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Introduction
Cloud computing offers scalability, flexibility, agility, and ubiq-
uity in terms of data acquisition, storage, communication, and 
analysis. It provides on-demand computing resources and 
remote service applications by connecting them to a user’s com-
puter, both of which are available over the Internet. The capa-
bilities of computing resources and service software over the 
Internet can meet the consumer’s interest with respect to well-
ness, especially in the case of population aging.1-4 Nowadays, 
the health care market is shifting its focus from volume-based 
to value-based services, which reward the providers on the basis 
of care, cost-effectiveness, and clinical case outcomes. In addi-
tion, a consumer voluntarily uses a smartphone and a wearable 
device for tracking his or her own vital signals in real time. Such 
an active participation in health management drives the require-
ment for a health care provider that offers more convenient 
access and interaction, which has resulted in a requirement for 
cloud computing.

Till date, several health care services based on cloud com-
puting have been considered. Health care services are mainly 
categorized into health management, care management, diag-
nostic support, image handling, medical practitioner assistance, 
patient connectivity, medical information distribution, clini-
cal research, and case management services. Recently, a cloud 

platform for elderly fall detection using an embedded tri-axial 
accelerometer and a global positioning system (GPS) was 
proposed.5 The platform provides features such as push notifi-
cations for fall alarms and real-time maps for tracking locations 
and obtaining phone numbers of hospitals that are near by. Tsoi 
et al6 proposed a cloud platform for managing blood pressure 
(BP), wherein each user’s BP was uploaded on a daily basis. 
The remote platform of the cloud provides efficient analytical 
performance for large volumes of data with a high velocity of 
data creation in a population-based study. Al Mamun et  al7 
proposed a cloud platform for supporting Parkinson patients 
by monitoring the patients to enable health care services, espe-
cially in a low-resource setting. Xia et  al8 developed a cloud 
platform for electrocardiogram (ECG) monitoring by con-
necting clients to mobile devices or Web browsers. It demon-
strated how ECG data that were obtained from a mobile phone 
at a certain frequency were uploaded and analyzed in the Web 
server. In addition, a variety of cloud-platform-based health 
care services have been presented in literature.9-17

In this article, we present a cloud platform for a remote pul-
monary function test (PFT), wherein the measurements are 
directly obtained using a smartphone microphone. The PFT is 
clinically used for evaluating lung functionality and thus used 
for diagnosing lung diseases such as asthma, allergies, chronic 
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bronchitis, respiratory infections, lung fibrosis, bronchiectasis, 
and chronic obstructive pulmonary disease (COPD). It is used 
to evaluate lung functionality by investigating how well the 
lungs take in and release air. For the PFT, a spirometer is the 
main component that is used as a medical device, the measure-
ments of which are used to obtain a time-volume curve and a 
volume-flow loop.18,19 From the measurements, the forced vital 
capacity (FVC), forced expiratory volume in 1 s (FEV1), FEV1/
FVC ratio, peak expiratory flow (PEF), forced expiratory flow 
at 25%, 50%, or 75% of the FVC (FEF25, FEF50, and FEF75), 
and forced expiratory flow between 25% and 75% (FEF25%-75%) 
can be quantized.20-22 As smartphone technology has the 
capacity for users to communicate with a health care provider, 
smartphone-based home spirometry has the potential for pro-
viding early diagnosis of lung disease for those who may have 
breathing problems on a day-to-day basis.22-27 We recently 
reported the feasibility of smartphone-based spirometry, but it 
required a mouthpiece adapter to maintain lip postures and to 
fix the distance between the lips and the microphone.28 In this 
article, we presented IBM Watson Internet-of-Things (IoT) 
platform-based remote PFT monitoring, the measurements 
for which were obtained using a smartphone microphone with 
no external devices. The contribution of this study is to present 
IoT-platform-based remote and real-time PFT monitoring. In 
this platform, we also presented the smartphone application for 
the FEV1/FVC estimator by means of a high-resolution time-
frequency representation. All signal acquisition and processing 
were directly in the smartphone device via a built-in micro-
phone. The computed FEV1/FVC ratio is then transferred, 
stored, and displayed in a cloud application based on the IBM 
Watson IoT platform. Using the developed platform, patients 
can freely measure PFT parameters without any restriction on 
time, and a physician can monitor the patients’ status and pro-
vide feedback to patients in real time.

