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A B S T R A C T

Supervised deep learning has become a standard approach to solving medical image segmentation tasks. How-
ever, serious difficulties in attaining pixel-level annotations for sufficiently large volumetric datasets in real-life
applications have highlighted the critical need for alternative approaches, such as semi-supervised learning,
where model training can leverage small expert-annotated datasets to enable learning from much larger
datasets without laborious annotation. Most of the semi-supervised approaches combine expert annotations and
machine-generated annotations with equal weights within deep model training, despite the latter annotations
being relatively unreliable and likely to affect model optimization negatively. To overcome this, we propose
an active learning approach that uses an example re-weighting strategy, where machine-annotated samples are
weighted (i) based on the similarity of their gradient directions of descent to those of expert-annotated data,
and (ii) based on the gradient magnitude of the last layer of the deep model. Specifically, we present an active
learning strategy with a query function that enables the selection of reliable and more informative samples
from machine-annotated batch data generated by a noisy teacher. When validated on clinical COVID-19 CT
benchmark data, our method improved the performance of pneumonia infection segmentation compared to
the state of the art.
1. Introduction

Supervised learning using deep neural networks has been exten-
sively used for volumetric medical image segmentation in recent years.
However, adequate training of deep segmentation models for volumet-
ric medical data, e.g., computed tomography (CT), requires prohibitive
amounts of annotated data at the pixel/voxel level that are often very
difficult to achieve (Fan et al., 2020) in practical clinical settings. For
example, segmentation of pneumonia infection regions in CT can be
beneficial as a first step within detection and analysis methods based
on convolutional neural networks (CNN) for coronavirus disease 2019
(COVID-19) (Zhou et al., 2020; Gao et al., 2020a; Amyar et al., 2020;
Harmon et al., 2020; H.t. et al., 2020; Paluru et al., 2021; Tilborghs
et al., 2020; Ghomi et al., 2020; Voulodimos et al., 2021a; Hasan et al.,
2021; Voulodimos et al., 2021b; Ranjbarzadeh et al., 2021; Elharrouss
et al., 2020; Singh et al., 2021; Yan et al., 2021). Health condition of
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many hospitalized COVID-19 patients often deteriorates and requires
mechanical ventilation or high-flow oxygenation (Lassau et al., 2021).
Therefore, identifying a patient with COVID-19 at increased risk of
developing severity can help healthcare professionals plan ahead and
make a justified decision on the allocation of resources in the intensive
care unit (ICU) (Phua et al., 2020). The severity of patients with
COVID-19 is positively correlated with the size and spread of lung
infections of various forms (e.g., ground glass opacity (GGO), con-
solidation, interstitial thickening, air bronchograms, pleural effusion,
fibrous strips, etc.) (Xiong et al., 2020). The size and spread of lung
infection can be estimated from chest CT scans by segmenting the
infection (Wang et al., 2020). However, using supervised learning for
COVID-19 infection segmentation is challenged by the scarcity of pixel-
level expert-annotated data, hindering the development of models that
can reliably perform as well in the wild (i.e., generalize to data from
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various other sources/scanners) as on the limited data used to train
them (Ma et al., 2020a).

To address the complexity of attaining sufficient pixel-level anno-
tated data for supervised learning, various types of weakly supervised
learning approaches have been proposed that can be grouped based
on the level and/or quality of supervision used (Zhou, 2018): (a)
incomplete supervision (Zhang et al., 2019), where only a subset of
training data comes paired with labels; (b) inexact supervision (Xu and
Lee, 2020), where the training data includes only coarse-grained labels;
(c) inaccurate supervision (Zhang et al., 2019), where the training
data includes labels that are not necessarily correct (i.e., noisy). For
example, to bypass the lack of sufficient expert-annotated COVID-19 CT
data at pixel-level, Laradji et al. (2021) proposed an infection segmen-
tation approach with ‘inexact supervision,’ where weak annotations,
in the form of points, clicked within infection areas, were instead
used. Nonetheless, even such weak supervision remains challenging
and time-consuming, as annotators must go through all image slices
of volumetric medical data for manual labeling. In addition, intra- and
inter-annotator reproducibility are often poor, which causes variability
in the manually annotated segmentation masks.

