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Prediction of the protein secondary structure is a key issue in protein science.

Protein secondary structure prediction (PSSP) aims to construct a function that

can map the amino acid sequence into the secondary structure so that the

protein secondary structure can be obtained according to the amino acid

sequence. Driven by deep learning, the prediction accuracy of the protein

secondary structure has been greatly improved in recent years. To explore a

new technique of PSSP, this study introduces the concept of an adversarial

game into the prediction of the secondary structure, and a conditional

generative adversarial network (GAN)-based prediction model is proposed.

We introduce a new multiscale convolution module and an improved

channel attention (ICA) module into the generator to generate the

secondary structure, and then a discriminator is designed to conflict with

the generator to learn the complicated features of proteins. Then, we

propose a PSSP method based on the proposed multiscale convolution

module and ICA module. The experimental results indicate that the

conditional GAN-based protein secondary structure prediction (CGAN-PSSP)

model is workable and worthy of further study because of the strong feature-

learning ability of adversarial learning.
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1 Introduction

Proteins play important roles in life activities, such as signal transduction and

transmission, living material transportation, catalysis, and immunity (Saini and Hou,

2013; Pka et al., 2021). The function of a protein depends on its three-dimensional

structure, which is determined by the protein sequence and folding activities within a

living cell (Zou, 2000). The three-dimensional structure of a protein can be obtained by

X-ray crystallography, multi-dimensional magnetic resonance, and cryo-electron

microscopy, which are expensive and time-consuming, and these data are generally
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provided in the Protein Data Bank (PDB) (PDB, 1971; Berman

and Henrick Nakamura, 2003; Kim et al., 2008). Hence, it is

important for computer scientists to be able to predict the three-

dimensional structures of proteins from their sequences rapidly

and relatively inexpensively (Uniprot; Yang et al., 2016).

The protein secondary structure is the bridge of three-

dimensional structures and sequences, which is determined by

the effect of hydrogen bonds in the polypeptide chain (Rafid

et al., 2020; Grmez et al., 2021; Guo et al., 2021; Sharma and

Srivastava, 2021; Singh et al., 2021). Many studies have shown

that we can learn the three-dimensional structures by their

secondary structures, and thus the study of the protein

secondary structure can improve the accuracy of three-

dimensional structure prediction (Fischer and Eisenberg, 1996;

Zhou and Karplus, 1999; Ozkan et al., 2007; Wu et al., 2007).

Fortunately, computer software and machine learning methods

can help us predict the protein secondary structure based on the

protein amino acid sequence.

Since Chothla and Levitt (Levitt and Chothia, 1976)

proposed the first method for protein secondary structure

prediction (PSSP) in 1976, the development of PSSP has

spanned three stages (Cheng et al., 2020; Zhang et al., 2020).

In the first stage, the prediction accuracy of three states was about

60%–70%, such as in the methods of Chou and Fasman (1974)

(50%–60%) and GOR (Garnier J, Osguthorpe DJ, Robson B)

(64.4%) (Garnier et al., 1978), and most of these methods relied

on the statistical probability of the individual residue that

corresponds to the secondary structures. In the second stage,

the neighboring residue information of the protein was

considered by a sliding window, but the prediction accuracy

was still less than 65%, such as in the GOR III method

(Kloczkowski et al., 20022002). In the third stage, multiple

sequence alignment (MSA) profiles, such as position-specific

scoring matrices, were employed for PSSP (Altschul et al.,

1997), and the evolutionary information helped to increase

prediction accuracy to 70%, such as in PHD (Rost and

Sander, 1993; Rost et al., 1994) (72.9%) and PSIPREDH

(Jones, 1999) (76.5%). In the last decade, machine learning

methods have been used in PSSP, including support vector

machine (SVM) (Chatterjee et al., 2011), neural networks

(Mirabello and Pollastri, 2013), and fuzzy set theory (Nguyen

et al., 2015). Since 2015, deep-learning–based methods have been

used in PSSP to improve prediction accuracy (by more than

80%), such as SPINE (Dor and Zhou, 2007) (80%), SPIDER2

(Heffernan et al., 2015) (82%), deep conditional neural fields

(DeepCNF) (Wang et al., 2016a) (84%) and CRRNN (Zhang

et al., 2018) (86%).

