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Abstract
Despite improvements in antiretroviral therapy, human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive 
disorders (HAND) remain prevalent in subjects undergoing therapy. HAND significantly affects individuals’ quality of life, 
as well as adherence to therapy, and, despite the increasing understanding of neuropathogenesis, no definitive diagnostic 
or prognostic marker has been identified. We investigated transcriptomic profiles in frontal cortex tissues of Simian immu-
nodeficiency virus (SIV)-infected Rhesus macaques sacrificed at different stages of infection. Gene expression was com-
pared among SIV-infected animals (n = 11), with or without CD8+ lymphocyte depletion, based on detectable (n = 6) or 
non-detectable (n = 5) presence of the virus in frontal cortex tissues. Significant enrichment in activation of monocyte and 
macrophage cellular pathways was found in animals with detectable brain infection, independently from CD8+ lymphocyte 
depletion. In addition, transcripts of four poly (ADP-ribose) polymerases (PARPs) were up-regulated in the frontal cortex, 
which was confirmed by real-time polymerase chain reaction. Our results shed light on involvement of PARPs in SIV infec-
tion of the brain and their role in SIV-associated neurodegenerative processes. Inhibition of PARPs may provide an effective 
novel therapeutic target for HIV-related neuropathology.
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SIVE	� SIV-associated encephalitis
SAIDS	� Simian AIDS
PARPs	� Poly(ADP-ribose) polymerases
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RNA	� Ribonucleic acid
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GAPDH	� Glyceraldehyde 3-phosphate dehydrogenase
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NDV	� Low/undetectable SIV in the brain
DEGs	� Differentially expressed genes
NPAS	� Neuronal PAS Domain Protein
EPSTI	� Epithelial stromal interaction
SLFN	� Schlafen family member
MAMU-A	� Major histocompatibility complex, class I, A 

(Rhesus monkey)
IFN	� Interferon
ISGs	� Type I interferon-stimulated genes
DDX	� DExD/H-Box helicase
RIG1	� Retinoic acid-inducible gene I
PSMB	� Proteasome 20S subunit beta
NCF	� Neutrophil cytosolic factor
STAT​	� Signal transducer and activator of 

transcription
CSF1	� Colony-stimulating factor 1
CSF1R	� Colony-stimulating factor 1 receptor
MNDA	� Myeloid cell nuclear differentiation antigen
MIF	� Macrophage migration inhibitory factor
IFI	� Interferon-induced protein
IRF	� Interferon regulatory factor
MX1	� MX dynamin-like GTPase 1
OAS1	� 2′-5′-Oligoadenylate synthetase 1
TLR	� Toll-like receptor
NADPH	� Reduced nicotinamide adenine dinucleotide 

phosphate
C1Q	� Complement component 1q
C3	� Complement component 3
TNFSF10	� TNF superfamily member 10
Th	� T helper cell

Introduction

The advent of combination antiretroviral therapy (cART) 
resulted in a 50% decline in rates of AIDS-related deaths and 
a 40–50% decrease in the incidence of human immunode-
ficiency virus (HIV)-associated dementia (HAD) (Maschke 
et al. 2000). Yet, an estimated 50% of infected patients 
exhibit HIV-1 central nervous system (CNS) infection (Zhao 
et al. 2009), with approximately 30% of people living with 
HIV (PLWH) progressing to some form of HIV-associated 
neurocognitive disorder (HAND) (Heaton et al. 2010). Even 
in HIV-infected individuals on combined anti-retroviral ther-
apy (cART), low-level viral replication persists in the central 
nervous system (CNS) (Spudich 2016). Residual viremia as 
a result of incompletely suppressive cART (Massanella et al. 
2013, 2012) is associated with low-level immune activation 
driving chronic inflammation (Klatt et al. 2013; Massanella 
et al. 2016). It has been shown that both HIV and Simian 
immunodeficiency virus (SIV) can enter the CNS during 
early stages of infection (Resnick et al. 1988; Strickland 
et al. 2014), and there is compelling evidence that the brain 

is a putative reservoir for HIV (Marban et al. 2016; Wal-
let et al. 2019). Persistent CNS infection and inflammation 
may contribute to the development of HAND (Valcour et al. 
2012), which remains a major cause of morbidity among 
HIV-infected individuals. As HAND-related cognitive 
decline is exacerbated by age-associated neurodegenera-
tion, the prevalence of HAND is only expected to escalate 
with cART-increased life expectancy (Fogel et al. 2015). 
Moreover, if therapy is interrupted, viral rebound is going 
to occur (Andrade et al. 2020; Palmisano et al. 2007; Saez-
Cirion et al. 2013), and because HIV is able to replicate in 
the CNS, brain-specific viral variants are found at rebound 
after interruption of cART (Gianella et al. 2016).

