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Background: Early diagnosis is crucial to the treatment of breast cancer, but conventional imaging 
detection is challenging. Radiomics has the potential to improve early diagnostic efficacy in a noninvasive 
manner. This study examined whether integrating computed tomography (CT) radiomics information based 
on ultrasound (US) models can improve the efficacy of breast cancer prediction. 
Methods: We retrospectively analyzed 420 patients with pathologically confirmed benign or malignant 
breast tumors. Clinical data and examination images were collected, and the population was divided into 
training (n=294) and validation (n=126) groups at a ratio of 7:3. The region of interest (ROI) was manually 
segmented along the tumor boundary using MaZda software, and the features of each ROI was extracted. 
After dimension reduction and screening, the best features were retained. Subsequently, random forest (RF), 
support vector machines, and K-nearest neighbor classifiers were used to establish prediction models in an 
US and combined-methods group. 
Results: Finally, 8 of the 379 features were retained in the US group. Random forest was found to be 
the best model, and the area under the curve (AUC) of the training and validation groups was 0.90 [95% 
confidence interval (CI): 0.852–0.942] and 0.85 (95% CI: 0.775–0.930), respectively. Meanwhile, 12 of 
the 750 features were retained in the combined group. In this regard, random forest proved to be the best 
model, and the AUC of the training and validation group was 0.95 (95% CI: 0.918–0.981) and 0.92 (95% CI: 
0.866–0.969), respectively. The calibration curve showed a good fit of the model. The decision curve showed 
that the clinical net benefit of the combined group was far greater than that of any single examination, and 
the prediction model of the combined group exhibited a degree of practical clinical value. 
Conclusions: The combined model based on US and CT images has potential application value in the 
prognostic prediction of benign and malignant breast diseases.
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Introduction

Breast cancer, whose incidence has increased each year 
over the past few decades, has become the most common 
malignancy in the world, and in 2020, there were more than 
2.3 million newly reported cases worldwide (1). Moreover, 
breast cancer consistently has a high death rate among 
female malignancies (2). However, some research suggests 
that although the incidence of breast cancer has been 
increasing, the mortality rate has been decreasing year by 
year, with a decrease of 2.7 deaths per 100,000 people in 
the European Union over the 2002–2012 period. This is 
particularly true among younger women aged 20–49 years, 
in whom the number of deaths has decreased by 21.8% (3). 
This phenomenon may be attributed to the gradual increase 
of women’s health awareness and the advancement in 
medical technology, as more women are undergoing regular 
medical checkups. This indicates that early detection, 
early diagnosis, and early treatment remain the overriding 
principles of breast cancer prevention and treatment.

Ultrasound (US) has long been an important means of 
breast disease screening. It has a high resolution on soft 
tissue and allows for the dynamic observation of suspicious 
masses through the use of different sections and angles. 
With the additional consideration of its relatively low 
cost, it is one of the best methods for initial screening. 
The effectiveness of US has been widely recognized, as 
evidenced by the establishment of the Breast Imaging 
Reporting and Data System (BI-RADS), the systematic 
diagnostic criteria for conventional diagnostic imaging (4).  
However, there remains controversy concerning the highly 
subjective nature of scanning and interpretation of US 

images and the inability of the human eye to recognize 
all differences in grayscale. The addition of artificial 
intelligence and radiomics technology has made US 
results more objective and reproduceable, and it has also 
improved the accuracy of breast mass classification and 
the differentiation between benign and malignant tumors 
(5,6). The use of computer technology to analyze multiple 
examination images provides more accurate diagnosis and 
can further improve the efficacy of diagnosis (7).