The secondary structures are impacted by the internal

hydrogen bond in the polypeptide chain. Initially, researchers

classified the secondary structures of a protein into only three

states: helix (H), strand (E) and coil (C). Subsequently, the three

states were expanded to eight states to describe proteins with

more detailed local structure information (Jiang et al., 2017).

Most of the earlier methods perform well in three-state

prediction but perform poorly in eight-state prediction

because of the increased complexity. To address this problem,

many neural network–based methods have been explored for

eight-state prediction, including RaptorX-SS (Wang et al., 2011)

(64.8%), DCRNN (Li and Yu, 2016) and GSN (Zhou and

Troyanskaya, 2014) (66.4%). Compared with conventional

methods, deep learning has achieved excellent performance in

feature extraction and classification, and in recent years, the

prediction accuracy of eight states in PSSP has been improved by

deep neural networks such as DeepCNF (Wang et al., 2016a)

(68.3%), MUFOLD-SS (Fang et al., 2018) and CNNH_PSS (Zhou

et al., 2018) (70.3%). In addition, the fusion of the multi-features

of proteins is becoming an attractive means of improving

performance, for example, the fusion of amino acid sequences

and the multiple-sequence alignment profile (Wang et al.,

2016a). In GSN, the protein sequence and position-specific

scoring matrix (PSSM) have been combined for the prediction

of eight states; in CRRNN (Zhang et al., 2018), the PSSM and

physicochemical properties have been fused.

Generative adversarial networks (GANs) have achieved

superior performance in feature extraction and signal

reconstruction, and are widely used in image generation and

classification problems. Although we can regard PSSP as a

classification problem, a search of the literature did not reveal

any GAN-based PSSP research to date; thus, in this study we

introduce GAN into the PSSP field. GAN was proposed based on

the zero-sum game theory by Goodfellow et al. (Ian et al., 2014)

In the GAN, a generator and discriminator are designed to

conflict with each other; the generator learns the distribution

of sample data to generate fake data, and the discriminator is

used to determine if its input is the ground truth or fake data

produced by the generator. Through this antagonistic process,

GANs have achieved outstanding performance in feature

extraction and learning. GANs are widely used in image

processing, signal processing, natural language processing, and

biological information processing. Inspired by previous studies

(Ian et al., 2014; Mehdi and Simon, 2014), we posit that GAN has

a promising future in PSSP.

Leveraging the study of deep learning and PSSP, this study

introduces the conditional GAN-based PSSP (CGAN-PSSP)

model, in which the protein sequence and the corresponding

PSSP are used as the inputs, while the secondary structure is used

as the output. In this model, the secondary structure of the

protein sequence is generated by the generator, and the

discriminator is used to determine the authenticity of the

secondary structure. After model training, the generator is

used as the predictor for the protein secondary structure. We

also propose a PSSP method based on our proposed multiscale

convolution module and improved channel attention (ICA)

module. The proposed ICA module is added to the multiscale

convolution module and classification module so that the

proposed model can automatically understand the importance
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of different functional channels. The experimental results show

that our proposed model also achieves considerable performance

in PSSP.

2 Background knowledge

This section provides background knowledge, such as input

features, output features, and CGANs.

2.1 Input features

In this study, the one-hot form of the protein sequence is

connected with the corresponding PSSM as the input features.