While progress has been made in understanding the patho-
physiology of HAND and neurological complications of HIV-
acquired immunodeficiency syndrome (neuroAIDS) under con-
ditions of high viral load, the host’s inflammatory responses to 
low-level chronic systemic infection and how this exacerbates 
neuronal injury and dysfunction in the brain are incompletely 
understood. Infection of Rhesus macaques (Macaca mulatta) 
with Simian immunodeficiency virus (SIV) in the absence of 
therapy offers a well-established animal model for the study of 
the relationship of HIV infection and neuropathogenesis (Lam-
ers et al. 2015; Mallard and Williams 2018; Strickland et al. 
2014), while avoiding the confounding factor of cART (Hatzi-
ioannou and Evans 2012; Murray et al. 1992; Williams et al. 
2008). Approximately 30% of Rhesus macaques infected with 
the heterogeneous SIVmac251 viral swarm (Strickland et al. 
2011) develop within 2–3 years (Budka 1991; Wiley et al. 1999) 
SIV-associated encephalitis (SIVE), the pathological hallmark 
of neuroAIDS, which is diagnosed post mortem by the presence 
of virus and abnormal histopathology features, such as inflam-
mation of brain tissues and formation of multinucleated giant 
cells. When animals are depleted of CD8+ lymphocytes using 
an anti-CD8+ antibody before virus inoculation (Cartwright 
et al. 2016), the incidence is elevated to > 85% in less than 
6 months. Thus, CD8+ lymphocyte depletion provides a useful, 
rapid disease model with increased incidence of brain infection 
and neuropathology (Schmitz et al. 1999; Williams et al. 2005).

Myeloid cells accumulate in the meninges and choroid 
plexus during early infection and in the perivascular space 
and SIVE lesions in infected macaques during late infection 
(Nowlin et al, 2015). In particular, SIVE lesions are composed 
of CD68+ CD163+ macrophages during early infection, as 
well as SIV-infected macrophages recruited terminally during 
simian AIDS (SAIDS) (Campbell et al. 2014; Nowlin et al. 
2015). SIV-induced products of activated macrophages and 
astrocytes lead to CNS dysfunction and disease that might 
directly damage neurons (Roberts et al. 2003). These obser-
vations indicate that neuropathogenesis of HIV infection and 
pathogenesis of HAD and HAND may be linked (Kaul et al. 
2005). It has also suggested that, given the neuroprotective 
properties of poly(ADP-ribose) polymerase (PARPs) inhibitors 
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(Szabo et al. 2006), these inhibitors might be used as neuropro-
tective against NeuroAIDS as well (Rumbaugh et al. 2008). 
PARPs regulate a vast variety of cellular processes (Bai 2015), 
and in particular, PARP1 and PARP-2 participate in regulating 
DNA metabolism (Ame et al. 2004), including DNA repair 
activated by DNA strand breaks (Morales et al. 2014). Previ-
ous studies demonstrated that PARP1 plays a role of in regulat-
ing HIV replication and integration (Ha et al. 2001; Kameoka 
et al. 2004). Based on the evidence suggesting that PARPs 
play an important role in HIV infection, we investigated the 
hypothesis that PARP expression is associated with SIV neu-
ropathogenesis and biological processes translatable to HIV 
brain infection. To this end, we analyzed the transcriptome 
of SIV-infected macaques with and without detectable virus 
in the frontal cortex of SIV-infected macaques. We focused 
our analysis on characterizing the transcriptome profiles of 
the frontal cortex, as severity of cognitive impairment has 
been previously associated with the degree of frontal cortex 
neurodegeneration (Moore et al. 2006; Woods et al. 2009), 
and based on our previous work showing that greater level of 
both proviral DNA and viral RNA in the frontal cortex of SIV-
infected macaques with SIVE, as compared with other brain 
tissues, as well as the emergence of specific viral neurotropic 
sub-populations in animals with SIVE (Rife et al. 2016). In 
what follows, we report, for the first time, significant dysregu-
lation of PARP expression in SIV-infected brain tissues with 
detectable virus, associated with neurodegenerative processes.

Methods

Animal cohorts and sample collection

Frontal cortex tissue samples were collected from two cohorts 
of male Rhesus macaques intravenously infected with SIV-
mac251 (Strickland et al. 2011), which originally consisted of 
five CD8+ lymphocyte-depleted and six non-CD8-depleted ani-
mals (naturally progressing to SAIDS), as previously described 
(Table 1) (Rife et al. 2016). Procedures on the CD8+ lympho-
cyte-depleted and naturally progressing cohort were conducted 
with the approval of New England Regional Primate Center at 
Harvard (Lamers et al. 2015) and University Tulane University’s 
Institutional Animal Care and Use Committee (Rife et al. 2016), 
respectively. Animals were kept in the same facility under simi-
lar conditions to minimize batch effects. Additional information 
on the treatment and handling of macaques in this cohort can be 
found in the study of Strickland et al. (2012). Gross pathology 
of the naturally progressing animals can be found in Rife et al. 
(2016) and of the CD8+ lymphocyte-depleted ones in Table 1. 
All tissues collected during necropsy, following SAIDS onset 
and humane sacrifice, with the exception of animals M06, M07, 
and M12 which were euthanized at 22 days post-infection (DPI) 
(Rife et al, 2016) (Table 1), were snap frozen in optimal cutting 
temperature medium and stored at − 80 °C. A single 50–100 mg 
section of frontal cortex tissue was used for RNA isolation. Viral 
DNA was extracted from frontal cortex tissues and detected by 

Table 1   Epidemiological information on macaques and infection status by SGS

ID the ID is formed by a letter that indicates M (macaque) followed by internal identification number, SAIDS Simian AIDS, SIVE SIV-associated 
encephalitis; plasma (necropsy) and CSF (necropsy) viral load (VL) is given as copy number per 1 ml. NA sample not available, UND signal 
undetectable in one or more of triplicate wells, DPI date of necropsy in days post-infection, SGS number of sequences found in the frontal cortex 
tissue obtained by single genome sequencing, DV detectable virus in the brain (n > 3 sequences), NDV low or undetectable virus in the brain 
(n < 3 sequences). CNS histopathology was assessed on sections of parietal, occipital, frontal, and temporal cortex, as well as meninges. The 
pathology grading criteria scores as follows: no significant findings, mild, moderate, severe. The severity of SIVE was diagnosed post mortem 
and graded on the presence of SIV virions and multinucleated giant cells in the CNS

