediately downstream of, the wait 
anaphase tension-sensing checkpoint [123,124]

at the Sgt1 promoter in CTLL/WT cells, we only observed
the presence of CREB and not p-CREB or Pol II at this pro-
moter in CTLL/703 cells (top right and left panels). This
suggested that in CTLL/WT cells there was an active
recruitment of the transcription machinery on the Sgt1
promoter. Furthermore, the presence of a phosphorylated
CREB on this promoter is an indication of an active tran-
scriptional complex [67]. We next performed similar
experiments for the p97/Vcp promoter and observed the
presence of CREB and Pol II at the proximal promoter
region in the CTLL/WT cells. Interestingly, we observed no
p-CREB binding (always similar levels to the background
beads) in CTLL/WT cells. A different scenario emerged in
the CTLL/703 cells, where only Pol II, and not CREB or p-
CREB were present at this promoter, indicating that in the
absence of Tax and CREB, there might be a paused tran-

scriptional complex on this promoter (Figure 3B, bottom
right and left panels).

A graphical representation for the same ChIP results from
Figure 3 were plotted using Phosphor Imager counts (Fig-
ure 4A and 4B), where less CREB binding was observed in
the CTLL/703 as compared to the CTLL/WT cells. Addi-
tionally, Pol II recruitment was found to be higher in
CTLL/WT than in CTLL/703 cells. The increased recruit-
ment of both CREB and Pol II in wild-type Tax-expressing
cells, supports the hypothesis that Tax increases (either
directly or indirectly) the expression of these genes.

Finally, we performed two confirmatory assays for the up
regulation of these gene products by Tax. Results in Figure
5A show western blots from two wild-type Tax expressing
Page 11 of 21
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=D87898
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cells (C81 and CTLL/WT), mutant Tax expressing cells
(CTLL/703), and one negative control (CEM). When
examining for Sgt1 levels, we observed two forms of this
protein in human cells (A and B), where the A form is the
original gene product and the B form is a splice variant
[68]. Interestingly, the A form was predominantly seen in
both wild type Tax expressing human and mouse cells.
When examining p97 levels, we observed more pro-
nounced activation in human cells (panel A, Lanes 1 and

2) as compared to the mouse cells. Similar levels of Tax
were present in both CTLL/WT and CTLL/703 cells (data
not shown). We next examined the effect of Tax on endog-
enous Sgt1 and p97 promoters in human cells. Results
from Figure 5B indicate that only wild type and not the
M47 mutant was capable of activating both Sgt1 and p97
genes in vivo. This is critical because transfection with Sgt1
and p97 promoters may not have all the necessary ele-
ments (i.e. chromatin structure, enhancer-less promoter,

Recruitment of CREB and basal transcription machinery at the Sgt1 and p97/Vcp promotersFigure 3
Recruitment of CREB and basal transcription machinery at the Sgt1 and p97/Vcp promoters. A) Presence of Pol 
II on Sgt1 promoter. ChIP analysis of Sgt1 promoter using IgG, anti- H3S10, and anti- Pol II antibodies (α-RNAP II, Santa Cruz, 
polyclonal rabbit #N-20)compared to input (lanes 1, 2, 3 and 5, respectively). IgG and beads only (lanes 1 and 4) were used as 
negative controls. Top panel corresponds to typical results from CTLL/WT cells, while the bottom panel corresponds to 
results from CTLL/703 cells. B) Presence of CREB and Pol II on Sgt1 and p97 promoters. ChIP analysis of Sgt1 and p97/Vcp 
promoters using antibodies against CREB, p-CREB and Pol II (lanes 2, 3 and 4). The Pol II antibody recognizes the phosphor-
ylated elongating Pol II complex (α-Ser 2P CTD (H5, Covance)). IgG and Beads alone (lanes 1 and 5) were used as negative 
controls.
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proper promoter start site, and promoter distance in rela-
tion to the gene) needed to observe activated transcription
by Tax in vivo.