The 20 natural amino acids are presented as A, C, D, E, F, G, H, I,

K, L, M, N, P, Q, R, S, T, V, W, Y, and other unknown amino

acids are denoted by X. Thus, the primary structure of any

protein can be expressed by a sequence of 21 letters. To

translate the protein sequence into a form that the prediction

model can easily learn, each amino acid is converted into a one-

hot form with a size of 1 × 21, in which there are only two

elements, with values of 0 or 1, and the position of value

1 corresponds to the class of amino acid. The rest of the

elements are set to 0. Thus, the protein with N amino acids

will be converted into a vector with the size of N × 21. The

corresponding one-hot coding forms of the 21 amino acids are

described as Eq. 1:

A → [1, 0, 0, 0,/, 0, 0]
C → [0, 1, 0, 0,/, 0, 0]

//
X → [0, 0, 0, 0,/, 0, 1]

(1)

A PSSM is generally used to present the evolutionary

information of biological sequences, and it can find a long-

range correlation of the residue sequence. As shown in

Figure 1, the PSI-BLAST (Altschul et al., 1997) algorithm is

often used to obtain the PSSM of protein sequences according to

four steps: 1) all of the sequences that are similar to the given

sequence in the database are found; 2) the position frequency

FIGURE 1
Construction process of the position-specific scoring matrix.
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matrix of each amino acid is constructed; 3) the position

probability matrix of each amino acid is constructed; and 4)

the final PSSM is produced.

In this study, the size of the PSSM is N × 21, and the S-shaped

function s(x) � 1/e−x is used to normalize the scoring matrix

into the range of [0, 1]. As the length of most protein sequences is

less than 700, the one-hot coding of residue sequences and the

size of the PSSM are generally unified into 700 × 21. That is, the

sequences whose length is greater than 700 will be divided into

two overlapping sequences, while the sequences whose length is

less than 700 will be augmented by filling in zeros. Thus, the input

feature of the prediction model is a matrix with the size of 700 ×

42, as shown in Figure 2. In the constructed matrix, the first to

21st columns are the one-hot coding form of the residue

sequence, and the 22nd to 42nd columns in each row are the

PSSM of the corresponding amino acids.

2.2 Conditional GANs

The GAN was proposed in 2014 by Goodfellow et al. (Ian

et al., 2014) based on the zero-sum game theory. A GAN usually

consists of a generator and a discriminator, which can improve

the performance of the generator in adversarial learning. Also in

2014, Mehdi and Simon (2014) proposed a CGAN by adding

conditional information. The main idea of the CGAN is to add

relevant conditional information to the generator and

discriminator, enabling the model to conditionally generate

specific signals. The overall structure of the CGAN is shown

in Figure 3.

In the generator, a given input signal and additional

information are used as the input of the neural network to

output the generated signal. Then, the discriminator

determines whether its input signal is true or false. In this

work, the generator is used to generate the “false” secondary

structure, and the discriminant is used to judge the authenticity

of the secondary structure. When the input signal of the

discriminant is the secondary structure generated by the

generator, the discriminant should discriminate it as “false”;

when the real secondary structure is inputted into the

discriminant, it should be discriminated as “true.” The loss

function is then used to calculate the errors in the judgment

of the discriminator. Thus, the generator and discriminator

conflict with each other.

In the CGAN, it is expected that the generator can generate

false signals that infinitely approach the real signals; it is also

expected that the discriminator can accurately distinguish the

true and false signals under the given conditions. Hence, the loss

function of the CGAN is constructed as follows:

min
G

max
D

V(D,G) � Ex~pdata[logD(x∣∣∣∣y)] + Ez~pz(z)[log(1
− d(G(x∣∣∣∣y)))], (2)

where p z (z) is the input signal, G is the generator, D is the

discriminator, and Pdata represents the real data.

FIGURE 2
Concentrated matrix of the PSSM and one-hot form of
protein sequences (Guo et al., 2020).

FIGURE 3
Block diagram of the CGAN.
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3 Proposed CGAN-PSSP model

In this study, we propose a novel PSSP based on the CGAN,

called CGAN-PSSP, which is described below.