Macaques

ID CD8+ 
deple-
tion

Disease outcome and CNS histopa-
thology

Plasma VL (copy/ml) CSF VL (copy/ml) Necropsy (DPI) RNA SGS RNA-seq group

M09 Yes SAIDS/mild SIVE 309 × 10^6 1150 140 21 DV
M10 Yes SAIDS/mild meningitis 109 × 10^6 46,943 56 7 DV
M11 Yes SAIDS/mild SIVE minimal men-

ingitis
109 × 10^6 51,097 56 16 DV

M12 Yes Euthanatized early minimal men-
ingitis

6.9 × 10^6 1685 22 22 DV

M02 No SAIDS 78 × 10^6 UND 204 22 DV
M03 No SAIDS/SIVE 9.2 × 10^6 UND 223 24 DV
M08 Yes SAIDS 151,356 487 131 1 NDV
M06 No Euthanatized early 3.2 × 10^6 49,849 22 0 NDV
M07 No Euthanatized early 3.1 × 10^6 16,197 22 0 NDV
M01 No SAIDS 640,000 20,092 300 2 NDV
M05 No SAIDS 32,000 851 275 0 NDV
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single genome sequencing (SGS) of the SIV envelope gene 
sequence as previously described (Rife et al. 2016; Strickland 
et al. 2014). Plasma and cerebrospinal fluid (CSF) viral loads 
were monitored as previously described by quantitative PCR 
(qPCR) methods targeting a conserved sequence in gag (Cline 
et al. 2005; Venneti et al. 2008).

RNA isolation and next‑generation 
sequencing

Total RNA was extracted with Qiagen RNeasy Lipid Tis-
sue Mini Kit (Cat No: 74804) according to manufacturer 
protocol. Quantity and quality of RNA, from post mortem 
frontal cortex tissue samples, were assessed using the Invit-
rogen Qubit 2.0 and Agilent Tapestation 2200, respectively. 
Frontal cortex RNA sequencing libraries were prepared with 
Illumina TruSeq Stranded mRNA HT kit and sequenced on 
the 2× 100 paired-end Illumina NextSeq platform at the Uni-
versity of Florida Interdisciplinary Center for Biotechnology 
Research.

RNA‑Seq data and pathway analysis

Paired-end reads were trimmed using trimmomatic (v 
0.36) (Bolger et al. 2014), and quality control on the 
original and trimmed reads was performed using FastQC 
(v 0.11.4) (Brown et al. 2017). Trimmed paired-end reads 
were mapped to the Macaca mulatta genome available 
at Ensembl (http://dec20​15.archi​ve.ensem​bl.org/Macac​
a_mulat​ta/Info/Index​). Sequences were aligned with 
STAR (v2.6.1) (Dobin et al. 2013). Reads were submit-
ted to the Sequence Read Archive with the BioProject 
PRJNA624871. We obtained an average of ~ 30.5 mil-
lion reads for each sample, with an average of 55.9% of 
the reads mapped to the reference genome (Table S1), 
in line with typical percentage of transcriptome map-
ping (Conesa et al. 2016) (Table S1). Gene expression 
was quantified using RSEM (v1.2.31) (Li and Dewey 
2011). Differential expression analysis was performed 
using DESeq2 (Love et al. 2014), using a fold-change 
threshold of 1 and an FDR-corrected P value threshold 
of 0.05 (Table S2).

Functional enrichment analysis

For disease association enrichment and pathway analy-
sis, we opted for a cut-off of (log2 (Log2) fold-change 
(FC)) of 1 of Log2(FC)-1 and P value ≤ 0.05 to detect 
up- and down-regulated DEGs, respectively, as the FC 

represents genes that experienced 100% increase in 
expression (Tables S3 and S4). These analyses were 
performed using the Ingenuity Pathway Analysis (IPA) 
software (Quiagen) after importing the list of 152 up-
regulated (cut-off Log2(FC)1 and P value ≤ 0.05) and 
five down-regulated DEGs (cut-off Log2(FC)-1 and P 
value ≤ 0.05) (Table S2). The -log(p value) of the path-
way indicated the significance of overlap of the genes 
observed and the ones in the pathway and is calculated 
using the Fisher’s exact test (Fisher 1934). Prediction 
of activation or de-activation of a certain pathway is 
based on the z-score, using a z-score threshold of 1.3. 
Calculation of the z-score of a pathway, which assesses 
the match of observed and predicted up/downregulation 
patterns, is based on comparison between the direction 
of the genes observed compared with direction of those 
same genes in the active state of the pathway (Kramer 
et al. 2014) (Tables S3 and S4).