Alternatively, in semi-supervised learning, e.g., Cheplygina et al.
(2019), Abdel-Basset et al. (2020), Yang et al. (2021) and Li et al.
(2021), limited pixel-level expert-annotated data are combined with a
large pool of machine-annotated data for training deep segmentation
models. Furthermore, most semi-supervised learning approaches were
designed for only 2D data, for example Fan et al. (2020), Ma et al.
(2020a), Laradji et al. (2021), Abdel-Basset et al. (2020), Yang et al.
(2021), Taghanaki et al. (2019a), Souly et al. (2017), Lee et al. (2019),
Hong et al. (2015) and Wang et al. (2020), however, native 3D seg-
mentation would be superior to the reconstruction of 3D segmentation
from stacked slice-based 2D segmentation masks, as native 3D analysis
captures the true 3D spatial context of the underlying structures within
the imaged field of view (Çiçek et al., 2016). In addition, stacked
slice-based 2D segmentation approaches assume that the slice thickness
(i.e., the distance between two axial slices) is isotropic, but on many
occasions, it may not be true.

Machine-generated annotations (i.e., pseudo labels) are generally
less reliable and typically require further correction by experts (Marzahl
et al., 2020). Thus, uncorrected (by experts) machine-generated annota-
tions are likely to lead to incorrect predictions being reinforced during
network optimization, which in turn leads to worse task performance
at test time. To address this problem, a semi-supervised active learning
(SSAL) strategy is sometimes used, which generally uses a pipeline
of (i) query function for selecting ‘‘informative’’ samples from the
annotation-free data pools, (ii) forwarding those to oracle annotators
for generating ground truth annotation, and subsequently (iii) adding
those new annotated data to the training data pool (Zhao et al., 2021;
Gao et al., 2020b; Calma et al., 2018; Lv et al., 2022; Bull et al., 2018).
However, such oracle annotation systems share limitations similar to
those of expert supervision in medical imaging applications, namely,
the time and labor requirements placed upon expert radiologists who
are rarely available or interested in such manual dense annotation
tasks, as well as the poor intra- and inter-annotator reproducibility.

To overcome the challenge of producing time and labor-intensive
expert annotations for informative 3D volumetric medical images from
the annotation-free data pools in the active learning framework, we
propose a sample re-weighting-based (Xu et al., 2021) (i.e., a way
to emphasize and pick informative data only during training) semi-
supervised learning approach, namely, ‘SSAL from a noisy teacher,’ and
showcase its utility for pneumonia infection segmentation in clinical CT
scans of COVID-19 patients. The proposed method uses alternatives to
the conventional human oracle-based active learning steps discussed in
the previous paragraph. The proposed method consists of several steps.
First, it generates voxel-level annotations (pseudo-annotation) using
supervised deep learning. Second, since machine-generated annotations
2

are less reliable, we generate gradient-based relative sample weights
that reflect the ‘‘trustworthiness’’ of the samples during training. These
sample weights are estimated from the similarity of the gradient direc-
tions between the annotation-free batch data and the expert-annotated
validation data. Third, because the weighting of samples based on the
gradient similarity may lead to an underestimation of a more diversely
informative data sample, we adopt a gradient magnitude-based strat-
egy (Ash et al., 2019) to generate another set of sample weights that
reflect the ‘‘informativeness’’ of the samples during training. Fourth, we
generate an overall sample weight by combining the sample weights
of ‘‘trustworthiness’’ and ‘‘informativeness’’. Finally, we use a query
mechanism to choose more informative and trustworthy samples in a
batch of annotation-free data by rectification of the combined weight
per sample, and subsequently use these combined sample weights
during the model optimization.

Our sample re-weighting based adaptive data sampling strategy can
be viewed as a pool-based SSAL strategy, in which a few annotation-
free training samples are adaptively chosen in each training cycle based
on some preset criteria and presented for annotation to an oracle
annotator, i.e., an expert teacher, albeit a noisy teacher in our case.
A concise summary of the contributions of this paper is:

1. We propose active learning from the noisy teacher approach
that uses an example re-weighting strategy in using expert-
annotation-less data in deep model training.