3.1 Overview of the proposed CGAN-PSSP
model

The proposed CGAN-PSSP has a generator and a

discriminator. In this model, the input of the generator is a

700 × 42 vector composed of amino acid coding features and a

PSSM, and the output is a 700 × 8 (eight-state) or 700 × 3 (three-

state) vector that is the predicted protein secondary structure.

Thus, the generator is the predictor behind the Protein secondary

structure prediction. The input of the discriminator is the

combination of the secondary structure and the input feature

of the generator, and the output is the discriminant results, as

shown in Figure 4. When the secondary structure is real, the

result of the discriminant should be true; otherwise, the generated

result of the generator should be determined as false. For the

generator, we expect the secondary structure to be as realistic as

possible; for the discriminator, it is expected to always determine

that the secondary structure generated by the generator is false. In

the end, we expect a balance should be reached in the game.

Because the purpose of CGAN-PSSP is to construct a powerful

generator, the structure of the generator should be slightly more

complex to generate a sufficiently realistic “false secondary

structure.” The main flow of the CGAN-PSSP model is shown

in Figure 4.

3.2 Generator

In CGAN-PSSP, the key function of the generator is to

generate a “false” sequence of secondary structures based on

the input features of protein sequences. The generator of CGAN-

PSSP combines one-dimensional convolution (Guo et al., 2020),

and our proposed multiscale convolution to capture the complex

features of proteins. The one-hot form of the protein sequence

and PSSM are combined as the input feature of the generator.

Three continuous multiscale convolutions are used to extract the

features, and the 700 × 42 input feature is upsampled to 700 ×

2048. To prevent the loss of the original feature, the input feature

with the size of 700 × 42 is connected to the output of the

multiscale convolution module, and a feature map with the size

of 700 × 2090 is then produced. Subsequently, a one-dimensional

convolution module is used to subsample the 700 × 2090 feature

map into a 700 × 8 or 700 × 3 feature map that corresponds to the

eight states and three states of the secondary structure prediction.

The structure of the generator is shown in Figure 5, and the

hyperparameters are shown in Table 1.

FIGURE 4
Schematic of the proposed CGAN-PSSP.
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FIGURE 5
Generator structure of CGAN-PSSP.

TABLE 1 Hyperparameters of the generator structure in CGAN-PSSP.

Operation Input Convolution kernel size Step Output

Multiscale convolution 700 × 42 11 1 700 × 256

Multiscale convolution 700 × 256 11 1 700 × 512

Multiscale convolution 700 × 512 11 1 700 × 2048

Concatenation 700 × 2048 — — 700 × 2090

700 × 42

One-dimensional convolution 700 × 2090 11 1 700 × 512

One-dimensional convolution 700 × 1,024 11 1 700 × 128

One-dimensional convolution 700 × 512 11 1 700 × 32

One-dimensional convolution 700 × 128 11 1 700 × 16

One-dimensional convolution 700 × 64 11 1 700 × 8 (700 × 3)
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3.2.1 Multiscale convolution module
Inception (Szegedy et al., 2015) was the first concept of

multiscale convolution, and several modified versions have

since been proposed to improve the performance (Szegedy

et al., 2016; Szegedy et al., 2017). Inspired by the Inception

network, we introduce an improved multiscale convolution

(MSC) module into PSSP to extract the features of protein

sequences. As shown in Figure 6, the MSC module is

composed of a one-dimensional convolution operation

with a convolution kernel size of 1 (1 Conv) and a one-

dimensional convolution operation with a convolution

kernel size of 3 (3 × 3 Conv). The Mish function (Misra,

1908) is used as a nonlinear activator. Moreover, an ICA

module is used in the MSC module to obtain the importance

of each channel. In the proposed MSC module, Xi represents

the input of layer i, Xi + 1 represents the output of layer i, and

the ICA block represents the ICA module.

3.2.2 Improved channel attention module
The main function of the ICA mechanism is to enable the

model to automatically understand the importance of each

functional channel in the feature map, in order to improve

the expression ability and function fitting ability of the model.