Quantitative PCR

cDNA from frontal cortex was generated with Invitrogen 
Superscript IV and random hexamers according to manu-
facturer’s protocols, using aliquots from RNA isolated 
for RNA sequencing. Comparative qPCR was conducted 
in triplicate for each sample using Applied Biosystems 
TaqMan Universal PCR Master Mix (ThermoFisher 
Catalog number: 4304437) and probes (0.25 µM) for 
PARP9, PARP12, PARP14, and glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH). Comparative qPCR 
was conducted with a 10-min hold at 95 °C, followed 
by 45 cycles of 95 °C for 15 s and 60 °C for 1 min on 
the Applied Biosystems 7500 Fast Real-Time PCR Sys-
tem. Each sample’s mean CT value for each qPCR reac-
tion was normalized by subtracting the sample’s mean 
CT for GAPDH to generate ΔCT. A standard deviation 
for the qPCR reaction was normalized with the standard 
deviation of GAPDH: SADJUSTED = (SPROBE

2 + SGAPDH
2)

1/2. ΔΔCT was calculated for each sample by subtracting 
its ΔCT value from the mean ΔCT value of the samples 
without detectable virus in the brain. The fold difference 
in reference to the group of macaques without detectable 
virus in the brain was calculated with 2−ΔΔCT and error 
bars were calculated with 2−ΔΔCT ± SADJUSTED.

Statistical analysis

For qPCR data, two-tailed Wilcoxon rank sum tests (for 
non-normally distributed data) were used to test mean 
differences in PARP values by detectable virus status.
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Results

Transcriptomic profiles are independent of CD8+ 
lymphocyte depletion

Our previous work showed that the frontal cortex of SIV-
infected macaques with SIVE has higher level of both proviral 
DNA and viral RNA compared with other brain tissues (Rife 
et al. 2016). This finding motivated us to investigate more in-
depth SIV pathogenesis in the frontal cortex and to focus our 
transcriptomic analysis in this region of the brain. Our cohort 
is composed of CD8+ lymphocyte-depleted and non-depleted 
ones male Rhesus macaques infected with SIV (Table 1). For 
all animals, RNA-Seq of frontal cortex samples resulted in high 
coverage (Table S1). Comparison of gene expression profiles 
in the frontal cortex between CD8+ lymphocyte-depleted 
and non-depleted macaques showed perturbance of only one 
gene—the nerve growth factor (NGF) gene, which resulted 
under-expressed in depleted animals with a fold change of 
Log2(FC) = 3.3—indicating that animals could be grouped, 
for further comparisons, independently of depletion status. 
Analysis of transcripts normalized expression among macaques 
corroborated that depletion category was not the dimension dis-
tinguishing the expression (Figure S1). SGS analysis of SIV 
env gp120 detected viral sequences in the frontal cortex of all 
five of the CD8+ lymphocyte-depleted and three of the non-
depleted ones, for a total of 8 out of 11 animals (Table 1). Three 
animals, two non-depleted (M06, M07) and one depleted (M12), 
were sacrificed early, while the others were sacrificed at SAIDS 
onset. As expected, while survival for depleted animals tended 
to be shorter, with an average of 81 days post-infection (dpi), 
non-depleted animals’ survival averaged 174 dpi (Table 1). The 
number of positive PCRs in brain tissues at end point dilution 
varied between 7 and 24 in most animals, except for two ani-
mals, M08 and M09, where only one and two SIV sequences, 
respectively, were detected, suggesting low level of brain infec-
tion as previously shown (Rife et al. 2016). Macaques with seven 
or more SIV sequences in the frontal cortex were all diagnosed 
with SIVE or meningitis at necropsy, with the exception of 
M02 (Table 1). The exception was not surprising, since we have 
shown in a previous study that an important co-factor linked to 
neuropathogenesis is viral compartmentalization in the brain, 
i.e., the presence of an adapted neurotropic sub-population, 
which was absent in M02 (Rife et al. 2016).

Elevated antiviral gene response in macaques 
with detectable virus in the brain

The depleted versus non-depleted category analysis revealed 
that macaques with < 3 sequences were clustering with 
macaques with no detectable sequences in the brain (Fig. 1, 

Table 1). Therefore, in order to minimize gene expres-
sion noise within the data due to inter-animal variability, 
macaques’ gene expression profiles were separated on the 
basis of a cut-off of n > 3 SIV sequences detected by SGS 
in the brain (Fig. 1, Table 1). Based on this cut-off, two 
non-overlapping groups could be defined: macaques with 
detect (DV) or low/undetectable (NDV) SIV in the brain. 
CSF viral loads did not correlate with presence of virus in 
the brain of the section that was analyzed. Indeed, the rela-
tionship between SIV viral loads in the CSF and brain infec-
tion remains unclear, with a recent study showing that it is 
not the absolute amount of viral loads in the CSF but rather 
the viral antigen due to viral production within the brain 
that correlates with the development of neurological disease 
(Demuth et al. 2000).