Cloud-Platform-Based PFT Monitoring Using 
Smartphone
PFT using a smartphone built-in microphone

To realize the PFT using a smartphone’s built-in microphone, 
we first recorded forced exhalation sounds x(t) using the micro-
phone and analyzed the sounds obtained using the variable 
frequency complex demodulation (VFCDM) method, which 
has provided greater resolution than any other time-frequency 
representation methods, such as the smoothed pseudo Wigner-
Ville (SPWV), short-time Fourier transform (STFT), and 
wavelet transform (WT) methods.29-32 Indeed, the VFCDM 
showed better results than WT and STFT in the previous 
study.28 A x(t) can be represented using an instantaneous 
amplitude A(t), center frequency f0 , an instantaneous phase 
φ(t), and direct current component dc(t), which can then be 
formulated as shown in equation (1)
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where the first term dc t e j f t( ) − 2 0π  shifts the center frequency to 
f 0, and the second term ( ( ) / ) ( ( ))A t e j f t t2 4 0− +π ϕ  shifts the center 

frequency to 2 0f , which can be filtered out using a low-pass 
filter (LPF) with a cut-off frequency of f fc < 0. With the LPF, 
the filtered signal can contain only the instantaneous amplitude 
A(t) and the instantaneous phase φ(t) as shown in equation (3)
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As in equation (3), with the LPF having the cut-off fre-
quency of f c  <  f 0, the filtered signal can provide the same 
results as those in equation (3), which comprises only the 
instantaneous amplitude A(t) and the instantaneous phase φ(t).

We can re-formulate x(t) in equation (4), decomposing it 
into the sinusoidal modulations as shown in equation (6)
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We then applied Hilbert transform H(•) as follows
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The resultant analytic signal α βi it j t( ) ( )+  can then pro-
vide the instantaneous amplitude A ti ( ), instantaneous phase 
ϕi t( ), and instantaneous frequency f i ( )τ  as
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Thus, the combined use of the Hilbert transform and the 
multiplication by e

j f d
t

− ∫ 20 π τ τ( )
, which is called complex demod-

ulation method, provides a high-resolution time-frequency rep-
resentation and an accurate amplitude.

In the resultant time-frequency representation, we found the 
maximum frequency in each time samples. Finally, we plotted 

the maximum powers versus the accumulated maximum power, 
and the accumulated power versus the time samples, which 
correspond to the volume-flow curve and time-volume curve, 
respectively.

Figure 1 shows an example of the main procedure for 
obtaining the volume-flow curve and time-volume curve from 
the measured signal. Figure 1(A) shows the original audio sig-
nal measured using a smartphone’s built-in microphone, which 
provides a sampling rate of 44 100 Hz. We downsampled the 

Figure 1.  Main procedure for obtaining volume-flow curve and time-volume curve from a healthy subject: (A) measured signal obtained using a 

smartphone’s built-in microphone; (B) resultant time-frequency representation obtained using VFCDM; (C) maximum power versus accumulated 

maximum obtained using VFCDM; (D) accumulated power versus time obtained using VFCDM; (E) clinical volume-flow curve (V is volume and F is flow 

rate); and (F) clinical time-volume curve (T is time and V is volume).
VFCDM indicates variable frequency complex demodulation.



4	 Evolutionary Bioinformatics ﻿

signal to 2450 Hz, and filtered the signal using the seventh-order 
elliptic LPF with a cut-off frequency of 800 Hz. Figure 1(B) 
shows the resultant VFCDM-based time-frequency represen-
tation with the bandwidth normalized frequency of 0.03 Hz, 
and filter length of 64. Figure 1(C) and (D) shows the maxi-
mum powers versus the accumulated maximum power, and the 
accumulated power versus time, respectively. These figures 
correspond to the volume-flow and time-volume curves that 
are used for measuring the FVC, FEV1, FEV1/FVC ratio, and 
PEF as shown in Figure 1(E) and (F). More specifically, the 
maximum power and the accumulated maximum power in 
Figure 1(C) correspond to the flow rate and the total volume 
in Figure 1(E), respectively. The accumulated maximum power 
and time in Figure 1(D) correspond to the total volume and 
time in Figure 1(F), respectively.

Cloud platform for remote PFT monitoring

In the smartphone’s built-in microphone-based PFT, each 
subject may exhale at different angles with respect to the built-
in microphone or at different distance from the microphone. 
According to each measurement condition, the parameters 
FVC, FEV1, and PEF could be incorrectly estimated. On the 
contrary, the ratio FEV1/FVC is independent of the measure-
ment condition, and thus, it is currently a stable and accurate 
parameter that a physician can evaluate for diagnosing lung 
diseases. The FEV1/FVC ratio has been clinically accepted, 

especially for assessing airway obstruction. The American 
Thoracic Society (ATS) defined airway obstruction using the 
ratio lower than 0.75 in 1987,23 followed by the British 
Thoracic Society (BTS) with 0.70 in 1997,33 the National 
Institute for Health and Clinical Excellence (NICE) with 
0.75 in 2004,24 the ATS and the European Respiratory Society 
(ERS) with 0.75 in 2007,25 and the Global Initiative for 
Chronic Obstructive Lung Disease (GOLD) with 0.75 in 
2007.24 Thus, in this article, we limited our scope to consider 
the ratio FEV1/FVC.