The Squeeze and Excitation (SE) Net (Jie et al., 2017) is a classic

ICA mechanism network that is composed of SE operations. The

SE will produce a weight for each feature map of the channel to

indicate the relevance between the channel and the key

information.

However, the number of parameters contained in the original

SE Net is too small to accurately represent the importance of each

channel in PSSP. Accordingly, we improved the original SE Net

by adding two convolution operations to the Squeeze operation

to increase the number of parameters. This allows us to improve

the ability of the ICA mechanism to express the importance of

each channel in PSSP. The ICA module is shown in Figure 7, in

which 1D Conv represents a one-dimensional convolution

operation with a convolution kernel size of 3, Global Pooling

represents a global average pooling operation, and FC represents

a full connection operation. The sigmoid represents the sigmoid

function, and the final feature represents the feature map with

channel importance. The ICA module is added to the MSC and

classification modules so that the proposed model can

automatically understand the importance of different

functional channels.

3.2.3 One-dimensional convolution module
The core ideas of the convolutional neural network (CNN)

(Lecun, 1989) are the perceptual field and weight sharing. The

perceptual field is used to extract the local features of input

signals. The perceptual field is conducted by a convolution

operation that can be regarded as a sliding window, and its

mathematical formula can be described as follows:

FIGURE 6
Schematic of the proposed multiscale convolution (MSC)
module.

FIGURE 7
Schematic of the improved channel attention (ICA) module.
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y(k) � h(k)pu(k) � ∑N
i�1
h(k − i)u(i), (3)

where h represents the signals, u represents the in-process

signals, N is the size of the input signal, and y is the

convoluted signal.

The one-dimensional convolution operation (Guo et al.,

2020) is used as the basic operation to extract the features of

proteins. The operation process of the one-dimensional

convolution in the model is shown in Figure 8, where the

convoluted signal is a 700 × M matrix, and the filter size of

the convoluted signal is N × M. Because the output size depends

on the number of convolution signals (R), the size of the output

signal is 700 × R.

3.3 Discriminator

In the CGAN-PSSP model, the function of the discriminator

is to judge the truth or falsehood of the secondary structure. If the

secondary structure generated by the generator is false, the

judgment of the discriminator should be false. For the real

secondary structure sequence, the judgment of the

discriminator should be true. Figure 9 depicts the structure of

the discriminant, whose input is a combination of the secondary

structure and amino acid feature matrix. Therefore, when the

model is used to predict three states, the size of the input feature

is 700 × 45; when the model is used to predict eight states, the size

of the input feature is 700 × 50.

Four continuous one-dimensional convolutions are used

to sample the input features into a map with the size of 700 ×

1. Finally, the sigmoid function is used to convert all the

values of the output matrix into the probability of [0, 1]. Each

value in the output matrix represents the truth or falsehood

of the corresponding residue on the secondary structure

sequence. In the training process, when the secondary

structure is true, the output is a matrix with all values of

1. When the secondary structure is false, the output is a

matrix whose values are all 0. In the testing process, if the

value in the output matrix is greater than 0.5, the

corresponding secondary structure is judged to be true; if

the value is less than or equal to 0.5, it is judged to be false.

Table 2 lists the parameter settings of the discriminator in

the CGAN-PSSP model.

FIGURE 8
Operational process of the one-dimensional convolution (Guo et al., 2020).

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Jin et al. 10.3389/fbioe.2022.901018

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.901018


3.4 Loss function

In this work, the discriminator uses the mean square error

(MSE) function as the loss function. Cross-entropy is a popular

loss function in deep learning for classification problems (Bahri

et al., 2021; Zhu et al., 2021). To prevent the prediction model

from becoming overfitted with the increase of the weight, this

study introduces an improved version of the cross-entropy

function to improve the performance according to the

characteristics of the secondary structure, so that the

performance is satisfactory for one-hot distribution as well as

uniform distribution of data. The improved loss function

formula is

loss � (1 − ε)⎡⎣ −∑
x

p(x)log(q(x))⎤⎦ + ε∑n
i�1

1
n
⎡⎣ −∑

x

log(q(x))⎤⎦,
(4)

where ε ∈ (0, 1), x represents the label category, p(x) represents
the probability distribution of the true value when the label

category is x, q(x) represents the probability distribution of the

predicted value when the label category is x,

ε ∈ (0, 1),E � ∑n
i�1ei, and n represents the number of the label

categories.