Differential expression analysis between DV and DNV 
macaque groups identified 102 up-regulated, and two 
down-regulated, differentially expressed genes (DEGs) 
in DV macaques with (Table S2). One of the two down-
regulated DEGs (Table S2), NPAS4 (Log2(FC)-1.2) is 
a synaptic plasticity-promoting gene (Margineanu et al. 
2018) crucial for synaptic connections in excitatory and 
inhibitory neurons and neural circuit plasticity (Rama-
moorthi et al. 2011). Among the 102 up-regulated DEGs 
(Table S2), EPSTI1 (Log2(FC)2.8) plays a role in ensur-
ing M1 versus M2 macrophage differentiation (Kim et al. 
2018); SLFN13 (Log2(FC)2.3) restricts HIV replication 
(Yang et al. 2018). An important function of microglia 
is the presentation of foreign antigens to T lymphocytes 
(Schetters et al. 2017). The DV macaque group exhib-
ited over-expression of the MAMU-A (Log2(FC)1.9) and 
MAMU-A3 (Log2(FC)1.7) genes, comprising the major 
histocompatibility complex class IA in Rhesus monkeys 
(Table S2). These genes are linked to disease progression 
during SIV infection (Zhang et al. 2002) (Table S2). Fur-
ther corroboration of the presence of virus in the brain 
was given by up-regulation of components of antiviral 
interferon response, such as the type I interferon (IFN)-
stimulated genes (ISGs) ISG15 (Log2(FC)4.2) (Jeon et al. 
2010) and ISG20 (Log2(FC)4.7) (Weiss et al. 2018), as 
well as of DDX60 (Log2(FC)3.9), a promotor of RIG1-
like receptor-mediated signaling (Miyashita et al. 2011) 
(Table S2). Another iconic pathway hallmark of the innate 
immune responses is the role of pattern recognition of 
bacteria and viruses (z-score = 3.1) and activation of IRF 
by cytosolic pattern recognition receptors (z-score = 1.9) 
pathways, pathways that result in the activation of innate 
immune responses after recognition of pathogen-associ-
ated molecular patterns (PAMPs), such as lipopolysaccha-
ride or nucleic acids, by a variety of pattern-recognition 
receptors (PRRs) (Mogensen 2009) (Table S3).
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Orchestration of T cell apoptosis in brain 
through diverse pathways

Upon activation by T cell receptor and cytokine-mediated sign-
aling, naive CD4+ T cells differentiate into types of T helper 
(Th) cells (Zhou et al. 2009), such as Th1, playing a critical 
role in coordinating adaptive immune responses to various 

microorganisms interacting with CD8+ NK/CTL cells and 
macrophages (Romagnani 1999). The inducible T cell co-stim-
ulator (iCOS) has been implicated in regulation of Th1, Th2, and 
Th17 immunity (Wikenheiser and Stumhofer 2016) and plays 
an important role in recruiting entry of Th1 cells into inflamed 
peripheral tissue (Okamoto et al. 2004). In DV macaques, sev-
eral genes predicted the activation of the iCOS-iCOSL signaling 

Fig. 1   Multi-dimensional scaling (MDS) plot for the normalized expression data of D and NDV SIV-infected macaques. Distance based on the 
matrix of FPKM values quantified using RSEM v1.2.31 for all transcripts in all samples of macaques with detectable virus in the brain (n > 3 
sequences) in red and macaques with low/undetectable virus in the brain (n < 3 sequences) in blue. The plot shows good separation of the gene 
expression between the two groups and non-overlapping
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in T helper cell pathway (z-score = 2), as well as of the Th1 
pathway (z-score = 2.2) (Table S3). However, activation of T 
cell exhaustion signaling pathway (z-score = 1.3) was also pre-
dicted, which is characterized by loss of T cell functions, which 
extended to both CD8 and CD4 T cells (Yi et al. 2010) (Table 
S3). A lack of sufficient stimulation from secondary signals 
like cytokines—IL-12 and IFNγ are two important cytokines 
for Th1 differentiation that are not over expressed in our animals 
(Table S2)—may conversely lead to anergy or even apoptosis. 
Our animals exhibited activation of calcium-induced T lym-
phocyte apoptosis pathway (z-score = 2), but also of nuclear 
factor of activated T cells (NFAT) (activation of NFAT in regu-
lation of the immune response pathway, z-score = 2.4) that is 
as an important mediator of T cell apoptosis (Table S3). These 
two pathways seem to be interrelated, as NFATs are calcium-
dependent transcription factors, therefore activated by stimula-
tion of receptors coupled to calcium-calcineurin signals (Park 
et al. 2020).

Monocyte and macrophage activation 
in response to virus in the brain

Enrichment in activation of monocyte and macrophage 
cellular pathways (z-score = 2) was indicated by DEGs 
such as CD74 (Log2(FC)2.6), CD37 (Log2(FC)1.9), 
CSF1R (Log2(FC)1.2), and MNDA (Log2(FC)1.7) (Fig. 2, 
Tables S2 and S3). CSF1, in particular, has been associ-
ated with a positive feedback system wherein HIV infec-
tion increases CSF1 expression, followed by increased 
susceptibility of monocytes and macrophages to HIV 
replication upon exposure to CSF1 (Haine et al. 2006; 
Rappaport and Volsky 2015). The fcy receptor-mediated 
phagocytosis in macrophage and monocyte pathway 
(z-score = 2) was also predicted to be activated (Fig. 2, 
Tables S2 and S3). Fc-mediated phagocytosis has been 
suggested as a successful mechanism for rapid control and 
clearance of HIV, as well as for reservoir eradication (Sips 
et al. 2016). Another pathway predicted to be activated 
lined to monocyte/macrophage activation is the TREM1 
signaling pathway (z-score = 2.4) (Table S3). TREM1, a 
group of pattern recognition receptors, stimulates mono-
cyte/macrophage-mediated inflammatory responses as its 
activation triggers expression and secretion of chemokines 
and cytokines that contribute to inflammation (Colonna 
and Facchetti 2003). Additional evidence of activation of 
macrophages was given by the activation of the production 
of nitric oxide (NO) and reactive oxygen species (ROS) 
in macrophage pathway (z-score = 2.8), which allow for 
production of NO and ROS by activated macrophages, 
central to the control of infections (Forman and Torres 
2002) (Table S3).

