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Abstract
Myeloid-derived suppressor cells (MDSCs) are immature monocytes and granulocytes that impede immune-mediated clear-
ance of malignant cells by multiple mechanisms, including the formation of immunosuppressive reactive oxygen species 
(ROS) via the myeloid cell NADPH oxidase (NOX2). Histamine dihydrochloride (HDC), a NOX2 inhibitor, exerts anti-cancer 
efficacy in experimental tumor models but the detailed mechanisms are insufficiently understood. To determine effects of 
HDC on the MDSC compartment we utilized three murine cancer models known to entail accumulation of MDSC, i.e. EL-4 
lymphoma, MC-38 colorectal carcinoma, and 4T1 mammary carcinoma. In vivo treatment with HDC delayed EL-4 and 4T1 
tumor growth and reduced the ROS formation by intratumoral MDSCs. HDC treatment of EL-4 bearing mice also reduced 
the accumulation of intratumoral MDSCs and reduced MDSC-induced suppression of T cells ex vivo. Experiments using 
GR1-depleted and Nox2 knock out mice supported that the anti-tumor efficacy of HDC required presence of NOX2+ GR1+ 
cells in vivo. In addition, treatment with HDC enhanced the anti-tumor efficacy of programmed cell death receptor 1 (PD-1) 
and PD-1 ligand checkpoint blockade in EL-4- and MC-38-bearing mice. Immunomodulatory effects of a HDC-containing 
regimen on MDSCs were further analyzed in a phase IV trial (Re:Mission Trial, ClinicalTrials.gov; NCT01347996) where 
patients with acute myeloid leukemia received HDC in conjunction with low-dose IL-2 (HDC/IL-2) for relapse prevention. 
Peripheral CD14+HLA-DR−/low MDSCs (M-MDSCs) were reduced during cycles of HDC/IL-2 therapy and a pronounced 
reduction of M-MDSCs during HDC/IL-2 treatment heralded favorable clinical outcome. We propose that anti-tumor prop-
erties of HDC may comprise the targeting of MDSCs.
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·OH	� Hydroxyl radical
ROS	� Reactive oxygen species

Introduction

Immature myeloid cells (IMCs) accumulate in peripheral 
organs and in the tumor microenvironment in human and 
experimental cancer. IMCs normally differentiate into 
mature myeloid cells such as macrophages, dendritic cells 
(DCs), and granulocytes upon migration from the bone mar-
row (BM) to the periphery. This differentiation is frequently 
defective in cancer with ensuing expansion of IMCs, pre-
sumably as the result of the formation of differentiation-
inhibitory factors by malignant cells. IMCs may be further 
activated to acquire immunosuppressive properties by fac-
tors produced by activated T cells and tumor stroma cells. 
These immature immunosuppressive cells are denoted mye-
loid-derived suppressor cells (MDSCs) [1].

Reactive oxygen species (ROS) are short-lived com-
pounds that arise from electron transfer across biological 
membranes to form superoxide anion (O2

−) from molecu-
lar oxygen. ROS comprise oxygen radicals such as O2

− and 
hydroxyl radicals (·OH) along with non-radicals, includ-
ing hydrogen peroxide. ROS, formed by the myeloid cell 
NADPH oxidase (NOX2), are pivotal mediators in the 
defense against microorganisms [2]. When released into 
the extracellular space ROS may also trigger dysfunction 
and apoptosis in neighboring cells, including lymphocytes 
[3]. This pathway of immunosuppression is exploited by 
MDSCs, which show increased ROS production by virtue 
of up-regulated NOX2 activity. In the absence of functional 
NOX2, MDSCs are less prone to suppress T cells and instead 
differentiate into macrophages and DCs [4].

Human and murine MDSCs occur in granulocytic 
(G-MDSCs) and monocytic (M-MDSCs) forms [5]. Phe-
notypically, human G-MDSCs share the surface mark-
ers of neutrophils but differ in buoyant density. Human 
M-MDSCs are phenotypically distinguished from normal 
monocytes by their expression density of HLA-DR, where 
monocytes are CD14+HLA-DRhigh whereas M-MDSCs 
are CD14+HLA-DR−/low [6]. Human M-MDSCs as well 
as G-MDSCs reportedly produce NOX2-derived ROS and 
suppress T cell functions in a ROS-dependent manner [7]. 
Murine MDSCs express GR1 and CD11b, and the murine 
G-MDSC and M-MDSC subsets are distinguished by their 
expression of the GR1 epitopes Ly6G and Ly6C. Hence, 
G-MDSCs are CD11b+Ly6G+Ly6Clow, whereas M-MDSCs 
are CD11b+Ly6G−Ly6Chigh [8]. In mice, the capacity to sup-
press T cells via ROS production is largely confined to the 
G-MDSC subset [9], whereas murine M-MDSCs rely on 
nitric oxide synthase (iNOS) for their immunosuppressive 
properties [1].