4 Proposed MCNN-PSSP model

We propose a multiscale CNN to the secondary structure,

calledMCNN-PSSP, based on theMSCmodule and ICAmodule.

4.1 Overview of the proposed CGAN-PSSP
model

The input features of the MCNN-PSSP model are the

combination of protein-coding features and the PSSM. First,

the MSC module expands the size of 700 × 42 input sequence

features to 700 × 256 in order to extract original features. To

prevent feature loss, the 700 × 42 input feature is connected to the

output of the MSC module. Then, the classification module

convolves the 700 × 298 feature tensor into the output tensors

with a size of 700 × 8 or 700 × 3, which corresponds to the eight

or three states of the protein secondary structure, respectively.

The ICA module is added to the MSC module and the

classification module so that the model can automatically

understand the importance of different functional channels.

The overall framework of the model is shown in Figure 10.

The parameter settings are listed in Table 3.

FIGURE 9
Discriminator structure of CGAN-PSSP.

TABLE 2 Hyperparameters of discriminator structure on eight-state prediction.

Operation Input Convolution kernel size Step Output

Concatenation 700 × 42, 700 × 8 — — 700 × 50

One-dimensional convolution 700 × 50 3 1 700 × 36

One-dimensional convolution 700 × 36 3 1 700 × 18

One-dimensional convolution 700 × 18 3 1 700 × 6

One-dimensional convolution 700 × 6 3 1 700 × 1

Sigmoid 700 × 1 — — 700 × 1
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4.2 Prediction module

The classification module in MCNN-PSSP is used to analyze

the extracted features and carry out the secondary structure

classification of three or eight states. The structure of the

classification module is depicted in Figure 11, which is

composed of a U-net and a one-dimensional convolution.

U-net consists of a downsampling process and upsampling

process, which are symmetrical in structure. Skipping

connections can enhance the contact between the shrinking

path and expanding path. To better analyze the extracted

features, the ICA module is also integrated into the U-net.

The one-dimensional convolution module consists of one-

dimensional convolution operations, batch regularization, and

Mish activation functions. It is responsible for converting a 700 ×

512 feature map into a 700 × 8 or 700 × 3 output, which

corresponds to the eight or three states of the secondary

structure, respectively.

FIGURE 10
Schematic of the structure ofMCNN-PSSP. Concat, concatenation operation;MSC,multiscale convolutionmodule; 1DConv, one-dimensional
convolution operation.

TABLE 3 Hyperparameters of MCNN-PSSP

Operation Input Convolution kernel size Step Output

Multiscale convolution 700 × 42 11 1 700 × 84

Multiscale convolution 700 × 168 11 1 700 × 256

Concatenation 700 × 256 700 × 298

700 × 42

U-net 700 × 298 11 1 700 × 298

Concatenation 700 × 298 700 × 340

700 × 42

One-dimensional convolution 700 × 340 11 1 700 × 210

One-dimensional convolution 700 × 210 11 1 700 × 128

One-dimensional convolution 700 × 128 11 1 700 × 64

One-dimensional convolution 700 × 64 11 1 700 × 32

One-dimensional convolution 700 × 32 11 1 700 × 16

One-dimensional convolution 700 × 16 11 1 700 × 8 (700 × 3)
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5 Experiment and analysis

To verify the performance of the proposed model, we used

several popular datasets and metrics in this work.