For remote PFT monitoring, we sent only the value of the 
ratio FEV1/FVC to the cloud platform. To realize remote PFT 
monitoring, we adopted the IBM Watson IoT platform, which 
is a fully managed, cloud-hosted service that simplifies the 
management of data obtained from IoT devices.34 The plat-
form also provides natural language processing, machine learn-
ing, and image and text analytics. The application that makes 
use of the Bluemix IoT service generally comprises device-side 
programming, application-side programming, and a Bluemix 
IoT service configuration such as device and application regis-
tration, as illustrated in Figure 2. Note that the Bluemix is an 
implementation of IBM’s open cloud architecture that enables 
us to rapidly create, deploy, and manage cloud applications. 
The IBM Watson IoT platform is the platform that the 
Bluemix offers.

In the IoT service configuration, we first created an app on 
the dashboard and added the IoT service. Subsequently, we 

Figure 2.  Overview of application using Bluemix IoT service.
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registered 13 recruited subjects with their smartphones as 
devices and also registered the application for remote monitor-
ing. On the device-side, we programmed using the Java 
(Android phone) and Objective-C (iPhone) programming lan-
guages for the IoT service connection, which facilitates the 
publishing of the estimated FEV1/FVC value (events) for the 
IoT service and enables users to subscribe for the PFT-request 
from a physician (commands) using the IoT service. In the 
application-side programming, we programmed a Node-RED 
for the IoT service connection, which enables the users to sub-
scribe for the estimated FEV1/FVC value (events) from the 
IoT service and publish a PFT-request with a physician (com-
mands) to the IoT service. It should be note that Node-RED 
is a visual tool that facilitates the easy writing and processing of 
IoT messages, and is built on Node.js. Figure 3 shows the 
remote monitoring application nodes developed using Node-
RED. In the upper part (smartphone device), the inject node 
“Send FEV1/FVC Data” sends the estimated FEV1/FVC value 
into the flow when a user completes the PFT test using a 
smartphone. Subsequently, the function node “Assign Device 
ID” identifies the device identification (ID) number, and the 
output node “Send to IoT Service” sends the estimated FEV1/
FVC value with the assigned device ID to the remote monitor-
ing application. In the lower part (remote monitoring applica-
tion), the inject node “Set Up Measurement Interval according to 
Each Subject” sets up the PFT measurement interval according 
to each subject that is recommended by a physician. 
Subsequently, the function node “Identify Device for Notif ication” 
identifies the PFT-request time for each device, and the output 
node “Push Notif ication” sends the notification to each device 
(Figure 3).

In addition, when the smartphone (device) subscribes for 
the PFT-request (commands) or the application subscribes for 
the estimated FEV1/FVC value (events), message queue telem-
etry transport (MQTT) was used. Message queue telemetry 
transport is an ISO standard publish-subscribe-based “light-
weight” messaging protocol for use on top of the transmission 
control protocol/internet protocol (TCP/IP). It is designed for 
creating connections with remote locations where the network 
bandwidth is limited. The Bluemix IoT service acts as the 
MQTT broker, which is responsible for distributing messages 
to the connected smartphones (devices) and the remote moni-
toring application.

Experimental Results
Experimental protocol

To measure the audio signal, we used an Android Galaxy S6 
(Samsung, Seoul, South Korea), or an iPhone 6S (Apple, 
Cupertino, CA), and recorded each subject forced exhalation 
sounds, which were sampled at 44 100 Hz.

The subjects were required to breathe in their full lung 
capacity and then forcefully exhale as much air from the lungs 
as possible toward the smartphone’s built-in microphone as 
shown in Figure 4. The distance between the microphone and 
lips was 10 cm. The test was performed on 13 healthy subjects 
in an open-space environment at Wonkwang University 
Hospital. This study was approved by the institutional review 
and board of Wonkwang University Hospital. All participants 
provided written informed consent. The measured signals were 
down-sampled to 2450 Hz, and a seventh-order elliptic LPF 
with a cut-off frequency of 800 Hz applied to filter out the 
background noise. The tests were performed with three trials, 
and each trial result was sent to the IBM Watson IoT platform. 
To validate the results, the participants also performed the trial 
test with clinical equipment as a reference. The clinical data 
were obtained using Vmax software version IVS-0101-21-2B 
(manufactured by CareFusion Corporation, San Diego, CA, 
USA), which provided the FEV1/FVC ratio.