The presence of MDSCs is assumed to facilitate the growth 
and spread of tumors and may also dampen the efficacy of 
cancer immunotherapies [10]. Several approaches to target 
MDSCs have been proposed, including blocking the recruit-
ment of MDSCs to the tumor microenvironment [11], elimi-
nating MDSCs [12], targeting their immunosuppressive fea-
tures [13] or facilitating their maturation [14]. Histamine is a 
pleiotropic biogenic amine stored in mast cells and basophilic 
leukocytes [15]. We recently reported that the administration 
of histamine dihydrochloride (HDC), a histamine salt that dis-
sociates into histamine in solution, promotes the development 
of monocyte-derived DCs in vitro and in vivo and that these 
pro-differentiating properties were mediated by inhibition of 
NOX2 [16]. In addition, Yang et al. showed that mice that 
lack the histamine-forming histidine decarboxylase, with ensu-
ing histamine deficiency in tissues, are highly susceptible to 
chemically induced cancer. These histamine-deficient mice 
were reported to accumulate MDSCs to a higher extent than 
their wild-type counterparts during the progression of solid 
tumors [17].

Beyond its purported role in myelopoiesis, HDC inhibits 
ROS production by myeloid cells in a NOX2-dependent man-
ner and thus reduces the immunosuppressive features of vari-
ous NOX2+ myeloid cells [3]. HDC is approved in Europe, 
in conjunction with low-dose IL-2, for relapse prevention 
in patients with acute myeloid leukemia (AML) who have 
achieved complete remission (CR) after chemotherapy [18]. 
While details regarding the anti-leukemic action of the HDC 
component remain to be determined, it has been proposed that 
HDC targets NOX2-derived immunosuppressive ROS to pro-
tect anti-tumor lymphocytes from ROS-induced inactivation 
[18].

The present study aimed at determining effects of HDC 
on MDSCs in three murine tumor models known to entail 
pronounced MDSC accumulation. We report that the sys-
temic administration of HDC, by targeting NOX2, rendered 
intratumoral MDSCs less immunosuppressive and delayed the 
growth of murine EL-4 lymphoma and 4T1 breast cancer and, 
also, that these properties of HDC translated into improved 
anti-tumor efficacy of antibodies against the programmed cell 
death receptor 1 (PD-1) and the PD-1 ligand (PD-L1) in EL-4- 
and MC-38-bearing mice. In addition, the administration of 
HDC/IL-2 to AML patients in CR was associated with reduced 
counts of M-MDSCs in blood, which predicted reduced risk 
of leukemic relapse. We hypothesize that anti-tumor effects of 
HDC may involve the targeting of MDSCs.
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Materials and methods

Culture of EL‑4, 4T1 and MC‑38 cells

The EL-4 and 4T1 cell lines were maintained in RPMI 1640 
(VWR, Stockholm, Sweden) and the MC-38 cell line in 
DMEM without sodium pyruvate (Sigma-Aldrich, St. Louis, 
MO, USA). Medium was supplemented with 10% fetal calf 
serum (FCS), 100 µg/ml penicillin, 100 µg/ml streptomycin 
and 2 mM l-glutamine (EL-4 and 4T1 cells) at 37 °C and 
5% CO2. Adherent 4T1 and MC-38 cells were detached by 
trypsinization before expansion. Cells were cultured in vitro 
for 1–2 weeks prior to inoculation into mice.

Tumor cell proliferation assay

EL-4 and MC-38 cells were stained with CellTraceViolet 
Proliferation Kit (Invitrogen, Carlsbad, CA, USA) according 
to the manufacturer’s instructions. The cells were cultured 
in the presence or absence of 100 µM HDC (Sigma-Aldrich) 
for 1–4 days following assessment of proliferation using a 
four-laser BD LSRFortessa (405, 488, 532, and 640 nm from 
BD Biosciences, San Diego, CA, USA) and analyzed using 
FACSDiva software (version 6 or later; BD Biosciences).

The 4T1 cells were cultured for 5 days in the presence or 
absence of 100 µM HDC. At 30 min or 8 h prior to collec-
tion of cells, BrDU at a final concentration of 10 µM was 
added to the medium. The cells were then fixed, permeabi-
lized, incubated with DNase A, and analyzed on a BD LSR-
Fortessa for BrdU incorporation using the BD Pharmingen 
BrdU Flow Kit (BD Biosciences).

EL‑4, 4T1 and MC‑38 models

Six- to eight-week-old female C57BL/6J and BALB/c mice 
were obtained from Charles River (Charles River Labora-
tories, Sulzfeld, Germany). B6.129S6-Cybbtm1Din [Nox2-
knock out (KO)] mice were originally obtained from Jack-
son Laboratory (Bar Harbor, ME, USA) and bred in-house. 
C57BL/6J mice and Nox2-KO mice were injected subcu-
taneously (s.c.) with 1.75–3 × 105 EL-4 cells or 5–10 × 105 
MC-38 cells. BALB/c mice were injected s.c. with 4 × 105 
4T1 cells. Mice were treated by intraperitoneal (i.p.) injec-
tions of HDC at 1500 µg/mouse (EL-4- and MC-38-bearing 
mice) or 1000 µg/mouse (4T1-bearing mice) three times per 
week starting 1 day before tumor inoculation, or with i.p. 
injections of a mixture of antibodies against PD-1 (α-PD-
1; 100–240 µg/mouse; RMP1-14; Nordic Biosite, Stock-
holm, Sweden) and PD-L1 (α-PD-L1; 100–240 µg/mouse; 
10F.9G2; Nordic Biosite) 3, 6 and 10 days after tumor 
inoculation, or with the addition of HDC to the regimen of 

PD-1/α-PD-L1 antibodies. Effects of HDC on EL-4 tumor 
growth confirm and extend a previous study [16]. In some 
experiments, EL-4 cells were treated with 100 µM HDC 
in vitro for 3–5 days prior to tumor inoculation. Mice inocu-
lated with in vitro HDC-treated cells did not receive further 
in vivo treatment. GR1+ cells depletion in EL-4-bearing 
mice was achieved by i.p. injections of GR1-neutralizing 
antibodies (250 µg, RB6-8C5, BioXcell, West Lebanon, 
USA) every other day starting once tumors became palpable.