Direct effect of Tax on gene promoters
An important question is whether Tax affects the expres-
sion level of genes listed in Tables 1 or 2 or alternatively,
does Tax directly interact with any of these proteins and
subsequently control aneuploidy. Although, we couldn't
logistically design experiments to test all the genes listed
in Tables 1 or 2 for promoter occupancy by Tax or direct
protein-protein interaction, we decided to focus on the
same two Sgt1 and p97 genes tested previously. We ini-
tially performed a ChIP experiment for the presence of Tax
(using four TAb monoclonal antibodies) on these two
promoters. Results in Figure 6A indicate that only WT, and
not M47 mutant, Tax was present on both Sgt1 and p97
promoters (compare lanes 2, 5 and 8). Interestingly, we
could always observe presence of more Tax on Sgt1 than
p97 promoter. However, the presence of more Tax didn't
correlate with increased expression levels for these two
promoters (fold activation by Tax: Sgt1, 2.3 fold; p97, 3.0
fold). Next, we asked whether Tax could physically bind
to either Sgt1 or p97 proteins in either an unsynchronized

culture system (where the majority of cells are at the G1
phase) or cells enriched in the G2/M phase. We used
human C81 cells for these immunoprecipitations fol-
lowed by a high salt wash and western blot for Tax. We
have previously used this stringent wash condition to
identify some of the Tax binding proteins in C81 cells
[69]. Results (Figure 6B) indicate that Tax could physically
bind to cdk2 (positive control) and not Sgt1 or p97 pro-
teins. It is important to note that we favor high salt washes
for Tax immunoprecipitations, since low salt wash condi-
tions may not dissociate tightly bound complexes. Collec-
tively, results in Figure 6 indicate that Tax directly activates
some of the critical proteins needed for development of
aneuploidy, although with the caveat that our experimen-
tal procedures cannot fully rule out the possibility of
direct protein-protein interaction between Tax and com-
plexes that regulate aneuploidy in transformed cells.

Finally, given our results in Table 2, we wondered how
over-expression of some of these genes by Tax could con-
tribute to aneuploidy? A careful examination of the p97
and Sgt1 literature indicates that when these proteins are
over-expressed, they deregulate control of few cellular
pathways including apoptosis, cell division, and cell cycle.
For instance, over-expression of p97 in Tax expressing
cells could exhibit multiple functions including a role in
anti-apoptosis and metastasis by activation of the NFκB
signaling pathway [70], as well as its binding to Cdc48
and its adaptors, Ufd1-Npl4. Cdc48 and Ufd1-NPl4 regu-
late membrane related functions and mitotic spindle dis-
assembly by directly binding to membrane-associated
proteins or spindle assembly factors, modulating their
interactions with membranes or spindles, respectively.
The AAA ATPase CDC48 was first identified in Saccharo-
myces cerevisiae as a cell cycle division gene. Cdc48, as well
as its homolog p97 in vertebrates, forms a homohexam-
eric ring that functions as an active ATPase. Together with
its adaptor proteins, the Ufd1-Npl4 heterodimer, the
Cdc48/p97-Ufd1-Npl4 complex participates in a variety
of membrane-related functions, including morphological
transformations in cell division, particularly in establish-
ing a proper G1 phase after mitosis. Consistent with this
idea, Cdc48/p97-Ufd1-Npl4 is required for post-mitotic
nuclear envelope reassembly [71], one of the major mor-
phological transformations occurring at the end of cell
division.

Over-expression of the Cdc48/p97-Ufd1-Npl4 complex
could also assist in modification of chromatin by remov-
ing proteins involved in chromosome condensation from
the highly condensed mitotic chromatin. In addition, this
complex may directly regulate nuclear envelope assembly
by assisting proper assembly of nuclear envelope proteins
on the chromatin, which puts the proteins at the right
place to coordinate post-mitotic chromosome deconden-

Sgt1 and p97 ChIP resultsFigure 4
Sgt1 and p97 ChIP results. A) and B) are the graphical 
representations of the Sgt1 and p97 ChIP results obtained 
from CTLL/WT and CTLL/703 cells shown in Figure 3 (Aver-
age of two experiments).
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sation with nuclear envelope assembly [72]. A third func-
tion of over-expressed p97 could be its role with Cdc48
and the execution of "Start" in G1 by mediating the prote-
olysis of the G1-CDK inhibitors i.e., Far1 [73]. This would
be consistent with the idea that Cdc48/p97-Ufd1-Npl4
has a general role in regulating proper M-G1 transition
[72]. Finally, over-expressed p97 ATPase could extract
class I MHC from ER membranes [74]. Polyubiquitinated
substrates preferentially bind by p97 ATPase in complex
with two adaptor proteins, Ufd1 and Npl4. This associa-
tion triggers retrotranslocation of the substrates from the
ER membrane, followed by proteasome-mediated degra-
dation [75].