5.1 Index

The Q score (Jiang et al., 2017) was used to evaluate the

performance of the proposed PSSP model. Q score is

defined as the percentage of residues that is correctly

predicted in all amino acid residues, and its formula can

be expressed as

Qc � 1
res

∑c
i�1
Tii, (5)

where c is the number of labels, the three states correspond to Q3,

the eight states correspond to Q8, res is the number of all amino

acid sequences, and Tii represents the correct number of amino

acids in the i-state.

5.2 Datasets

Four datasets were used in this study:

1) CB513 (Cuff and Barton, 1999) was proposed by Cuff and Barton,

and the similarity among these proteins is less than 25% to ensure

minimal homology. Therefore, it is a dataset that contains no

homologous proteins.

2) CullPDB (Wang and Dunbrack, 2003) was produced with

PISCES CullPDB server; it is a large dataset containing no

homologous proteins, and each residue sequence has a

corresponding secondary structure. Because CullPDB and

CB513 have redundant information on the sequences, the

sequences whose similarity in CULLPDB is greater than 25%

to those in CB513 are deleted, and many repeat sequences in

CullPDB are also discarded. Thus, only 5,365 protein

sequences remain.

3) CASP (Predictioncenter) is a non-homologous protein

dataset constructed for a biennial protein structure

prediction competition. To compare the proposed method

with other prediction models, CASP10 (Kryshtafovych et al.,

2014) and CASP11 (Moult et al., 2014) are employed, which

have the same characteristics. These two datasets contain

123 sequences and 105 sequences, respectively, and are the

most frequently used datasets in recent years.

The above datasets are publicly available and can be accessed

from the relevant websites. CullPDB and CB513 are provided at

http://www.princeton.edu/~jzthree/datasets/ICML2014/.

CASP10 and CASP11 can be downloaded from http://

predictioncenter.org/. In keeping with other prediction models,

these four datasets were preprocessed as follows: CullPDB was

split into three subsets with sequences 1–4,850 used only for

training, sequences 4,850–5,053 used only for verification, and the

FIGURE 11
Prediction module in MCNN-PSSP.
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remaining 272 used for testing, and the remaining three datasets were

only used for testing the model.

5.3 Model training

The CGAN-PSSP model was trained on the Nvidia’s Titan

RTX GPU. The model structure was implemented by Keras, and

the Mish and Softmax functions were used as activators for the

model. The weight was initialized by MSRA, and Adam

optimization algorithm (Kingma and Ba, 2014) was used to

automatically update the weight and learning rate of the

model. The training time was set to 750, because the

prediction accuracy of the model tended to be stable. Table 4

shows the Q8/Q3 training accuracy and validation accuracy of

the proposed methods on the CullPDB dataset.

5.4 Model testing and comparison

The remaining 272 sequences in CullPD, SB 513, CASP10, and

CASP11 were only used for testing the model. Tables 5, 6 show the

Q8 accuracy and Q3 accuracy of CGAN-PSSP and other prediction

methods, respectively, on the four testing sets. The Q8 accuracy and

TABLE 4 Q8/Q3 of the proposed methods on CullPDB.

Training set (%) Validation set (%) Training set (%) Validation set (%)

Q8 accuracy 86.7 75.1 87.4 84.1

Q3 accuracy 92.4 85.9 96.5 87.2

CGAN-PSSP CGAN-PSSP MCNN-PSSP MCNN-PSSP

TABLE 5 Q8 of different prediction models (-- means no testing).

Method CullPDB (%) CB513 (%) CASP10 (%) CASP11 (%)

RaptorX-SS Wang et al. (2011) 69.7 64.9 64.8 65.1

GSN Zhou and Troyanskaya (2014) 72.1 66.4 — —

DeepCNF Wang et al. (2016a) 75.2 68.3 71.8 72.3

DCRNN Li and Yu (2016) -- 70.4 73.9 71.2

SSREDN Wang et al. (2016b) 73.1 68.2 — —

CNNH_PSS Zhou et al. (2018) 74.0 70.3 — —

MUFOLD-SS Fang et al. (2018) — 70.5 74.2 71.6

CRRNN Zhang et al. (2018) — 71.4 73.8 71.6

F1DCNN-SS Guo et al. (2020) 74.1 70.5 74.9 71.3

MCNN- PSSP 74.2 70.6 74.9 71.5

CGAN- PSSP 74.0 70.3 74.6 71.3

TABLE 6 Q3 of different prediction models (-- means no testing).