The size of tumors was measured three times per week 
as the length × width. When several experiments were ana-
lyzed, the tumor size was normalized against the mean tumor 
size of untreated WT control mice, untreated GR1 depleted 
WT mice, or untreated Nox2-KO control mice at the termi-
nation of each experiment. Mice were sacrificed and tumors 
and spleens harvested 2–3 weeks after tumor cell inoculation 
when the size of the largest tumors had reached a diameter 
of 1–1.5 cm.

Processing of spleens, tumors and BM

Single cell suspensions of tumors were prepared by enzy-
matic digestion using a Tumor Dissociation Kit (Miltenyi 
Biotec, Lund, Sweden) along with mechanical dissocia-
tion utilizing a gentleMACS Dissociator (Miltenyi Biotec) 
according to the manufacturer’s instructions. BM cells were 
isolated from femur and tibia of tumor-free naïve mice by 
crushing the bones using a mortar. BM cells were rinsed 
and spleens were mashed through a 70-µm strainer and 
depleted of erythrocytes by Red Blood Cell Lysis buffer 
(Sigma-Aldrich).

Flow cytometry analysis of murine samples

Single cell suspensions from tumors and spleens were incu-
bated for 5 min with Fc-block (BD Biosciences) and then 
stained with either a myeloid panel of antibodies compris-
ing CD45-BV786 (Clone 30-F11, BD Biosciences), GR1-PE 
(Clone RB6-8C5, BD Biosciences), CD11b-BV711 (Clone 
MI/70, BD Biosciences), Ly6C-PerCpCy5.5 (Clone AL-21, 
BD Biosciences), Ly6G-FITC (Clone IA8, BD Biosciences) 
and DAPI (Invitrogen) or a lymphoid panel of antibodies 
comprising CD45-AlexaFlur700 (Clone 30-F11, BD Bio-
sciences), CD3-PE (Clone 145-2C11, eBioscience), NKp46-
PE-Cy7 (Clone 29A1.4, eBioscience), CD4-APC (Miltenyi 
Biotec), CD8-FITC (Miltenyi Biotec), CD44-BV711 (Clone 
IM7, BD Biosciences), CD62L-BV786 (Clone MEL-14, BD 
Biosciences), PD-1-BV605 (Clone J43, BD Biosciences) 
and DAPI (Invitrogen). In some experiments MDCSs were 
also analyzed for iNOS-PE (Clone CXNFT, eBioscience) 
expression. Cells were acquired on a BD LSRFortessa and 
analyzed using FACSDiva.
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T cell suppression assay

GR1+ cells were isolated from spleens of EL-4-bearing 
mice and from BM of tumor-free naïve mice. Single cell 
suspensions were stained with a Ly6G/C-biotin antibody 
(clone RB6-8C5, BD Biosciences) followed by incubation 
with streptavidin-conjugated magnetic beads and positively 
selected by use of a MACS magnet (Miltenyi Biotech) 
according to the manufacturer’s instructions. The purity 
was consistently > 80%. The purified GR1+ cells expressed 
CD11b {98% ± 0.48, [mean ± standard error of the mean 
(SEM)], n = 6}. Splenocytes from OT-1 mice (Rag2/OT-1, 
Taconic, USA) were stained with CellTraceViolet Prolifera-
tion Kit (Invitrogen) according to the manufacturer’s instruc-
tions. CellTraceViolet+ OT-1 splenocytes were cultured at 
a 1:1 ratio with GR1+ cells from EL-4-bearing or naïve 
mice in the presence of 10 µg/ml the OT-1 T cell specific 
peptide SIINFEKL (Sigma-Aldrich) or the control peptide 
gp100 IMDQVPFSV (AnaSpec, Fremont, USA). The cells 
were cultured for 3 days in RPM1 1640 supplemented with 
10% FCS, 100 µg/ml penicillin, 100 µg/ml streptomycin 
and 2 mM l-glutamine at 37 °C and 5% CO2 and there-
after stained with FITC-anti-CD8 (Miltenyi Biotec) before 
measuring T cell proliferation by flow cytometry. Results 
were analyzed with FlowJo Version 10.1 (TreeStar, Ashland, 
USA).

Generation of human monocyte‑derived MDSCs

PBMCs were prepared from healthy blood donor buffy coats 
by Ficoll-Paque (Lymphoprep, Nycomed, Oslo, Norway) 
density centrifugation. Monocytes were isolated by adher-
ence and cultured in Iscoves’ medium supplemented with 
10% human AB serum, 2 mM l-glutamine, 100 µg/ml peni-
cillin, 100 µg/ml streptomycin, 1 ng/ml interleukin 6 (hIL-
6, Sigma-Aldrich) and 10 ng/ml granulocyte macrophage 
colony-stimulating factor (hGM-CSF, Peprotech, Rocky 
Hill, USA) in the presence or absence of 100 µM HDC. 
In control experiments, adherent monocytes were cultured 
in the absence of cytokines. One-half of the medium was 
replaced and HDC was again added after 2 days of culture. 
Cells were examined for expression of HLA-DR (antibody: 
HLA-DR-APC-Cy7, Clone C243, BD Biosciences) by flow 
cytometry after 5 days of culture.