Computed tomography (CT) examinations are being 
increasingly used to examine a wider array of disease types. 
When scans are performed for pulmonary or cardiac 
disease, CT often generates the first image of a breast 
mass and provides a wealth of diagnostic information, such 
as preoperative diagnosis, tumor staging, and presence 
of metastases. Modern CT now has improved contrast 
resolution, a greater field of view, and a cross-sectional 
capability to characterize a mass in greater detail (8). A few 
studies reported there to be significant correlation between 
the CT presentation of breast images and histopathology, 
with CT being particularly useful in assessing suspicious 
changes in dense breast tissue (9,10). Currently, the 
National Comprehensive Cancer Network (NCCN) 
for breast cancer recommends CT or positron emission 
tomography- CT (PET/CT) imaging for patients with 
stage III to IV disease and chest CT for patients with early-
stage disease and pulmonary symptoms. However, PET-CT 
is not recommended in guidelines for routine clinical breast 
screening, as CT is less costly and rapidly provides results 
after scanning (11). This makes it possible to obtain a large 
number of CT images of breast masses in the clinic for 
further analysis. Studies have demonstrated that radiomics 
CT analyses can assist in predicting sentinel lymph node 
metastasis and in the molecular subtyping of breast cancer 
(12,13). However, the role of CT radiomics features in 
predicting benign and malignant of breast cancers has not 
been thoroughly investigated.

Presently, the gold standard for determining the 
malignancy of tumors is pathological diagnosis via biopsy. 
However, this necessitates a large surgical wound, which 
may cause psychological trauma to patients. In contrast, 
puncture biopsies involve a smaller wound, but their 
accuracy is affected by the site of the puncture. Therefore, 
developing a noninvasive and simple examination method 
has been a critical goal of clinical research.

In recent years, radiomics has been widely applied as 
more objective and reproducible method. In this approach, 
the regions of interest (ROIs) are segmented on the image 
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pictures, and the high-throughput features of the ROIs are 
extracted via computer, which ultimately consist of the size, 
shape, texture, intensity, and other elements of the mass. 
These are then transformed into a high-dimensional dataset 
to be combined with the patient’s clinical information in 
the construction of a prediction model (14). Considerable 
progress has thus far been made in the differentiation 
of benign from malignant masses (5,6), the prediction 
of lymph node metastasis (15,16), the determination of 
molecular typing (17,18), and the evaluation of response 
to adjuvant chemotherapy (19,20). In addition to US, 
radiomics has also been used with magnetic resonance 
imaging (MRI) and X-rays in the development of various 
breast cancer predictive models, showing promising results 
in the noninvasive prediction of lesion malignancy (21,22). 
Based on this, the aim of this study was to investigate 
whether the establishment of a radiomics model composed 
of simultaneous US and CT images could help improve the 
efficacy of breast cancer diagnosis. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-23-
1042/rc).

Methods 

Study population

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the Institutional Review Board of the First 
Affiliated Hospital of Anhui Medical University (No. 
Quick-PJ 2023-05-35). Due to the retrospective nature of 
the study, informed consent was not required. Patients who 
were examined at our physical examination center from 
November 2020 to August 2021 were included and further 
screened based on selection criteria. The inclusion criteria 
were as follows: (I) definitive pathological results available; 
(II) simultaneous US and CT before biopsy or resection; 
and (III) no other surgery performed on the affected breast. 
The exclusion criteria were as follows: (I) incomplete 
pathological results; (II) anticancer therapy; and (III) image 
quality failing to meet the diagnostic criteria.

Finally, 420 lesions from 420 women were included, 
and the included patients were assigned to the training and 
validation groups in a 7:3 ratio.

Image acquisition

US examinations were performed using a Mindray Resona 
7 (Mindray BioMedical Electronics Co., Ltd., Shenzhen, 
China) equipped with a high-frequency line array probe 
(frequency 5–12 MHz) and breast imaging condition. US 
focused on the center of the target mass and scanned the 
mass in multiple sections and angles. Grayscale images with 
the largest diameter and the richest vascularization were 
selected. A conventional chest CT scan was performed with 
256-bar wide-body CT (Revolution CT, GE HealthCare, 
Chicago, IL, USA). The tube current was 175–545 mA, the 
tube voltage was 120 kVp, the noise index was 8, and the 
rotating speed was 0.5 s/r.