Increased expression of Sgt1 induced by Tax could also
affect the dynamics of its many protein partners resulting
in efficient substoichiometric complexes. Sgt1 (TPR+CS
domain) binds to Skp1 and this interaction might play a
role in activation of multiprotein complexes CBF3 and
SCF [76], assembly of the CBF3 complex, its turnover, and
influence proper kinetochore function [77]. Sgt1 (TPR+CS
domain) binds to Ctf13 and this binding might influence
proper CBF3 assembly [78]. Sgt1 also binds Rad6, which
is involved in DNA repair and protein degradation as well
as cell cycle progression [79]. Furthermore, Sgt1p contrib-
utes to the activity of the cyclic AMP (cAMP) pathway and
physically interacts with the adenylyl cyclase Cyr1p/
Cdc35p, where a Gα subunit-type protein called Gpa2p

and the GTP binding Ras proteins both of which are
implicated in adenylyl cyclase activation [80-83]. The
major effector of cAMP in eukaryotes is the cAMP depend-
ent protein kinase, or protein kinase A (PKA) [84]. In the
absence of cAMP, the catalytic subunit of PKA is found in
an inactive complex with the regulatory subunit. The
binding of cAMP by the regulatory subunit leads to disso-
ciation of the complex and activation of the catalytic sub-
unit [85]. In budding yeast, the adenylyl cyclase pathway
is notably involved in cell growth control and stress
responses [80], and also regulates the cell cycle by modu-
lating G1 cyclin expression [86-88] and the activities of
the anaphase-promoting complex/cyclosome and the SCF
pathway [89].

Therefore, given the role of Sgt1 in several different types
of multimeric protein complexes, it is possible that it acts
as some sort of protein chaperone, assembly factor, or
allosteric activator. This hypothesis is consistent with
structure predictions suggesting that the Sgt1 N-terminal
region is similar to the TPR regions of the Sti1/Hop co-
chaperone and the central CS domain adopts a fold simi-
lar to that of the p23 co-chaperone. Sti1/Hop facilitates
protein substrate transfer from Hsp70 to Hsp90, whereas
p23 stimulates the ATPase activity of Hsp90 and the
release of bound substrate [90]. Finally, several experi-
mental observations are also consistent with a role for
Sgt1 as a co-chaperone or assembly factor. First, Sgt1 is

Effect of Tax on Sgt1 and p97 protein levelsFigure 5
Effect of Tax on Sgt1 and p97 protein levels. A) One hundred microgram of total cell extracts from human (CEM and 
C81) and mouse (CTLL/WT and CTLL/703) cells were prepared and ran on a 4–20% SDS PAGE. All three C81, CTLL/WT, 
CTLL/703 express Tax and CEM served as a negative control. Western blots were with anti-Sgt1 (1:1000), anti-p97 (1:500) 
and anti-actin (1:5000) antibodies. Two forms of Sgt1 (A and B) were observed in human cells, where the A form is wild type 
protein and B form is the splice variant. B) Five microgram of either wild type or M47 Tax was transfected into CEM (5x106/
sample) cells. Following transfection cells were kept at 37°C for 48 hrs, followed by preparation of total extract and processed 
for western blot using a 4–20% SDS-PAGE. Similar antibodies as in panel A were used for the western blot and immune com-
plexes were detected using ECL.
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required to functionally activate the Skp1 and Ctf13 sub-
units of the CBF3 kinetochore complex but is not itself a
subunit of this complex [76]. Second, Sgt1 may be present
in substoichiometric quantities in SCF [76] and Cyr1

complexes regulating the M to G1 transition, and thirdly
Sgt1, like SKP1, is required for both the G1/S and G2/M
transitions during the cell cycle [79].