Detection of ROS by chemiluminescence

Superoxide anion production in response to the hexapep-
tide Typ-Lys-Tyr-Met-Val-d-Met (d-peptide, R&D Systems, 
Minneapolis, MN, USA) or N-formyl-Met-Leu-Phe (fMLF, 
Sigma-Aldrich) by murine cells from tumors and spleens or 
by human cytokine-induced MDSCs was measured by iso-
luminol chemiluminescence (CL) as described [19]. Results 

are presented as curves displaying continuous ROS forma-
tion or as the area under the curve normalized to the mean 
area under the curve for cells from tumor-bearing control 
mice.

MDSCs in a clinical trial of HDC/IL‑2

In a phase IV trial (Re:Mission; ClinicalTrials.gov; 
NCT01347996), 84 adult patients with AML in first com-
plete remission received ten consecutive 21-day cycles of 
HDC and interleukin-2 (HDC/IL-2) for 18 months or until 
relapse or death. The trial is described in detail elsewhere 
[20, 21]. Blood was collected before and after the first and 
third HDC/IL-2 treatment cycle. PBMCs were isolated and 
cryopreserved at local sites and shipped on dry ice to the 
central laboratory at the Sahlgrenska Cancer Center, Uni-
versity of Gothenburg, Sweden.

PBMCs were stained, as described in [20], with a panel of 
antibodies against myeloid cells to determine the content of 
MDSCs in blood. The MDSC-panel included the following 
antibodies from BD Biosciences: CD3-PerCpCy5.5 (clone 
HIT3A), CD19-PerCPCy5.5 (SJ25C1), CD16-Brilliant Vio-
let 605 (3G8), HLA-DR-APCH7 (G46-6), CD14-PECy7 
(MφP9) and CD56-PerCp eflour 710 from CMSSB, Thermo 
Fischer Scientific, USA. Stained samples were acquired on 
a BD FACSAria. PBMCs were also stained using a second 
panel to determine the expression level of H2R and gp91phox 
(the catalytic subunit of NOX2) on MDSCs using the fol-
lowing stains and antibodies: LIVE/DEAD fixable yellow 
stain (Life Technologies, Grand Island, NY, USA), CD33-
PECy7 (P67.6), CD16-APC-H7 (3G8), HLA-DR-Qdot605 
(G46-6) (all from BD Biosciences), CD14-Qdot655 (TüK4, 
Life Technologies), anti-histamine H2 receptor (polyclonal 
rabbit IgG, MBL International, Woburn, MA, USA), goat 
anti-rabbit-PerCpCy5.5 and gp91phox-FITC (7D5, MBL 
International). Samples were analyzed on a four-laser BD 
LSRFortessa flow cytometer and data analysis was per-
formed using FlowJo software, version 7.6.5 or later (TreeS-
tar, AShlandm OR). Sixty-two patients were analyzed using 
the MDSC-panel and 49 patients were analyzed using the 
H2R and gp91phox panel. The selection of patients for analy-
sis was based on the availability of viably frozen PBMCs. 
Differential counts, obtained from participating centers, 
were used to calculate the absolute counts of MDSCs in 
patient blood.

Statistics

Statistical analyses were performed using GraphPad Prism 
software (version 6.0 or later). Paired and unpaired t tests 
were utilized for comparisons between two groups and one 
and two-way ANOVA followed by Holm–Sidak’s test was 
used for comparisons between > two groups. In experiments 
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using MC-38 tumor-bearing mice, tumors were completely 
eradicated by immunotherapy in some animals. In these 
experiments, the linear mixed effects model was employed to 
compare the slope of tumor growth curves from day 6 until 
the experimental endpoint, or until the first size = 0 meas-
urement. For survival analysis, the logrank (Mantel-Cox) 
test was utilized to compare patients showing a strong or a 
low/no reduction of MDSCs (dichotomized by the median 
reduction) during treatment with HDC/IL-2.

Results

HDC reduces tumor progression by targeting NOX2+ 
MDSCs

In agreement with a previous report [16], the systemic 
administration of HDC significantly reduced the in vivo 
growth of EL-4 lymphomas (Fig. 1a). HDC also reduced 
the growth of 4T1 mammary carcinoma (Fig. 1b) with a 
similar, albeit non-significant, trend observed in MC-
38-bearing mice (Supplementary Fig. 1a). To elucidate the 
role of MDSCs for the anti-tumor efficacy of HDC, mice 
inoculated with EL-4 lymphoma cells were depleted of 
GR1+ cells using the GR1-neutralizing antibody RB6-8C5. 
As determined by FACS analysis at the end of the experi-
ment, intratumoral GR1+CD11b+ MDSCs were reduced by 
approximately 75% following GR1 antibody treatment (Sup-
plementary Fig. 2a). In GR1-depleted animals, treatment 
with HDC did not affect EL-4 lymphoma growth (Fig. 1c) 
but significantly reduced lymphoma growth in simultane-
ously performed experiments in non-GR1-depleted ani-
mals (p = 0.03 at day 10, Students’ t test, Supplementary 
Fig. 2b). In agreement with a previous report [22] treatment 
with GR1-neutralizing antibodies per se did not significantly 
impact on EL-4 lymphoma growth (Supplementary Fig. 2b).