2. Our re-weighting strategy uses ‘gradient similarity’ and ‘gradi-
ent magnitude’ in determining the sample weights to reflect
the ‘trustworthiness’ and the ‘informativeness,’ respectively, of
machine-annotated data.

3. Our active learning strategy uses a query function that enables
the selection of reliable and more informative samples from
machine-annotated batch data.

4. We show the effectiveness of our proposed approach on clinical
COVID-19 CT benchmark CT data.

2. Methodology

2.1. Method overview

We design the working pipeline of the proposed method using the
following steps:

1. Initially, we generate voxel-level annotations (pseudo annota-
tion) using supervised deep models while considering the fact
that these machine-generated annotations are less reliable (noisy
teacher) than human expert annotations.

2. Then we generate a relative weight based on gradients per
sample based on its ‘‘trustworthiness’’ during training. A sample
weight is estimated from the similarity of the gradient direc-
tions between the annotation-free sample data and the expert-
annotated validation data. Gradient similarity-based sample re-
weighting approaches have previously been explored for deep
learning from inaccurate labels on 2D RGB images (Ren et al.,
2018; Mirikharaji et al., 2019), however, they have not been
explored for volumetric radiographic images.

3. As the primary aim of an active learning algorithm is to iden-
tify and label only maximally-informative samples, gradient
similarity-based sample weighting may lead to underestimation
of a more diversely informative data sample. Ash et al. (2019)
showed the efficacy of using the gradient magnitude, with
respect to parameters in the final CNN layer, as a measure of
the model’s uncertainty. The higher magnitude of the gradi-
ent of the last layer, resulting from a higher loss of training,
implies that the interrogated training sample contains newer
information (Ash et al., 2019) that the model has not yet seen. In
our proposed approach, we adopt this gradient magnitude-based
strategy and generate another set of sample weights based on

their ‘‘informativeness’’ during training.
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4. Afterwards, we generate an overall sample weight by combining
the ‘‘trustworthiness’’ and ‘‘informativeness’’ sample weights.

5. Finally, we use a query mechanism to choose more informative
and trustworthy samples in a batch of annotation-free data by
rectification (i.e., choosing more useful data in a batch) of the
combined sample weight, and subsequently use these combined
sample weights in the batch during the model optimization.

2.2. Data partition

Our method uses a small set of expert-annotated volumetric imaging
data (𝑋𝑒, 𝑌𝑒) ∶ {(𝑥𝑖, 𝑦𝑖); 1 ≤ 𝑖 ≤ 𝑁𝑒} to produce pseudo-annotations for a
much larger set of data 𝑋𝑝 ∶ {𝑥𝑚𝑝 ; 1 ≤ 𝑚 ≤ 𝑁𝑝} lacking annotations
𝑌𝑝. We start by dividing the small cohort of expert-annotated data
into training set (𝑋𝑡𝑟, 𝑌𝑡𝑟) ∶ {(𝑥𝑗𝑡𝑟, 𝑦

𝑗
𝑡𝑟); 1 ≤ 𝑗 ≤ 𝑁𝑡𝑟}, validation set

(𝑋𝑣, 𝑌𝑣) ∶ {(𝑥𝑘𝑣 , 𝑦
𝑘
𝑣); 1 ≤ 𝑘 ≤ 𝑁𝑣}, and hold out test set (𝑋𝑡, 𝑌𝑡) ∶

(𝑥𝑙𝑡 , 𝑦
𝑙
𝑡); 1 ≤ 𝑙 ≤ 𝑁𝑡}, where 𝑁𝑡𝑟 + 𝑁𝑣 + 𝑁𝑡 = 𝑁𝑒 and 𝑁𝑒 ≪ 𝑁𝑝. We

hen train a deep 3D segmentation model on this small training set
nd use the resulting model to generate pseudo-annotations 𝑌𝑝 on the
arge pool of annotation-free scans. We then combine these generated
seudo-annotated data with the expert-annotated validation data to
rain an example re-weighted active learning model, in which we assign
arying weights to each pseudo-annotated training example based on
ts gradient direction (see Fig. 1).