PFT results in smartphone application from 
smartphone microphone

Figure 5 shows the Android phone application developed using 
the Java programming language. Note that we also developed 

Figure 3.  Remote monitoring application nodes enabling to subscribe the estimated FEV1/FVC value (events) and publish PFT-request (commands) 

developed on Node-RED.

Figure 4.  Data acquisition using a smartphone via a built-in microphone.
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the iPhone application developed using the Objective-C pro-
gramming language. Figure 5(A) shows the screen snapshot for 
the measurement initialization. Once clicking the red button at 
the bottom, the recording is started. Each subject breathes in 
his or her full lung capacity and then forcefully exhales as much 
air from the lungs as possible toward the smartphone’s built-in 
microphone. By clicking the red button again, the recording is 
completed as shown in Figure 5(B). After the recording is 
obtained, the volume-flow curve is displayed with the esti-
mated FVC, FEV1, PEF, and FEV1/FVC as shown in Figure 
5(C). Each subject performed the recording with three trials by 
clicking the trial buttons (i.e. Trial 1, Trial 2, and Trial 3). 
Among the quantized four parameters, we sent only the FEV1/
FVC ratio value to IBM Watson IoT platform. A health care 
provider or a physician monitors the ratio values and provides 
feedbacks regarding the measurement interval. In the future 
work, we will perform the clinical study and verify the whole 
system including the feedback.

Remote PFT monitoring results

Figure 6 shows the monitoring of our developed remote PFT 
parameter FEV1/FVC obtained from one of the subjects based 
on the use of the IBM Watson IoT platform. The subject per-
formed three trials with the PFT using smartphone micro-
phone and sent the resultant data to the IoT service. Figure 
6(A) to (C) show three consecutively measured FEV1/FVC 
multiplied by 100 as percentages. The results indicate that the 
FEV1/FVC (%) could be remotely monitored when a subject 
performed the PFT via smartphone built-in microphone.

For 13 subjects with the registered 13 smartphones, we 
could monitor the FEV1/FVC values in 13 visualized windows. 

Comparing with the reference percentage of FEV1/FVC (%) 
obtained from the clinical equipment, we found that the abso-
lute error mean was 4.12 and the standard deviation was 3.45 
on all 13 subjects. In our developed platform, all the signal pro-
cessing was performed in the smartphone device. In more com-
plicated network system with numerous users and health care 
providers, the signal processing performed in smartphone will 
reduce the computation burden from cloud.

Conclusions
In this study, we presented IBM Watson IoT-platform-based 
remote PFT monitoring, the measurements of which were 
directly obtained using a smartphone’s built-in microphone 
with no external devices. With the developed applications on 
the cloud platform, patients can freely measure the PFT 
parameters without any restriction on time and space, and a 
physician can monitor the patients’ status in real time. In addi-
tion, based on the real-time monitoring, a physician can pro-
vide feedbacks to a patient regarding the necessary management 
steps and treatment. We believe that continuous monitoring 
facilitates the early detection of pulmonary disease by provid-
ing both physicians and patients with real-time PFT parame-
ters. In the cloud computing environment we developed, we 
used only the FEV1/FVC ratio, which is a stable and accurate 
value in any measurement environment. In other words, each 
subject may exhale at different angles toward the built-in 
microphone or with different distance between the lips and the 
microphone. Thus, according to each measurement condition, 
the other parameters of FVC, FEV1, and PEF could be incor-
rectly estimated. Thus, in future research, the effect of the 
measurement condition should be thoroughly investigated, and 
the parameters FVC, FEV1, and PEF should be available in the 

Figure 5.  Developed smartphone application: (A) measurement initialization, (B) recording the forceful exhalation, and (C) resultant volume-flow curve 

and estimated FVC, FEV1, PEF, and FEV1/FVC.
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Figure 6.  Our developed remote PFT parameter monitoring based on the IBM Watson IoT platform: (A) first trial result, (B) second trial result, and  

(C) third trial result.
The three consecutively measured FEV1/FVC values were multiplied by 100 as percentages.
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application for a more accurate diagnosis. Furthermore, since 
our developed platform and system provides a health care pro-
vider with only the remote monitoring, the future research 
should consider the alarm and feedback system. Then, we expect 
that the accumulated data will drive big data analytics, which 
will provide us with a better understanding of pulmonary dis-
ease based on an analysis of the patterns and trends recorded.
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