The effect of HDC treatment on EL-4 lymphoma growth 
was also evaluated in Nox2-KO mice, where MDSCs accu-
mulate but do not generate NOX2-derived ROS. HDC did 
not alter lymphoma growth in the Nox2-KO mice (Fig. 1d). 
HDC did not affect the proliferation or cell cycling of EL-4 
or 4T1 cells but slightly reduced the proliferation of MC-38 
cells after two days in culture (Supplementary Fig. 1b–f). 
In vivo growth of EL-4 cells was not affected by previous 
in vitro exposure to HDC (Supplementary Fig. 1g).

Effects of HDC on myeloid and lymphoid 
populations in tumor‑bearing mice

In accordance with a previous report [9], EL-4 and 4T1 
growth was associated with a pronounced increase of 
MDSCs in tumors and spleens (Fig. 2a and Supplemen-
tary Fig. 3a). Treatment of mice with HDC significantly 

reduced the accumulation of MDSCs within EL-4 lym-
phomas, but not in spleen (Fig. 2a). Mice inoculated with 
4T1 cells acquired enlarged spleens where approximately 
50% [52% ± 2.5 (mean ± SEM), n = 30] of splenocytes were 
MDSCs. Treatment of mice with HDC reduced the number 
of splenocytes but did not alter the content of MDSCs in 
tumors or spleens in this model (Fig. 2b and Supplemen-
tary Fig. 3a). The vast majority of MDSCs in tumor-bearing 
mice were G-MDSCs. HDC did not affect the distribution 
of MDSC subtypes in EL-4-bearing mice (Supplemen-
tary Fig. 3b) but significantly reduced the accumulation of 
splenic and tumor-infiltrating M-MDSCs in 4T1-bearing 
mice (Supplementary Fig. 3c).

We did not observe a significant increase in the num-
ber of tumor-infiltrating or splenic CD8+ T cells in 
HDC-treated EL-4 or 4T1-bearing mice (Supplementary 
Fig. 4a, b). However, a negative correlation was noted 
between the percentage of intratumoral MDSCs and 
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tumor-infiltrating CD8+ T cells in both models (Sup-
plementary Fig. 4c, d). Treatment of mice with HDC 
significantly enhanced the proportion of CD62L− cells 
(comprising CD44+ effector memory and CD44− effector 
populations) among CD8+ T cells in EL-4-bearing mice 
with a similar trend in the 4T1 model (Supplementary 
Fig. 4e, f). Treatment of EL-4-bearing mice with HDC 
did not significantly alter the percentage of intratumoral 
CD4+ T cells, NK cells or B cells but slightly reduced 
the percentage of CD4+ T cells and NK cells in spleens 
(Supplementary Fig. 4g–i).

HDC reduces NOX2‑dependent immunosuppression 
in MDSCs

To determine whether the reduction in MDSCs and sple-
nocytes following HDC treatment was secondary to the 
reduced tumor size we correlated the tumor size with 
MDSC content in the EL-4 model and with the number 
of splenocytes in the 4T1 model. A positive correlation 
was noted between the size of tumors and the percentage 
of intratumoral MDSCs in EL-4-bearing control mice and 
with splenocytes in 4T1-bearing control mice (Fig. 2c, d). 
No such correlations were observed in HDC-treated EL-4- 
or 4T1-bearing mice (Fig. 2c, d), suggesting that MDSCs 
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accumulating in tumors following HDC treatment might 
be less immunosuppressive.

We observed that in vivo administration of HDC reduced 
the capacity of leukocytes isolated from EL-4 and 4T1 
tumors as well as from splenocytes of EL-4-bearing mice to 
generate NOX2-derived ROS, with a similar trend observed 
for isolated GR1+ cells (Fig. 2e–h). Leukocytes recovered 
from tumors and spleens of EL-4-bearing control mice were 
separated into GR1+ and GR1− fractions and analyzed for 
ROS-forming capacity. The results confirmed that ROS 
production was confined to the GR1+ MDSC population 
(Fig. 2i, j). We also observed that GR1+ cells recovered 
from EL-4-bearing control mice strongly suppressed T 
cell proliferation and were significantly more suppressive 
than MDSCs recovered from HDC-treated mice (Fig. 2k, l). 

MDSCs may also exert immunosuppression via additional 
mechanisms, including iNOS-derived NO production [6]. 
We found no significant difference in iNOS expression, as 
determined by flow cytometry, between MDSCs isolated 
form HDC-treated and control EL-4 bearing mice (p = 0.24, 
n = 4, Students’ t test).

HDC reduces the in vitro generation of human 
MDSC‑like cells

HDC was previously shown to facilitate the maturation of 
human and murine myeloid cells [16, 17]. We, therefore, 
determined effects of HDC on the cytokine-induced genera-
tion of human MDSCs in vitro. IL-6 and GM-CSF induced 
an MDSC-like phenotype in monocytes characterized by 
enhanced production of NOX2-derived ROS in response to 
fMLF (Fig. 3a) and reduced expression of HLA-DR in all 
donors (n = 12) albeit to a variable degree (10–70% reduc-
tion in MFI of HLA-DR). We noted that for donors showing 
a robust cytokine-induced generation of MDSCs, as deter-
mined by a > 50% reduction in monocytic HLA-DR expres-
sion (7 out of 12 donors, Fig. 3b), incubation with HDC 
significantly reduced the cytokine-induced down-regulation 
of HLA-DR (Fig. 3c).