Image segmentation

The images were imported into MaZda software (version 
4.6; http://www.eletel.p.lodz.pl/mazda/) for radiomics 
image processing. The process was as follows: (I) for image 
normalization, in order to ensure the repeatability of the 
results, the gray values of all images are normalized in the 
first step. In the MaZda software, μ±3σ was chosen as the 
standard processing method, with μ being the mean of 
the image gray values and σ being the standard deviation 
(SD) of the image gray values; (II) For ROI segmentation, 
the ROI segmentation was performed by two radiologists 
in consultation. Neither radiologist had prior knowledge 
of the pathology of the mass; (III) In radiomics feature 
extraction, automatic extraction of high-throughput features 
in the ROIs, such as the gray-level histogram, gray-level 
run-length matrix, gray-level co-occurrence matrix, and 
absolute gradient, was conducted using MaZda software.

Model construction

The obtained features were imported into the Dr.Wise™ 
scientific research platform (http://www.deepwise.com). 
In order to improve the performance of the prediction 
model and maintain its robustness, we first normalized 
the features to have a mean of zero, mapping from the 
original data to a distribution with mean of 0 and SD of 1; 
the normalization formula was as follows: z = (x − mean)/
SD. Feature dimension reduction and screening were then 
completed using Pearson correlation coefficients to filter 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-1042/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1042/rc
http://www.eletel.p.lodz.pl/mazda/
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Figure 1 Workflow of image processing. (A) Flowchart of patient inclusion in the study. (B) Ultrasound and CT image segmentation, with 
the ultrasound image showing a malignant lesion and the CT image showing a benign lesion. (C) Extraction of radiomics features. (D) 
Radiomics analysis using three models RF, SVM, KNN. (E) ROC curve analysis. US, ultrasound; CT, computed tomography; RF, random 
forest; SVM, support vector machine; KNN, K-nearest neighbor; ROC, receiver operating characteristic.

out the best features that were significantly related to the 
masses. The linear correlation coefficients between features 
and dependent variables were calculated, with the features 
with higher correlation coefficients being more likely to be 
retained. When the linear correlation coefficient between 
the two features was greater than a certain threshold, 
the one with less influence on the dependent variable 
was removed, and the threshold of the linear correlation 
coefficient was then set to 0.9. The optimal features were 
screened to establish the model and trained in the training 
group, the efficacy was tested in the validation group, and 
a receiver operating curve (ROC) was finally generated to 
evaluate the diagnostic efficacy. In this study, three machine 
learning algorithms, including random forest (RF), support 
vector machine (SVM), and K-nearest neighbor (KNN), 
were used to establish the diagnostic model. The best 
model was obtained by comparing the area under the curve 
(AUC) of the training group and the validation group. 
Finally, the calibration curve was plotted to determine the 

stability of the prediction model, and decision curve analysis 
(DCA) was applied to assess its clinical application value. A 
flowchart of the study process is included in Figure 1.

Statistical analysis

Statistical analysis was conducted using SPSS 25.0 (IBM 
Corp., Armonk, NY, USA). Quantitative data, such as 
patient, and age are expressed as the mean ± SD. Categorical 
variables are expressed as counts and percentages. If the 
quantitative data conformed to a normal distribution, the 
independent samples t-test was used to assess statistical 
significance (P<0.05). If the data did not meet the normality 
criteria, the Mann-Whitney test was applied. The data 
for the number of masses are expressed as counts and 
percentages, and the χ2 test was used for comparison 
between groups. The ROC curve, calibration curve, and 
decision analysis curve were drawn using R software (version 
3.6.1; http://www.r.project.org).

http://www.r.project.org
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Table 1 Basic characteristics of the training and validation groups

Characteristic Training group (n=294) Validation group (n=126) P value

Age (years), mean ± SD 41.8±11.5 43.6±11.6 0.741

Lesion pathology, n (%) 0.963

Benign 206 (70.1) 88 (69.8)

Malignant 88 (29.9) 38 (30.2)

SD, standard deviation. 