Method CullPDB (%) CB513 (%) CASP10 (%) CASP11 (%)

RaptorX-SS Wang et al. (2011) 81.5 78.3 78.9 79.1

JPRED Cuff et al. (1998) 82.5 83.3 82.4 82.0

DeepCNF Wang et al. (2016a) 85.4 82.3 84.4 84.7

SSREDN Wang et al. (2016b) 84.2 82.9 — —

MUFOLD-SS Fang et al. (2018) — 82.7 84.3 82.3

CRRNN Zhang et al. (2018) — 85.3 86.1 84.2

F1DCNN-SS Guo et al. (2020) 86.2 84.5 87.8 84.7

MCNN-PSSP 86.3 84.7 87.7 84.8

CGAN-PSSP 86.0 84.3 87.4 84.8
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Q3 accuracy of the CGAN-PSSPmodel on the four test sets show the

CGAN-PSSP model is not competitive when compared with the

accuracy of the other models. However, MCNN-PSSP is more

competitive than the other methods in terms of Q8 and

Q3 accuracy. The prediction model of CGAN-SS is different

from the current deep-learning-based method, and it is an

adversarial learning model. In our method, a generator and

discriminator are designed to conflict with each other. The

generator learns the distribution of sample data to generate fake

data, and the discriminator is used to determine if its input is the

ground truth or fake data produced by the generator. Thus, the

GAN-based method can reduce the dependence of the training

dataset in the PSSP. However, the performance of other deep-

learning–based methods relies on the training datasets, which are

difficult to acquire and limited in quantity. For a given dataset, in

terms of the Q8 accuracy and Q3 accuracy, the CGAN-PSSP is not

competitive compared with the other models. Because this is an

exploratory work to verify the performance of the GAN for PSSP, we

show that the feature learning and pattern classification ability of

adversarial learning is workable in this field. However, we

acknowledge that there is a good deal of room for performance

improvement in GAN-based PSSP.

6 Conclusion

In this work, we proposed CGAN-PSSP, a novel PSSP model

based on CGAN, which can be used to predict the eight-state and

three-state protein secondary structure. In the proposed model,

the generator is used to predict the secondary structure of

proteins with the input of the PSSM and protein sequences,

and a discriminator is designed to conflict with the generator.

Accordingly, the generator can learn the complicated features of

protein sequences to predict the protein secondary structure. In

addition, we introduce a new multiscale convolution that has a

modified ICAmodule. This study demonstrates that GAN can be

used for PSSP, and that generative adversarial learning has great

potential for protein structure prediction. Furthermore, we

combined U-net with the proposed MSC and ICA modules to

propose a PSSPmethod. However, improvements can be made in

several areas, such as in the loss function and model structure.

The experimental results indicated that the proposed methods

achieved satisfactory performance compared with other

conventional models and that the proposed multiscale

convolution module and ICA module were effective.

GAN is a neural network model based on zero-sum game

theory. In GAN, a generator and discriminator are designed to

conflict with each other, the generator learns the distribution of

sample data to generate fake data, and the discriminator is used

to determine if its input is the ground truth or fake data that are

produced by the generator. Through this antagonistic process,

GAN has outstanding capability in feature extraction and

learning compared with conventional model structures. The

structure of GAN can have a strong influence on the

performance of PSSP tasks; however, questions about model

structure construction, model training, and loss function remain

to be answered. Furthermore, the proven structures and modules

of GAN in image generation tasks are worthy of study in PSSP

tasks because of their superior performance in feature extraction

and signal reconstruction.
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