Effect of HDC‑based immunotherapy on human 
monocytic MDSCs

We analyzed the content of MDSCs in blood samples from 
patients with AML, who had been treated with HDC in 
conjunction with low dose IL-2, to determine effects of 
treatment with HDC on human MDSCs in vivo. PBMCs 
from patient blood samples were analyzed for content of 
M-MDSCs before and after treatment cycle one and three 
[i.e., cycle 1 day 1 and day 21 (C1D1 and C1D21) and cycle 
3 day 1 and day 21 (C3D1 and C3D21)]. The gating strategy 
from a representative sample is shown in Supplementary 
Fig. 5. M-MDSCs were found to consistently express high 
levels of gp91phox, the catalytic subunit of NOX2, and H2R 
(Fig. 3d). The frequency and absolute counts of M-MDSCs 
in blood was significantly reduced during treatment with 
HDC/IL-2 (Fig. 3e, f). When patients were dichotomized 
based on above or below median reduction in total num-
ber of M-MDSCs within cycle one or between the onset 
of therapy (C1D1) and the end of cycle three (C3D21), it 
was observed that a strong reduction in M-MDSC counts 
significantly predicted leukemia-free survival (Fig. 3g, h).

HDC enhances the anti‑tumor efficacy of α‑PD‑1 
and α‑PD‑L1 antibodies

The finding that HDC may target MDSC-related immuno-
suppression in humans and mice incited us to investigate if 

Fig. 2   HDC reduces the immunosuppressive properties of MDSCs in 
mice carrying EL-4 and 4T1 tumors. EL-4-bearing mice were euth-
anized after 2  weeks and 4T1-bearing mice after 3  weeks of tumor 
growth when the mean tumor size of untreated mice reached approxi-
mately 1.5 cm2. a Accumulation of intratumoral and splenic MDSCs 
in EL-4-bearing mice. Content of MDSCs was examined in control 
mice (n = 31 for intratumoral MDSCs, n = 19 for splenic MDSCs) 
and in HDC-treated mice (n = 33 for intratumoral MDSCs, n = 21 
for splenic MDSCs). b Counts of splenocytes in tumor-free (naïve) 
and control or HDC-treated 4T1-bearing mice. Correlation between c 
intratumoral MDSCs and tumor size in EL-4-bearing mice or d sple-
nocytes and tumor size in 4T1-bearing mice  in control (black) and 
HDC-treated (grey) animals. e Mean d-peptide-induced ROS produc-
tion from leukocytes recovered from tumors of control (solid line, 
n = 18) and HDC-treated (HDC, dotted line, n = 17) EL-4-bearing 
mice. f ROS formation (area under the curve) in response to d-peptide 
by single cell suspensions from tumors, spleens or splenocyte-derived 
GR1+ cells isolated from control (tumor n = 18, spleen n = 20, GR1+ 
n = 9) or HDC-treated (tumor n = 17, spleen n = 19, GR1+ n = 11) 
EL-4-bearing mice. g Mean d-peptide-induced ROS production from 
leukocytes recovered from tumors of control (solid line, n = 15) and 
HDC-treated (HDC, dotted line, n = 14) 4T1-bearing mice. h ROS 
formation (area under the curve) in response to d-peptide stimula-
tion by single cell suspensions from tumors or spleens isolated from 
control (tumor n = 15, spleen n = 15) or HDC-treated (tumor n = 15, 
spleen n = 15) 4T1-bearing mice. In f, h ROS formation was nor-
malized against the mean ROS formation of tumor-bearing control 
mice in each experiment. i, j ROS formation in response to d-pep-
tide from GR1+ (solid line, n = 3) and GR1− (dotted line, n = 3) cells 
isolated from i tumors and j spleens of control EL-4-bearing mice. 
k, l Proliferation of OT-1 CD8+ T cells was determined after 3 days 
of culture. k Representative histograms of CellTraceViolet-stained 
SIINFEKL-stimulated OT-1 CD8+ splenocytes in the absence of 
GR1+ cells (SIINFEKL, No GR1+) or in the presence of GR1+ cells 
isolated from spleens of control or HDC-treated EL-4-bearing mice. 
l Percentage of proliferating CD8+ T cells in the absence of stimuli 
(n = 3), in response to a control peptide (gp100, n = 3) or in response 
to an OT-1 specific peptide (SIINFEKL, n = 3). In specified wells, 
GR1+ cells that had been isolated from control (n = 5) or HDC-treated 
(n = 6) EL-4-bearing mice or GR1+ cells isolated from tumor-free 
mice (n = 2) were present at a 1:1 ratio with the SIINFEKL stimu-
lated OT-1 splenocytes during the course of proliferation. Statistical 
differences were evaluated using Student’s t test or one-way ANOVA. 
Linear regression was utilized to analyze correlations. *p < 0.05, 
***p < 0.001