Effect of Tax on cellular promoters and its protein-protein interactionFigure 6
Effect of Tax on cellular promoters and its protein-protein interaction.A) Chromatin immunoprecipitation experi-
ments were used to test whether Tax could occupy Sgt1 or p97 promoters. CTLL/WT and CTLL/703 (7.5 × 106 cells/ChIP), as 
well as C81 (Tax expressing, 5.5 × 106 cells/ChIP) and CEM (negative control with no Tax expression, 5.5 × 106 cells/ChIP) 
were cross-linked, and processed for ChIP assay. Lanes 1, 4, 7 and 10 are "input" lanes where no immunoprecipitation was per-
formed prior to PCR (positive control). Lanes 3, 6, 9 and 12 contained no antibody, and only beads, for the immunoprecipita-
tion (negative control). Lanes 2, 5, 8 and 11 used a mixture of 500 ng of each TAb anti-Tax monoclonal antibodies (169, 170, 
171 and 172; amount of each antibody judged by running 100 ng of each purified antibody on 4–20% SDS-PAGE and stained for 
Heavy and light chains) as the experimental sample. The high salt wash step after immunoprecipitation contained 1000 mM (as 
opposed to 500 mM) salt. B) Two set of C81 cells were used for immunoprecipitation followed by western blot against Tax. 
First, unsynchronized C81 cells (2 mg total cellular extract, Lanes 1–6) where majority of cells were at the G1 phase (71%), 
were used for immunoprecipitation with anti-Sgt1 (1 μg), anti-p97 (1.2 μg), anti-cdk2 (0.75 μg) and IgG (1.2 μg) followed by 
western blot with anti-Tax polyclonal antibody. We have previously used this method to define a list of Tax binding proteins 
using low and high salt wash conditions [69]. We also enriched C81 cells for G2/M population (67%) by treating with low 
serum (1%) and nocodazole (Noco, 50 ng/ml) for 72 hrs prior to the immunoprecipitation [15]. Lanes 4, 5, 10 and 11 served as 
negative control for IP, and lanes 3 and 9 served as positive control for Tax binding protein under high salt conditions (cdk2). 
Lanes 6 and 12 were total cellular extract (Input, 50 μg) and lanes 1, 2, 7 and 8 served as the experimental sample. The high salt 
wash after immunoprecipitation contained 1000 mM salt.
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Conclusion
The Tax oncoprotein is considered the cause for mitotic
aberrations in HTLV-I infected cells. In addition to bind-
ing checkpoint factors and interfering with the MSC func-
tion, we propose a mechanism by which Tax induces these
aberrations through over-expression of factors associated
with kinetochore assembly. Wild-type Tax-expressing cells
displayed higher incidence of aneuploidy than the CREB
transactivation deficient mutant. Through microarray and
promoter analyses, we have identified 95 genes that were
over-expressed in CTLL/WT cells which may be regulated
through CREB activity. Furthermore, 11 of these genes are
involved in G2/M phase regulation, in particular kineto-
chore regulation. We have confirmed the regulation of
Sgt1 and p97/Vcp by CREB and Tax in vivo by performing
ChIP analysis. The over-expression of these factors may
contribute to the observed aneuploidy phenotype and dis-
rupt proper targeting of their binding partners. The
mitotic aberrations generated may be in the form of
improper spindle attachment and disassembly process
that results in chromosomal mis-segregation and hence
aneuploidy.

Methods
Cell culture
Chronic T Lymphocytic Leukemia (CTLL) cells stably tran-
fected with either wild-type Tax or the M47 Tax mutant
(319LL → AS) have previously been described [31]. For the
purpose of this study, they are designated as CTLL/WT
(CTLL-2 cells transfected with wild type Tax) and CTLL/
703 (CTLL-2 cells transfected with a CREB Tax mutant,
M47). A comparison of Tax expression in WT and 703
cells has been published previously [15,34]. Cells were
grown in RPMI-1640 with 10% FBS, 1% streptomycin,
penicillin antibiotics, and 1% L-glutamine, and at 5%
CO2, 37°C.