Results

Basic information

A total of 420 patients with 420 biopsy-proven lesions were 
included in the study, with a mean age of 41.7±11.8 years 
(range, 19–82 years). Among them, 294 were benign cases 
(mean age 37.5±9.3 years; range, 19–67 years) and 126 
were malignant cases (mean age 51.3±11.3 years; range, 28– 
82 years). The differences between the ages of the two 
groups were significant (P=0.047). The ratio between 
the training group and the validation group was 7:3, with 
294 patients in the training group and 126 patients in the 
validation group. There was no statistical difference in 
age between these groups (P=0.741). In the training and 
validation groups, 29.9% (88/294) and 30.2% (38/126) 
of patients developed malignancy, respectively, with no 
significant difference in the presence of malignancy between 
the two groups (P=0.963) (Table 1).

Radiomics features

Each breast mass was manually segmented with MaZda 
software, resulting in a total of 379 features extracted from 
the US images and 371 features from the CT images, with 
the combined group consisting of 2 combinations of a 
total of 750 features. After screening, 8 optimal features 
eventually remained in the US group, while 12 features (6 
US and 6 CT features) remained in the combined group. 
The feature importance of both groups is shown in Figure 2.  
The differences in radiomics features between benign and 
malignant lesions of the combined group are shown in  
Table 2 and the boxplot in Figure 3.

Diagnostic efficacy of the radiomics models

Three learners were used for the prediction models and 
the ROC curves for the US and combined groups: RF, 
KNN, and SVM (Figure 4). In the US group, SVM had 

the highest AUC value out of all the prediction models 
in the training group, while RF had the highest AUC 
value in the validation group. In the combined group, RF 
had the highest AUC values among all the models in the 
training and validation groups, so RF was selected as the 
optimal model. Tables 3,4 were plotted based on sensitivity, 
specificity, and other measures.

When only US image information was used, the optimal 
model RF had an AUC of 0.90 [95% confidence interval 
(CI): 0.852–0.942], an accuracy of 0.85, a sensitivity of 
0.77, and a specificity of 0.89 for the training group; and an 
AUC of 0.85 (95% CI: 0.775–0.930), an accuracy of 0.82, a 
sensitivity of 0.58, and a specificity of 0.92 for the validation 
group. After the addition of CT image information, the 
AUC of the combined optimal RF model increased to 
0.95 (95% CI: 0.918–0.981) in the training group, with 
an accuracy of 0.91, a sensitivity of 0.85, and a specificity 
of 0.94; meanwhile, in the validation group, the AUC was 
0.92 (95% CI: 0.866–0.969), with an accuracy of 0.86, a 
sensitivity of 0.71, and a specificity of 0.92. CT radiomics 
features provided more valuable information, allowing 
for a substantial increase in the accuracy, specificity, and 
especially the sensitivity of the prediction model. Figure 5  
shows the waterfall plot for distinguishing benign and 
malignant masses based on the radiomics score of US and 
the combined group, which visually demonstrates the good 
discrimination performance of the prediction model.

Evaluation of the radiomics models

The ROC calibration curves of the optimal learner for 
the training and validation cohorts in the combined group 
are shown in Figure 6. The calibration curve shows that 
the combined model fit well and that there was good 
concordance between the prediction of malignant mass and 
the actual pathology.

The decision analysis curves of CT, US, and the 
combined method are shown in Figure 7. The black solid 
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Figure 2 Feature importance of the ultrasound (A) and combined (B) groups. The x-axis represents the coefficient of importance of each 
feature in the model, and the Y-axis is the name of the features finally selected in the ultrasound and the combined groups respectively, in 
order of importance from highest to lowest.

line represents the assumption that all patients are included 
in the malignant group, and the gray solid line represents 
the assumption that all patients are included in the benign 
group. The decision curve shows that the net clinical 
benefit of the combined method is much greater than that 
of any single examination and that the prediction model of 
the combined group has certain clinical value.