◂
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HDC impacted on the efficiency of CD8+ T cell-enhancing 
immunotherapy. EL-4 cells expressed high levels of PD-L1 
(Fig. 4a). Also, 77% ± 5.5 (mean ± SEM; n = 11) of intratu-
moral M-MDSCs and 76% ± 2.3 (mean ± SEM; n = 11) of 
intratumoral G-MDSCs expressed PD-L1, and 77% ± 2.8 
(mean ± SEM; n = 20) of tumor-infiltrating CD8+ T cells 
expressed PD-1 in this model. Treatment of mice with HDC 
in vivo did not alter the expression of PD-L1 on MDSCs or 
PD-1 on CD8+ T cells (data not shown). Treatment of EL-
4-bearing mice with α-PD-1/α-PD-L1 antibodies tended to 
reduce tumor growth rate. The combination of HDC and 
α-PD-1/α-PD-L1 was superior to monotherapy with either 
HDC or α-PD-1/α-PD-L1 in reducing EL-4 tumor growth 
(Fig. 4b). Analysis of infiltrating immune populations in 
EL-4 lymphomas showed that α-PD-1/α-PD-L1 treatment 
did not affect MDSC, T or NK cell accumulation but slightly 
increased the fraction of CD8+ T cells displaying an effec-
tor phenotype (Supplementary Fig. 6a–e). The combined 
regimen of HDC/α-PD-1/α-PD-L1 was also assessed in the 
4T1 model. As reported elsewhere [23], 4T1 tumor growth 
was unaffected by α-PD-1/α-PD-L1 treatment. In this model, 
the combination of HDC/α-PD-1/α-PD-L1 was not superior 
to HDC alone in reducing tumor growth (data not shown).

Murine colorectal MC-38 cells expressed PD-L1 
(Fig. 4a), and 70% ± 5.5 (mean ± SEM; n = 11) of G-MDSCs 
and 59% ± 3.2 (mean ± SEM; n = 11) of M-MDSCs were 
also PD-L1+. The expression of PD-1 was modest in MC-38 
tumor-infiltrating CD8+ T cells (data not shown). MC-38 
tumor growth was nevertheless strongly reduced by treat-
ment with α-PD-1/α-PD-L1; in these mice, tumors expanded 
during the first week after tumor cell inoculation and then 
regressed. Treatment with HDC further improved the anti-
tumor efficacy of α-PD-1/α-PD-L1 (Fig. 4c). At days 10 and 
13, tumor reduction in the HDC/α-PD-1/α-PD-L1 group 

was superior to treatment with α-PD-1/α-PD-L1 (p = 0.01 
and 0.04, respectively, two-way ANOVA). At the end of the 
experiment 50% of mice treated with α-PD-1/α-PD-L1 mon-
otherapy were tumor-free whereas complete tumor clear-
ance was noted in 100% of mice receiving HDC/α-PD-1/α-
PD-L1. To enable analysis of MC-38 infiltrating immune 
populations following immunotherapy, mice were inoculated 
with a higher number of tumor cells to reduce the likelihood 
of complete tumor eradication at the experimental endpoint. 
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Fig. 3   HDC targets human MDSCs in vitro and in vivo. a–c Human 
monocytes were cultured in the absence of stimuli or in the presence 
of IL-6 and GM-CSF for 5 days to induce MDSC-like cells. a ROS 
production from cultured monocytes (ctrl, dotted line) and MDSC-
like cells (IL-6 + GM-CSF, solid line) in response to stimulation with 
fMLF. b Expression of HLA-DR on monocytes after 5 days of cul-
ture in absence of stimuli (Ctrl) and in presence of IL-6 and GM-CSF 
(n = 7). c Expression of HLA-DR on monocytes cultured for 5 days 
with IL-6 and GM-CSF in the absence or presence of 100 µM HDC 
(n = 7). d–h AML patients in CR received HDC/IL-2 immunotherapy 
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for a representative patient. e Frequency and f the absolute counts of 
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**p < 0.01, ***p < 0.001
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The added benefit of HDC to α-PD-1/α-PD-L1 therapy 
was demonstrated also following inoculation of a higher 
number of MC-38 tumor cells (Supplementary Fig. 7a). In 
these experiments, treatment of MC-38 tumor-bearing mice 
with α-PD-1/α-PD-L1 or HDC/α-PD-1/α-PD-L1 tended to 
increase the fraction of intratumoral CD8+ T cells and signif-
icantly increased the fraction of CD8+ T cell with an effector 
phenotype (Supplementary Fig. 7b, c). The percentage of 
intratumoral CD4+ T cells was not altered, while a reduction 

in tumor infiltrating NK cells was noted (Supplementary 
Fig. 7d, e).

Discussion

This study aimed at clarifying to what extent the anti-tumor 
properties of HDC, an inhibitor of NOX2-derived ROS [3], 
may be mediated by the targeting of MDSCs. Based on 
results showing that HDC was devoid of anti-tumor efficacy 
in mice genetically deficient in NOX2 and in mice where 
MDSCs were depleted by GR1-neutralizing antibodies, we 
conclude that the anti-tumor properties of HDC rely on the 
presence of NOX2+ GR1+ cells. Although alternative or sup-
plementary mechanisms are conceivable, these findings con-
firm and extend results suggesting that HDC targets NOX2 
to exert anti-tumor efficacy in murine cancer models [16, 
24, 25]. We also report that treatment of mice with HDC 
reduced the accumulation of intratumoral MDSCs and the 
number of splenocytes in two experimental tumor models 
and that the use of a HDC-based regimen reduced MDSC 
counts in blood of AML patients in complete remission.