Our results reflect previous transcriptomic studies that 
showed that the frontal cortex of SIV-infected macaques at 
terminal stage of SIVE was characterized by upregulation 
of STAT1, protein induced by cortical neurons, and ISG15, 
protein product of infiltrating macrophages (Roberts et al. 
2003). Macrophage migration inhibitory factor (MIF) 
regulation (z-score = 2) was also predicted to be activated 
(Table S3). MIF is a cytokine constitutively expressed by 
monocytes and macrophages in large amounts (Calandra and 
Roger 2003) and an integral mediator of the innate immune 
system regulating host response through TLR4 (Roger et al. 
2003), whereas TLRs initiate NF-κB and a number of other 
signaling pathways that broadly induce pro-inflammatory 
cytokines (Fig. 2, Tables S2 and S3) (Liu et al. 2017). Dys-
regulation of reactive oxygen species processes was indi-
cated with NCF1 (Log2(FC)3.3), encoding for a NADPH 
oxidase that produces superoxide anions, inflammation, and 
organ injury through interaction with Toll-like receptors 
such as the DEG TLR4 (Log2(FC)1.49) (Gill et al. 2010) 
(Tables S2 and S3).

Inflammation as result of intensification 
of the innate immune response in presence 
of virus in the brain

Extending beyond the myeloid-mediated response, innate 
immunity pathways were identified as significantly differen-
tiated, such as Toll-like receptor (TLR) signaling pathways 
(z-score = 2) and interferon signaling (z-score = 3.2) (Table 
S3). The TLR signaling pathway was activated by up-regulation 
of CD14 (Log2(FC)1.64)), TLR3 (Log2(FC)1.94), and TLR4 
(Log2(FC)1.49)) (Fig. 2, Tables S2 and S3). Genes that were 
upregulated in the interferon signaling pathways were IFI35 
(Log2(FC)1.0), IFI6 (Log2(FC)2.0), IFIT1 (Log2(FC)2.8), 
IFIT3 (Log2(FC)3.3), IRF9 (Log2(FC)1.8), ISG15 
(Log2(FC)4.2), MX1 (Log2(FC)2.9), OAS1 (Log2(FC)2.5), 
PSMB8 (Log2(FC)3.3), STAT1, (Log2(FC)1.9), and STAT2 
(Log2(FC)1.4) (Tables S2 and S3). In line to what previously 
reported during acute SIV infection in the brain of rhesus 
macaques, the interferon signaling pathway was predicated to 
be activated even in absence of high expression of either IFNα 
or IFNγ genes (Roberts et al. 2004) (Fig. 2, Table S3). Intensifi-
cation of innate immune response was also indicated by several 
DEGs, such as C1QB (Log2(FC)2.0), C1QC (Log2(FC)2.3), 
and C3 (Log2(FC)1.5), involved in activation of complement 
and coagulation cascades (z-score = 2). Such complement cas-
cades work to enhance the phagocytosis, proteolysis, inflamma-
tion, and overall magnitude of immune action (Janeway CA Jr 
2001). Complement system cascades have been linked to HIV-
induced neurodegeneration in other research studies (Bruder 
et al. 2004; Speth et al. 2001) and to endothelial damage leading 
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to reduced integrity of the blood-brain barrier (Orsini et al. 
2014) (Fig. 2, Tables S2 and S3). This increased innate immune 
response led to consequent up-regulation of numerous genes 
within the neuroinflammation signaling pathway (z-score = 3.6), 
likely establishing inflammation processes in the frontal cortex 
of the SIV-infected DV macaques (Table S3). Neuroinflam-
mation signaling pathway plays a key role in maintaining the 
homeostasis of CNS, functioning to remove damaging agents, 
such as SIV in this case, and clear injured neural tissues (Tohid-
pour et al. 2017). Excessive cell and tissue damage can ensue 
recruitment of microglia and enhancement of their activities, 
which exacerbates neuronal damage and ultimately results in 
chronic inflammation with necrosis of glial cells and neurons 
(Wang et al. 2015). Necroptosis is a regulated necrotic cell death 
pathway that defends against pathogen-mediated infections, 
morphologically characterized by the loss of cell plasma mem-
brane and the swelling of organelles, particularly mitochondria. 
Compared with apoptosis, necroptosis generates more inflam-
mation. Several death receptors promote necroptosis when 
activated, including tumor necrosis factor receptor TNFR1, 
Fas, TNFRSF10A, and TNFRSF10B—with up-regulation 

of its ligand TNFSF10 (Log2(FC)1.13)—as well as TLRs 
(Feoktistova and Leverkus 2015; Najafov et al. 2019) (Tables 
S2 and S3). Activation of pathways associated with interferon 
(z-score = 3.2) and death receptor signaling (z-score = 2.2) are 
likely to be associated with neuronal apoptosis, similarly to what 
reported for infection of neurotropic West Nile virus in the brain 
(Clarke et al. 2014) (Table S3). Finally, neuronal damage was 
also suggested by up-regulation of PSMB8 (Log2(FC)3.3) and 
PSMB9 (Log2(FC)3.0), crucial for proteasome activity and reg-
ulation of protein turnover in neuronal synapses (Speese et al. 
2003). PSMB8 and PSMB9 have been previously implicated in 
research studying SIVE-induced neuronal dysfunction (Gersten 
et al. 2009b) (Table S3). Lastly, NCF1 produces superoxide ani-
ons causing increased oxidative stress, which is linked to nerv-
ous system damage (Starkov et al. 2004; Uzasci et al. 2013), and 
activation of STAT1 (Log2(FC)1.9) provides further evidence 
of response to oxidative stress (Olagnier et al. 2014) (Table S3).