Discussion

In this study, the combined diagnostic model composed of 
US and CT images was shown capable of differentiating 
between benign and malignant breast masses. We 
established a radiomics model with 420 cases, the ROC 

curve showed its excellent diagnostic efficiency—which 
was corroborated by the measures such as sensitivity and 
specificity—and its clinical application was also proven.

In recent years, the study of breast radiomics has 
made rapid progress. Radiomics features reproduce the 
texture features of the mass based on the assumption 
that the extracted features are derived from products 
at the molecular genetic level, which in turn correlates 
with the phenotypic characteristics of the tissue (23). 
Previous studies have revealed that image information is 
highly correlated with the biological behavior of the mass 
(17,18,24). The high heterogeneity of breast cancer mass 
provides the possibility for the study of radiomics, which 
has the advantages of stability, objectivity, and repeatability 
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that many clinicians do not have and thus can be used 
as a supplementary diagnostic method to improve their 
diagnostic capability. Our study population was relatively 
large, and the study images were all from the same modality 
on the same type of machine, thus ensuring the stability 
of the imaging data. We then performed normalized 
preprocessing on the gray values of all the images to reduce 
the differences between different images and make it easier 

for the machine to learn the features, thus improving the 
robustness and accuracy of the model (14). Eventually, we 
filtered out the stable, relevant, and non-redundant features 
in the model for final validation.

US is one of the most important means of diagnosing 
breast benign and malignant masses, and the BI-RADS 
score is currently the most widely used diagnostic guideline. 
Youk et al. investigated the diagnostic efficacy of the human 
eye for breast US using the fifth edition of BI-RADS as a 
standard, achieving an AUC of 0.80 (25). The diagnostic 
efficacy of the human eye is low. Luo et al. extracted 315 
features of US images of breast masses using radiomics 
and performed logistic regression analysis. The AUC 
value of the benign and malignant prediction model in 
the training group was 0.83, and when combined with BI-
RADS classification and plotted with a nomogram, the 
predictive performance improved to 0.93 (26). Sultan  
et al. studied the grayscale and Doppler US images of 160 
breast masses and established a prediction model by using 
a logistic regression classifier. The ROC curve area for 
grayscale image analysis was 0.85 and increased to 0.89 
with the addition of Doppler image feature information (7).  
Romeo et al. built a benign and malignant diagnostic 
model by applying US radiomics; in this study, 135 lesions 
from institution 1 were placed into the training and test 
groups, 66 lesions from institution 2 were used as external 
validation, and RF classifiers were used to build the model 
and plot ROC curves; the AUC values for the training and 
validation group were 0.90 and 0.82, respectively, and the 
accuracy of the validation group was 0.82 (27). This fits well 
with our US radiomics–only results (AUCs of 0.90 and 0.85 
for the training and validation groups, respectively, and an 
accuracy of 0.82 for the validation group). In our study, we 
used radiomics to establish a diagnostic model based on CT 
and US features. The combined model greatly improved 
the diagnostic efficacy as compared to direct use of the BI-
RADS by clinicians. Caballo et al. used 202 cases to develop 
and evaluate multimarker quantitative radiomics, quantified 
the morphological characteristics of breast masses, 
extracted various features of the edges of the tumors, 
and built a prediction model with a linear discriminant 
analysis classifier, which obtained high CT-based diagnostic 
efficacy of benign and malignant breast masses, with a final 
prediction model AUC of 0.90 (28). This suggests that CT 
images contain a wealth of valuable diagnostic information 
that should be utilized. In our RF model for the US 
method, the sensitivity of the training and validation groups 
was low at 0.77 and 0.58, respectively, but improved to 0.85 