It may be asked if the reduction in the intratumoral con-
tent of MDSC and splenomegaly observed after treatment 
with HDC was secondary to a direct effect of HDC on tumor 
cells. However, HDC did not affect the in vitro prolifera-
tion of EL-4 lymphoma and 4T1 mammary carcinoma cells. 
Additionally, we did not observe any correlation between 
tumor growth on the one hand and intratumoral MDSC or 
splenomegaly on the other in HDC-treated mice, which 
argues that the reduction of MDSC was not secondary to the 
reduced tumor size. Instead, the reduction of MDSCs may be 
explained by pro-differentiating properties of HDC resulting 
in, i.e., increased numbers of intratumoral DCs [16]. Earlier 
studies also imply that endogenous histamine is critical for 
appropriate maturation of myeloid cells [17]. Furthermore, 
MDSCs isolated from Nox2-KO mice more readily differen-
tiate into DCs and macrophages [4]. Our finding that NOX2 
inhibition, via HDC, limits cytokine-induced generation 
of human MDSCs in vitro further supports that ROS may 
prevent the differentiation of myeloid cells and that HDC 
may overcome the insufficient differentiation. On a similar 
note, the administration of All-trans retinoic acid (ATRA) to 
tumor-bearing mice was shown to reduce MDSC counts in 
several experimental tumor models and to promote the matu-
ration of MDSCs into DCs and macrophages [14]. The pro-
differentiating properties of ATRA were secondary to neu-
tralization of elevated ROS levels in MDSCs [26]. Together 
with the herein reported results, these findings support that 
NOX2-derived ROS may be targeted for appropriate myeloid 
cell maturation.
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In agreement with a previous study [27], the number of 
cells with MDSC-like phenotype was low in AML patients 
who had achieved CR after receiving chemotherapy. We 
observed that counts of M-MDSCs in blood were further 
reduced during the first cycle of HDC/IL-2, and that a 
strong reduction heralded a favorable course of disease. 
Since the patients had received chemotherapy approxi-
mately 2 months prior to treatment with HDC/IL-2, the 
distributional changes in myeloid cell populations may, 
in part, reflect reconstitution of hematopoietic cells. Also, 
despite that a previous study in renal cell carcinoma 
patients suggested that monotherapy with IL-2 does not 
affect the frequency of cells with a MDSC phenotype 
[28], we cannot rule out that the IL-2 component may 
have contributed to the observed reduction of MDSCs. 
With these precautions, our results suggest that treatment 
with HDC may affect the human MDSC compartment and 
that MDSCs may constitute a targetable population of rel-
evance to the efficiency of immunotherapy in AML.

In addition to limiting the accumulation of MDSCs in 
tumor-bearing mice, treatment with HDC reduced the forma-
tion of NOX2-derived ROS ex vivo. In line with this finding 
we observed that MDSCs isolated from HDC-treated mice 
showed a reduced capacity to suppress CD8+ T cell prolif-
eration, thus implying that HDC targets a significant effector 
function in MDSC-mediated immunosuppression. Notably, 
treatment of mice with HDC did not improve tumor infiltra-
tion of CD8+ T cells, despite a positive correlation between 
accumulation of intratumoral MDSCs and tumor-infiltrating 
CD8+ T cells. Instead, we observed that treatment with HDC 
was accompanied by the accumulation of intratumoral effec-
tor CD8+ T cells in EL-4-bearing mice. While further stud-
ies are required to define the detailed mechanisms involved, 
this finding supports that HDC may promote effector func-
tions of tumor-infiltrating CD8+ T cells.

It was earlier reported that the targeting of MDSCs by 
use of colony stimulating factor 1 receptor blockade syner-
gizes with α-PD-1/α-PD-L1 checkpoint inhibition in reduc-
ing murine neuroblastoma progression in vivo [11]. These 
results incited us to investigate if HDC may promote the 
anti-tumor efficacy of checkpoint inhibition. We observed 
that HDC enhanced the efficacy of α-PD-1/α-PD-L1 in 
reducing EL-4 and MC-38 tumor growth. In the EL-4 
and MC-38 models, α-PD-1/α-PD-L1 treatment triggered 
an increased proportion of intratumoral CD8+ effector T 
cells. In the MC-38 model, α-PD-1/α-PD-L1 treatment also 
tended to increase the presence of CD8+ T cells in tumors. 
In patients, an optimal anti-tumor efficacy of α-PD-1 therapy 
is generally believed to depend on pre-existing tumor-infil-
trating CD8+ T cells [29]. The finding that treatment of mice 
with HDC did not trigger a significant influx of CD8+ T cells 
into tumors suggests that combining HDC and α-PD-1/α-
PD-L1 therapy with agents that enhance T cell infiltration, 

such as chemotherapy or α-VEGF antibodies [30, 31], might 
further improve anti-tumor efficacy.

In conclusion, our results suggest that in vivo treatment 
with HDC reduces the accumulation and immunosuppres-
sive features of MDSCs and improves the anti-tumor effi-
cacy of checkpoint blockade in murine EL-4 lymphoma and 
MC-38 colon carcinoma.
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lines were expanded and frozen in aliquots and were cultured for no 
more than one week after thawing prior to use in in vivo experiments. 
Authentication by SNP or STR is not currently standardized for murine 
cell lines.
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