Metaphase chromosome spread
CTLL/WT and CTLL/703 cells were incubated in 5 ml of
complete media for 48 hrs. Both cultures were treated
with 50 μg colcemid for 45 mins. Next, samples were cen-
trifuged at 160 g for 10 mins. Cells were incubated at
room temperature in 0.075 M KCl for 30 minutes and
then fixed in 1 ml of methanol:glacial acetic acid (3:1).
Cells were then centrifuged and washed again with the fix-
ative solution for a total of three times. Finally, cells were
resuspended in 250 μl of fixative and dropped onto
prechilled slides at -20°C with a water vapor film formed
on them just before dropping the cell suspension to
induce better chromosome spread. Three to five drops of
70% glacial acetic acid was then added to remove cyto-
plasm. The slides were then allowed to dry overnight at
room temperature. Slides were processed in Dulbecco's
Phosphate Buffered Saline (D-PBS) for 1 minute, Giemsa
stain working solution (2 ml Giemsa stain diluted with 25

ml D-PBS) for 10 mins, and in distilled water for 30 secs.
After being dried at room temperature, cover slips were
mounted and allowed to dry. Slides were then imaged
using the Olympus BX-60 microscope (100x, oil immer-
sion) and Image-Pro Plus 5.1 software. Spreads with
clearly visible and distinct chromosomes were then
selected and counted.

Cytoplasmic RNA isolation
Cells were centrifuged at 4°C, 3000 rpm for 10 min.,
quickly washed with D-PBS without Ca2+/Mg2+, and cen-
trifuged twice. Pelleted cells were immediately frozen at -
80°C until all time points were collected. Cytoplasmic
RNA was isolated utilizing the RNeasy Mini Kit (Qiagen,
Valencia, CA) according to manufacturer's directions with
the addition of 1 mM dithiothreitol in Buffer RLN. Iso-
lated RNA was quantified by UV spectrophotometric anal-
ysis and 3 μg of RNA was visualized on a non-denaturing
1% agarose TAE gel for quality control.

Expression profiling
Six micrograms of cytoplasmic RNA from each sample
was used to synthesize double-stranded cDNA using the
Superscript Choice System kit and T7-(dT) 24 primer (100
pmol/μL) (Invitrogen). The cDNA was purified using phe-
nol/chloroform extraction and ethanol precipitation. The
cDNA was then used to perform in vitro transcription
using the BioArray HighYield RNA Transcript Labeling Kit
(T7) (Enzo, Farmingdale, NY). The biotin-labeled cRNA
was purified using the RNeasy Mini Kit (Qiagen) and
quantified by spectrophotometric analysis and analyzed
on a 1% agarose TAE gel. The biotin-labeled cRNA was
then randomly fragmented to ~s35–200 base pairs by
metal-induced hydrolysis using a fragmentation buffer
according to the Affymetrix Eukaryotic Target Hybridiza-
tion protocol. Two Murine Genome U74A GeneChips
(Affymetrix) were used per sample. This array contained
6,000 functionally characterized sequences from the
Mouse UniGene database (Build 74) and 6,000 Expressed
Sequence Tag (EST) clusters. The array was washed,
primed, and stained on the Affymetrix Fluidics Station
400 following manufacturer's recommendations. cRNA
was detected through a primary scan with phycoerythrin-
streptavidin staining and then amplified with a second
stain using biotin-labeled anti-streptavidin antibody and
a subsequent phycoerythrin-streptavidin stain. The emit-
ted fluorescence was scanned using the Hewlett-Packard
G2500A Gene Array Scanner, and the intensities were
extracted from the chips using Microarray Suite 4.0
(MAS4.0) software. All raw chip data was scaled in
MAS4.0 to 800 to normalize signal intensities for inter-
array comparisons.
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Data analysis
Comparative analyses were performed by normalizing the
fluorescence intensity of each probe using robust multi-
array average (RMA), as previously described [91]. The
mean of the signal intensities from duplicate experiments
was calculated. To filter for differentially expressed genes,
those genes that were absent in both experiments were
excluded from further analysis. Those genes that were
either up-or down-regulated in CTLL/WT cells by a magni-
tude of two-fold were compiled and functionally anno-
tated utilizing the Database for Annotation, Visualization,
and Integrated Discovery program (DAVID;[39]), as
detailed in Figure 2.