Table 2 Statistical analysis of optimal features of the combined 
group radiomics model

Feature† Classification 
of lesions

Mean ± SD P value

US-GeoW4 B 2.837±0.881 <0.001*

M 3.122±0.230

CT-GeoW5b B 0.139±0.057 <0.001*

M 0.066±0.035

US-GeoNsz B 1,947.293±982.945 <0.001*

M 3,950.912±1,333.810

US-GeoW5b B 0.082±0.040 <0.001*

M 0.035±0.017

CT-GeoW9 B 1.306±0.071 <0.001*

M 1.421±0.099

CT-GeoW4 B 2.733±0.062 <0.001*

M 2.922±0.146

CT-GeoW15 B 0.947±0.049 0.001*

M 0.866±0.601

US-GeoW2 B 0.098±0.172 0.186

M 0.078±0.015

US-GeoFv B 466.177±187.512 0.555

M 676.476±198.121

CT-GeoNsz B 453.663±264.924 <0.001*

M 881.405±478.908

CT-GeoW2 B 0.117±0.011 0.005

M 0.095±0.014

US-GeoUl B 5,740.925±2,242.857 0.433

M 8,506.049±2,126.892

*, P<0.05. †, feature ultimately selected in the combined 
group, in order of importance from highest to lowest. B and 
M represent benign and malignant labels, respectively. SD, 
standard deviation; US, ultrasound; CT, computed tomography. 
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Figure 3 Boxplot of the differences between the radiomics characteristics of the combined group in benign and malignant breast 
lesions. The 0 and 1 in the x-axis represent benign and malignant labels, respectively. The y-axis represents the quantitative value of the 
corresponding feature extracted by radiomics. 

and 0.71 after the addition of CT features. The specificity 
and accuracy also improved to a relatively satisfactory 
degree, ensuring higher diagnostic efficacy of the combined 
method. Increased sensitivity allows for a greater of number 
of malignant masses to be identified at an early stage, while 
increased specificity reduces the probability of biopsy in 
healthy patients.

The AUC value in the ROC curve only represents 
on the overall accuracy of the model, while the decision 
curve represents the relationship between benefits and 
risks brought by the model. In our study, the decision 

curve evaluated the clinical value of the CT, US, and 
the combined method separately and showed that the 
net benefit of the combined method was significantly 
higher than that of any single test. This further confirms 
that combining existing CT images can improve the 
effectiveness of individual clinical decision-making.

We further analyzed the role of radiomics features in the 
predictive model in this study and examined them in the 
context of clinical application, allowing us to interpret the 
clinical significance of the model. US-GeoW4 is one of the 
most important and discriminative features of the combined 
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Figure 4 Receiver operating characteristic curves of the RF, KNN, and SVM in the ultrasound training (A), ultrasound validation (B), 
combined training (C), and combined validation (D) groups. RF, random forest; SVM, support vector machine; KNN, K-nearest neighbor; 
AUC, area under the curve.

Table 3 Diagnostic efficacy of three predictive radiological models in differentiating benign and malignant breast lesions in the training and 
validation groups in the US group

Model Group AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

RF Training 0.90 (0.852–0.942) 0.85 0.77 0.89 0.75 0.90

Validation 0.85 (0.775–0.930) 0.82 0.58 0.92 0.76 0.84

KNN Training 0.92 (0.885–0.952) 0.87 0.82 0.89 0.76 0.92

Validation 0.84 (0.760–0.925) 0.84 0.66 0.92 0.78 0.86

SVM Training 0.93 (0.907–0.959) 0.79 0.65 0.85 0.65 0.85

Validation 0.83 (0.757–0.906) 0.73 0.53 0.82 0.56 0.80

US, ultrasound; AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; RF, 
random forest; KNN, K-nearest neighbor; SVM, support vector machine.
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Table 4 Diagnostic efficacy of three predictive radiological models in differentiating benign and malignant breast lesions in the training and 
validation groups in the combined group