Upregulation of PARPs in the frontal cortex 
of macaques with detectable SIV in the brain

Transcripts of four PARPs were up-regulated in the SIV-
infected frontal cortex: PARP9 (Log2(FC)1.8), PARP10 
(Log2(FC)1.9), PARP12 (Log2(FC)1.9), and PARP14 
(Log2(FC)2.7) (Fig. 3a, Tables S2 and S3). Over expres-
sion of these PARPs was also corroborated by quantitative 
PCR (Fig. 3b). Expression of PARP1, a member of the 
PARPs family that has been the focus of HIV research due 

Fig. 2   Predicted significant activated or de-activated intracellular 
molecular pathways from frontal cortex with SIV infection. Active 
or non-active states of pathways were predicted using the IPA library 
of canonical pathways, and significance was based on z-score greater 
than 1.3. The figure shows the number of genes being differen-
tially expressed per pathway. In orange or blue, the activation score 
(z-score) is indicated

◂

Fig. 3   Differential expression of PARPs in the frontal cortex of 
macaques with detectable virus in the brain. a FPKMs (fragments per 
kilobase of transcript per million mapped reads) of PARP9, PARP10, 
PARP12, and PARP14 transcripts in macaques with detectable virus 
in the brain (red) and in macaques without detectable virus (blue). 
b Quantitative PCR analysis of mRNA levels of PARP1, PARP9, 

PARP12, and PARP14 expressed in frontal cortex for macaques with 
detectable virus as relative to the averaged mRNA expression of the 
PARPs found in macaques without detectable virus. Colors indicate 
different macaques, while symbols are indicating the same macaque 
as shown in a. Asterisks indicate p < 0.001
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to their role in viral integration, replication, and transcription 
(Bueno et al. 2013; Ha et al. 2001; Ha and Snyder. 1999; 
Hassa and Hottiger 1999; Kameoka et al. 2004, 2005; Rom 
et al. 2015), as well the other PARPs, was not significantly 
over or under regulated (Table S5), as also confirmed by 
qPCR of mRNA transcripts (Fig. 3b). PARPs are known to 
be activated by DNA strand breaks (Ikejima et al. 1990; Ray 
Chaudhuri and Nussenzweig 2017), such ones occurring in 
HIV integration, as well as by interferon response (Atasheva 
et al. 2014). While there are mixed reports as to whether 
(Ha et al. 2001; Kameoka et al. 2005) or not such genes are 
necessary for HIV integration (Ariumi et al. 2005; Baeke-
landt et al. 2000), their function as a transcriptional repres-
sor of HIV and inhibitor of cellular translation is known 
(Atasheva et al. 2014; Bueno et al. 2013). Upregulation of 
PARP9, PARP10, PARP12, and PARP14 and TNFSF10 
predicts the activation of the death receptor signaling path-
way (z-score = 2.2), associated with programmed cell death, 
and the retinoic acid mediated apoptosis signaling pathway 
(z-score = 2.2) (Fig. 2, Tables S2 and S3), which func-
tions as an important regulatory signaling molecule for cell 
growth, differentiation, and neurodegeneration (Das et al. 
2014).

Discussion

The CNS has gained importance as a potential reservoir dur-
ing persistent HIV infections and the renewed focus of intense 
efforts on eradication strategies (Hellmuth et al. 2015; Salemi 
and Rife 2016; Saylor et al. 2016). We have presented evidence 
of activation of pathways that implicate a significant myeloid 
response to SIV infection in the brain of a well-established 
model of HIV disease progression, even in macaques euthana-
tized early. We recognize that the present study has some limi-
tations, as it lacks of un-infected animals as controls, and con-
trasted groups are mixed, including both naturally progressing 
and CD8+-depleted animals. As our goal is to understand 
how presence of the virus in the brain plays versus its absence 
during infection, the first limitation is easily overcome as by 
comparing infected and un-infected animals would not address 
our question. As for the second limitation, although it might 
seem counterintuitive that CD8+ depletion has no effect on 
the transcriptomics profiles of frontal cortex, it is important to 
remind that CD8+ depletion impacts the peripheral circulation 
of CD8+ lymphocytes but not in meninges (Ratai et al. 2011) 
and that depletion alone does not have measurable effects on 
neuronal integrity preserving brain metabolism (Ratai et al. 
2011). It is also noticeable that previous studied demonstrated 
that CD8+ depletion does not alter metabolite levels, does 
not cause astrogliosis or microglial activation as compared 
with SIV-infected animals (Ratai et al. 2011). This last find-
ing validates that neuroinflammation in these macaques is not 

dependent on depletion, but rather on presence of the virus in 
the brain. These findings confirm the validity of our approach, 
as that the predicted activated neurodegenerative pathways 
observed in our study are potentially due to the presence of 
virus and its manipulation of the immune system, rather than 
by absence of CD8+ T cells. The results agree with HIV and 
SIV entry in the CNS during early infection (Resnick et al. 
1988; Strickland et al. 2014). Presence of virus in frontal cor-
tex was linked to upregulation of gene expression, as well as 
neuropathology with the exception of animal M09 (Rife et al. 
2016). It is interesting to note, however, that virus compart-
mentalization (distinct neurotropic subpopulation) in the brain 
(Rife et al. 2016), which has been linked to neuropathogenesis 
(Lamers et al. 2015; Mallard and Williams 2018; Strickland 
et al. 2014), was also absent in this animal (Rife et al. 2016). 
Therefore, while virus-induced dysregulation of gene expres-
sion seems to play an important role, the emergence of an SIV 
neurotropic sub-population may be a necessary condition for 
the onset of neuroAIDS, at least in the macaque model.