Utilizing Genbank accession IDs, promoter sequences
[2100 bp surrounding the predicted transcription start site
(TSS)] for our annotated genes were retrieved from Pro-
moSer [47,48], a large-scale database containing the pro-
moters of human, mouse, and rat genes. The following
criteria were used for the retrieval: 1) promoter sequence
encompassing 2000 bp upstream and 100 bp down-
stream of the TSS, 2) sequences were required to contain
a quality score of at least 2 and support score of 2, i.e. TSS
prediction is supported by one or more mRNAs, 3) in the
case of alternative promoters only the one that is best sup-
ported and 5' was included, and 4) promoters that
mapped to more than one loci or did not align well were
excluded. At least one third of the promoter sequences
retrieved were checked for proper alignment against the
mouse genome using Blastn [92] and MapViewer [93]
tools through NCBI. CREB (TGACGT/C), CREB/p300 (A/
GGGAGT), NFκB (GGGAA/CTTC/TCC), and SRF
(CCCATATATGG) consensus sequences obtained through
the TRANSFAC database [94] were searched within the
promoters obtained. Factors that contained the CREB or
CREB/p300 sequences within their promoters were fur-
ther probed for genes that contribute directly to mitosis,
cytokinesis, and microtubule organization.

Chromatin immunoprecipitation
Cells (5 × 106/immunoprecipitation) were formaldehyde
cross-linked (1% final volume, 15 mins. 37°C). Nuclei,

prepared by hypotonic lysis, were resuspended in lysis
buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.1),
sonicated to reduce DNA length to 200–1000 bp, and
debris was removed by centrifugation. The chromatin
solution was diluted 10-fold by ChIP dilution buffer
(0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM
Tris-HCl, pH 8.1, 167 mM NaCl) and precleared on pro-
tein A/G agarose beads pre-adsorbed with sonicated
salmon sperm DNA (10 mg/ml) and bovine serum albu-
min (BSA [10 mg/ml]). The solution was then centrifuged
and 1 ml of the supernatant was stored separately at 4°C
to be used as input. Precleared chromatin was incubated
with 10 μg of antibody overnight at 4 °C, followed by
immunoprecipitation with 60 μl of protein A/G-agarose
beads per immunoprecipitation. Immune complexes
were washed twice with Low Salt buffer (0.1%SDS, 1%
Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1),
twice with High Salt buffer (0.1%SDS, 1% Triton X-100, 2
mM EDTA, 20 mM Tris-HCl, pH 8.1, 500 mM NaCl), once
with LiCl (0.25 M LiCl, 1% NP40, 1% deoxycholate, 1
mM EDTA, 10 mM Tris-HCl, pH 8.1) and once with 1 M
TE, pH 8.0. Cross-linking was reversed by heating at 65°C
overnight in the presence of 20 μl 5 M NaCl. DNA was
recovered by digestion of proteins with 50 μg/ml protein-
ase K followed by phenol-chloroform extraction (twice)
and ethanol precipitation. Recovered DNA was resus-
pended in TE, pH 8.0. 10% of the recovered DNA was
used for each PCR amplification (35 cycles). The primers
used for PCR are as shown in Table 3.
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Table 3: Primers used for PCR

Accession # Gene ID Forward Reverse Size(bp) Correctly mapped

D87898 Arf1 ACCCTTGCTCGTTCTAGTGC GGTTTCGCTCCCACAAGAT 224 Yes
AF016583 Chek1 CCACCACACTTGCTTTCCTT GGAATCCAAATGCACAGCTT 583 Yes
AF098508 Dctn3 TTTGGGTGTACGTCCTGACA CAGCTCCTCCACTCGAGACT 486 Yes
NM_009503 p97(Vcp) ATTGCCTTTGTCGATTGGTC TCGGAAGGAAAGCTGCTCTA 228 Yes
BC046832 Ppp1cb AGCAGGGAAGGAAGGTCATT GGCGTTCTCACCTACGAGTC 529 Yes
AJ534939 Smc2l1 CTTACAGCCGTTTGCCTAGC CCGTTTTGAACATGGAAAGC 439 Yes
BC009167 Sgt1 AGCCGACTTAGGAAGGAAGC GTCTCGGAGCCCACTGTAAG 325 Yes
AF077002 Ywhah AGGTCCCCGTAGGTATGTCC CCCAGCCCTAACGGTCTT 507 Yes
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