Model Group AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

RF Training 0.95 (0.918–0.981) 0.91 0.85 0.94 0.85 0.94

Validation 0.92 (0.866–0.969) 0.86 0.71 0.92 0.79 0.88

KNN Training 0.94 (0.909–0.970) 0.85 0.73 0.91 0.77 0.89

Validation 0.91 (0.852–0.971) 0.88 0.74 0.94 0.85 0.89

SVM Training 0.94 (0.918–0.970) 0.81 0.72 0.85 0.68 0.88

Validation 0.91 (0.850–0.966) 0.87 0.74 0.93 0.82 0.89

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; RF, random forest; KNN, K-nearest neighbor; 
SVM, support vector machine.
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Figure 5 A waterfall map to distinguish benign and malignant masses drawn using the radiomics score of the ultrasound group (A) and 
combined group (B), respectively. 0 indicates a benign label and 1 indicates a malignant label.
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group, and its mathematical definition is calculated as 
follows: US-GeoW4 = US-GeoUl/US-GeoUw, where 
GeoUl represents the profile specific perimeter, which is 
the length of the contour of the ROI of the mass segmented 
by the clinician, and GeoUw represents the perimeter of 
the convex hull. Thus, we first need to clarify the simplified 
concept of the convex hull: in a given two-dimensional 
planar point set, a convex hull is a convex polygon formed 
by the straight lines connecting the outermost points, which 
can contain all the points in the point set, and the perimeter 
of this convex polygon is the perimeter of the convex hull. 
In two-dimensional Euclidean space, the convex hull can 

be imagined as a rubber band that just wraps around all 
the points. The ratio between the two was calculated, and 
finally it was found that high values of US-GeoW4 tended 
toward the “malignant” class, while low US-GeoW4 values 
tended toward the “benign” class. We hypothesized that for 
the same GeoUw, the more zigzag there is in the contour 
of the figure within the convex hull, the longer the GeoUl, 
leading to a tendency for US-GeoW4 to be high (malignant 
class); conversely, the smoother the contour is, the shorter 
the GeoUl, leading to a tendency for US-GeoW4 to be low 
(benign class). Indeed, the zigzagging contours, such as the 
burr sign, correspond precisely to the irregular morphology 
of malignant masses in clinical decision-making (29).

In this study, we analyzed US and CT images taken 
concurrently at the time of physical examination for the 
noninvasive assessment of benign and malignant breast 
masses without the need for additional radiation exposure 
and financial cost to the patients. CT images of breast 
patients could also be used in the future as a complementary 
tool for wider use in clinical or physical examination.

The advantages of this study are that, first, we included a 
relatively large number of cases and more consistent results. 
Second, this study is novel in that no other research has yet 
focused on the combined analysis of CT and US images to 
improve the diagnostic efficacy of breast cancer.

There are several limitations to this study. First, as a 
retrospective study, bias is inevitable. Second, this is a 
single-center study and lacks external data for verification. 
Third, the images obtained in this retrospective study were 
from different operators, which might have introduced 
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computed tomography; US, ultrasound. 

Figure 6 Calibration curve of the receiver operating characteristic of the optimal machine learning in the training (A) and validation (B) 
groups.
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a personal subjective element. Fourth, the delineation 
methods in this study were all manual segmentation by 
physicians, which was time-consuming and labor-intensive. 
In future studies, semiautomatic segmentation can be 
adopted to delineate ROIs, as it has greater repeatability 
and stability than do features extracted by manual 
segmentation (30).

Conclusions

The combined predictive model composed of US and 
CT images can be used as a personalized predictive 
method for the diagnosis of benign and malignant breast 
diseases, and this noninvasive predictive method can be 
an important supplement to biopsy. This suggests that we 
should maximize use of the patients’ imaging information 
and should not overlook the potential analytical value of 
CT images for early medical intervention to prolong the 
patient’s survival time.
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