Akin to what is shown in previous transcriptomic studies 
that also focused on the frontal cortex of macaques with acute 
SIV infection (Roberts et al. 2004), our findings showed that 
frontal cortex of macaques with detectable SIV in the brain 
has significant upregulation of several genes. In particular, our 
results corroborated that SIV in the frontal cortex alters tran-
scriptional pathways associated with innate immune response, 
neuroinflammation, oxidative stress, and cellular death, inter-
feron/STAT1 pathway, and monocyte/macrophage migration, 
as observed in previous studies (Gersten et al. 2009a; Roberts 
et al. 2004, 2006, 2003; Winkler et al. 2012). Increased inter-
feron, innate immunity pathways, and other antiviral responses 
mediated by macrophages indicate general signs of infection 
in the brain. This finding is also in line with our previous work 
that revealed emergence of viral neurotropic sub-populations 
in animals with SIV-associated encephalitis, as well as that 
higher levels of provirus and virus were found in the frontal 
cortex of SIV-infected macaques compared with other brain 
tissues (Rife et al. 2016).

For the first time and differently to what previously reported 
(Roberts et al. 2004), however, we found over expression 
of PARPs during SIV infection. Our data indicated that 4 
(PARP9, PARP10, PARP12, PARP14) of 18 PARP genes were 
upregulated in macaques with SIV in the brain and provided 
initial evidence that PARPs over expression may, indeed, be 
linked to presence of virus in the brain. Excessive activation 
of PARPs may cause cell death (Pieper et al. 1999), followed 
by release of cellular components into the CNS, amplification 
of the immune response, and eventually neurodegeneration. 
Expression of PARP9 and PARP14 cross-regulates mac-
rophage activation (Iwata et al. 2016) and has been involved 
in transcriptional regulation in the brain and gut in response 
to immunoregulatory cytokines (Hakme et al. 2008), released 
during inflammation process. The expression of PARPs has 
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been defined as “anti-viral”, and it has been even suggested 
that the PARP family should be considered as a new group 
of IFN-inducible inhibitors of virus replication (Atasheva 
et al. 2014). The anti-viral function of PARPs would explain 
the over-expression of PARPs in the brain in macaques with 
detectable virus in the brain. For example, in the context of 
other neurotropic viruses, Venezuelan equine encephalitis 
virus (VEEV), PARP12, and PARP10 have been found to 
inhibit replication of VVEV and to play a critical role in reg-
ulation of translation in virus-infected cells (Atasheva et al. 
2014). PARP10 and PARP12 are interferon-induced genes 
(Atasheva et al. 2014) and have also shown antiviral activities 
such as decreasing replication of avian influenza virus (Yu 
et al. 2011) and Zika virus (Li et al. 2018), respectively. In 
particular, PARP10 recently has also been linked to innate 
immunity boost during SARS-CoV-2 infection (Heer et al. 
2020). PARP14 has been shown to modulate both innate and 
adaptive immune responses (Caprara et al. 2018; Cho et al. 
2013; Iwata et al. 2016; Riley et al. 2013), and also impor-
tant for the induction of interferon in mouse and human cells 
(Grunewald et al. 2019), indicating a critical role for this PARP 
in the regulation of innate immunity. Therefore, we hypoth-
esize that presence of virus in the brain led to over expres-
sion of PARP and that the consequent inflammation process 
was a byproduct of PARP activity. However, we cannot rule 
out that virus-induced inflammation, associated with over 
expression of interferon-associated genes, transcription fac-
tors, and signaling molecules, may have resulted in the over 
expression of PARPs, other “anti-viral” set of genes. PARPs’ 
activity relationship with host and virus is quite complex, and 
both pro and antiviral responses have been reported (Kuny 
and Sullivan 2016). PARP1-mediated cascade of progression 
to neurodegeneration and neuroinflammation has been shown 
in Parkinson’s and Alzheimer’s disease (Martire et al. 2015). 
Yet, PARP1 resulted neither over or under expressed in ani-
mals with SIV infection in the frontal cortex, suggesting that 
its contribution to neuroAIDS may not be significant, despite 
its known role in HIV suppression by regulating HIV infection 
and integration (Ha et al. 2001; Kameoka et al. 2004).

In summary, we found evidence that PARP dysregulation 
could provide new, key indicators of SIV brain infection and 
neuropathogenesis. Moreover, since PARP inhibitors have 
shown promising neuroprotective properties (Rumbaugh et al. 
2008), similar inhibitors may be employed against HIV-related 
toxicity and inflammation in the brain. Additional statistical 
studies using a larger number of animals and in vitro experi-
ments are needed to determine what is the role of each PARP, 
and which proteins within PARP-mediated pathways may offer 
promising candidates as HAND novel therapeutic targets. Nev-
ertheless, our study provides novel insights that may inform 
drug screening and development efforts aimed at identifying 

specific antiviral therapies and a new class of potential thera-
peutic candidates for HAND.

Conclusions

Our study indicates that PARPs are over-expressed during 
SIV infection of the brain. PARPs may role in SIV-associ-
ated neurodegenerative processes. Inhibition of PARPs may 
provide an effective novel therapeutic target for HIV-related 
neuropathology.
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