.3. Supervised learning for pseudo-label generation

Using the training set (𝑋𝑡𝑟, 𝑌𝑡𝑟), our objective is to train a 3D CNN
𝑠𝑙(𝑋𝑡𝑟, 𝜃) ∶ 𝑥𝑡𝑟 → 𝑦𝑡𝑟 in a fully supervised fashion (Step 1 in Fig. 1)
hich is then used to generate pseudo-labels 𝑌𝑝 for 𝑋𝑝, where 𝜃 is

he set of learnable parameters. For model optimization, we adopt
he combo loss (Taghanaki et al., 2019b) after we extend it with a
ample-specific weighting:

=
𝐶
∑

𝑐=1
𝑤𝑐𝑐

=
𝐶
∑

𝑐=1
𝑤𝑐

⎛

⎜

⎜

⎝

1 −
2
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∑𝐷
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𝑑
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𝑑
𝑡𝑟,𝑏

∑𝐵
𝑏=1

∑𝐷
𝑑=1(𝑝

𝑑
𝑏 + 𝑦𝑑𝑡𝑟,𝑏)

− 1
𝐷

𝐷
∑

𝑑=1

𝐵
∑

𝑏=1
𝑦𝑑𝑡𝑟,𝑏 log(𝑝

𝑑
𝑏 )
⎞

⎟

⎟

⎠

,

(1)

where 𝐶 is the number of volumes in the training mini-batches, 𝑤𝑐 is
the scalar weight associated with each training example, 𝐵 is the total
number of class labels, 𝐷 is the total number of voxels in each volume,
nd 𝑝𝑏 = 𝑃𝑟(𝑦𝑑𝑡𝑟,𝑏|𝑥

𝑑
𝑡𝑟,𝑏; 𝜃) are the probability vectors of the output label

corresponding to the vector encoded ground truth label vectors 𝑦𝑡𝑟,𝑏. For
𝑠𝑙(𝑋𝑡𝑟, 𝜃), we use 𝑤𝑐 = 1. After training 𝛷𝑠𝑙, we generate pseudo-labels

or 𝑥𝑝 as 𝑦𝑝 = 𝛷𝑠𝑙(𝑥𝑝, 𝜃) (Step 2 in Fig. 1).

.4. Semi-supervised active learning from noisy teacher

Our active learning strategy aims to assign weights to pseudo-
nnotated data samples and subsequently select more reliable examples
or training mini-batch. We train a 3D CNN, 𝛷𝑠𝑠𝑙(𝑋, 𝜃) ∶ 𝑋 ∈ 𝑋𝑣 ∪ 𝑋𝑝
n a semi-supervised fashion (Step 3 in Fig. 1). In a standard training
oss function  (in our case, the combo loss in Eq. (1)), all input data
re equally weighted, i.e., 𝑤𝑐 = 1 in Eq. (1). Given that our expanded
raining dataset now consists of both an expert-annotated set (𝑋𝑣, 𝑌𝑣)

and a pseudo-annotated set (𝑋𝑝, 𝑌𝑝), where 𝑌𝑝 is generally less reliable
than 𝑌𝑣, our method instead learns a data re-weighting strategy, where
we minimize the weighted combo loss (𝑝) for a mini-batch (𝐶𝑝) of set
(𝑋𝑝, 𝑌𝑝) as follows:

𝜃∗(𝑤) = argmin
𝐶𝑝
∑

𝑤𝑐𝑝
𝑐 (𝑥𝑝, 𝑦𝑝; 𝜃). (2)
3

𝜃 𝑐=1
p

In deep learning, the model parameters 𝜃 are updated using gradient
descent:

�̂�𝑡+1(𝑤) = 𝜃𝑡(𝑤) − 𝛼∇
⎛

⎜

⎜

⎝

𝐶𝑝
∑

𝑐=1
𝑤𝑐𝑝

𝑐 (𝑥𝑝, 𝑦𝑝; 𝜃)|𝜃=𝜃𝑡

⎞

⎟

⎟

⎠

, (3)

here 𝛼 is the step size and 𝑡 denotes the training step. Given the
educed trustworthiness of the generated pseudo labels, our method
nspects the gradient descent direction of each training minibatch of the
seudo-annotated dataset in each iteration, on the training loss surface.
nstead of equal weighting, we reweight (𝑊𝑝 = {𝑤1, 𝑤2,… , 𝑤𝐶𝑝

})
ccording to their similarity to the descent direction of the validation
ombo loss (𝑣) surface as:

∗
𝑝,𝑡 = argmin

𝑊𝑝 ,𝑊𝑝≥0

1
𝑁𝑣

𝑁𝑣
∑

𝑛=1
𝑣
𝑛(𝑥𝑣, 𝑦𝑣; 𝜃𝑡+1(𝑤)). (4)

However, solving Eq. (4) to find optimal 𝑊𝑝 for each update step of the
network parameters 𝜃 is computationally intensive as it requires two
nested loops of optimization. Therefore, to approximate 𝑊𝑝 for every
gradient descent step, a meta-learning procedure is used. At step 𝑡, we
perform a single gradient descent step on a mini-batch 𝐶𝑣 of validation
samples (shown as Step 3.2 in Fig. 1) with respect to 𝑊𝑝,𝑡 (obtained
in Step 3.1 in Fig. 1), followed by rectifying the output to generate a
non-negative weight (shown as Step 3.3 in Fig. 1):

�̃�𝑝,𝑡 = 𝑔(max

(

0,−𝜂 𝜕
𝜕𝑊𝑝,𝑡

𝐶𝑣
∑

𝑛=1
𝑣
𝑛(𝑥𝑣, 𝑦𝑣; 𝜃𝑡+1(𝑤))|𝑊𝑝,𝑡=0

)

), (5)

where 𝜂 is the descent step size on 𝑊𝑝,𝑡, and 𝑔 is the normalization
function to ensure ∑𝐶𝑝

𝑐=1 𝑤𝑐 = 1.
We also estimate the embedding of the gradient 𝑔𝑒𝑚,𝑡 in step 𝑡 for

pseudo-annotated data samples from the magnitude of the gradient
with respect to parameters 𝜃𝑜𝑢𝑡 in the final layer of the meta-network
as (Ash et al., 2019):

𝑔𝑒𝑚,𝑡 =
𝜕

𝜕𝜃𝑜𝑢𝑡

⎛

⎜

⎜

⎝

𝐶𝑝
∑

𝑐=1
𝑝
𝑐 (𝑥𝑝, 𝑦𝑝; 𝜃)|𝜃=𝜃𝑡

⎞

⎟

⎟

⎠

. (6)

e then generate the gradient magnitude-based sample weights from
he gradient embedding 𝑔𝑒𝑚,𝑡 (Eq. (6)) as:

̃ 𝑢,𝑡 = 𝑔(max(0, 𝑔𝑒𝑚,𝑡)). (7)

To ensure a balance between the ‘‘trustworthiness’’ and ‘‘informa-
iveness’’ of a particular pseudo-annotated data sample, we combine
̃ 𝑝,𝑡 and �̃�𝑢,𝑡 using a relative weight 𝜆 as:

̃ 𝑐𝑜𝑚,𝑡 = 𝜆�̃�𝑝,𝑡 + (1 − 𝜆)�̃�𝑢,𝑡. (8)

Although the optimum set of weights �̃�𝑐𝑜𝑚,𝑡 for a mini-batch is
xpected to have a positive value, which allows all the image vol-
mes in the mini-batch to contribute to the optimization of 𝜃 of 𝛷𝑠𝑠𝑙,
he constituent weight per sample in �̃�𝑐𝑜𝑚,𝑡 is different based on the
ample’s descent direction similarity to those of the validation data,
s well as its gradient embedding 𝑔𝑒𝑚,𝑡. Therefore, we choose more
eliable and informative pseudo-annotated samples from the mini-batch
hose descent direction is most similar to those of the validation data
nd which introduces newer information. This approach makes the
ptimization more robust on the noisy pseudo-annotated samples and
lso mimics an active learning strategy. To achieve this, we further
ectify �̃�𝑐𝑜𝑚,𝑡 so that samples with weights greater than the uniform
alue (1∕𝐶𝑝) are selected as:

̃ ∗
𝑐𝑜𝑚,𝑡 =

{

�̃�𝑐𝑜𝑚,𝑡 if �̃�𝑐𝑜𝑚,𝑡 ≥ 1∕𝐶𝑝

0 otherwise

After learning the adaptive weights (�̃� ∗
𝑐𝑜𝑚 = {𝑤∗

1 , 𝑤
∗
2 ,… , 𝑤∗

𝐶𝑝
}), we

erform a final backward pass to estimate the gradient and update the
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Fig. 1. Schematic diagram of the proposed example re-weighted active learning from noisy teacher approach for 3D image segmentation.
network parameters as:

𝜃𝑡+1(𝑤) = 𝜃𝑡(𝑤) − 𝛼∇
⎛

⎜

⎜

⎝

𝐶𝑝
∑

𝑐=1
𝑤∗

𝑐
𝑝
𝑐 (𝑥𝑝, 𝑦𝑝; 𝜃)|𝜃=𝜃𝑡

⎞

⎟

⎟

⎠

. (9)

We also present a description of our method in Algorithm 1. This
algorithm describes the technical steps in each training iteration. The
iteration starts by loading the pseudo- and expert-annotated batch data
(lines 1 and 2, respectively). Then the 3D meta-network loads current
parameters from the main 3D CNN model of identical architecture
(line 4). Afterward, steps to learn the weights per pseudo-annotated
sample based on its gradient similarity and gradient magnitude are
shown in lines 5–16. Finally, the sample re-weighted loss calculation
and updating of parameters of the main 3D CNN model are shown in
lines 17–20.

3. Data

We used three clinical COVID-19 CT datasets to evaluate our pro-
posed method, two of which are publicly available and include ex-
pert annotations at the voxel-level of infections. The third database
is private and is accessed with proper institutional ethics approval
(IR.ESFARAYENUMS.REC.1398.019, Esfarayen Faculty of Medical Sci-
ences, 2020-03-18; 2020s0128, Simon Fraser University).
4

3.1. COVID-19 CT benchmark dataset

The first public database is the COVID-19 CT Benchmark dataset
of Ma et al. (2020b) (henceforth, ‘‘Benchmark’’ refers to these data),
which contains 20 CT volumes from 20 patients with expert annotations
at the voxel-level of COVID-19 infection in the lungs. The proportion
of COVID-19 pneumonia infection in the lungs ranges from 0.01% to
59%. The left and right lungs, and pneumonia infection in these data
were annotated in three steps: first, junior annotators with 1–5 years
of experience annotated the data slice-by-slice using ITKSnap in the
axial direction, which was refined by two radiologists with 5–10 years
experience. Finally, a senior radiologist with more than 10 years of
experience verified and refined the annotations.

3.2. COVID-19 lung CT lesion segmentation challenge 2020 dataset

The second public database is the COVID-19 Lung CT Lesion Seg-
mentation Challenge 2020 database of An et al. (2020) (henceforth,
‘‘Challenge’’ refers to these data), which contains 199 chest CT scans
from 199 patients with ground truth pixel-level annotations of COVID-
19 lesions in the lungs. These data were acquired without intravenous
contrast enhancement from COVID-19 patients confirmed by reverse
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Algorithm 1 Learning to Re-weight Pseudo-annotated Samples
Require: 𝜃0, (𝑋𝑣, 𝑌𝑣), (𝑋𝑝, 𝑌𝑝), 𝐶𝑣, 𝐶𝑝, 𝜆
Ensure: 𝜃𝑇
1: for 𝑡 = 0...𝑇 − 1 do
2: {𝑥𝑝, 𝑦𝑝} ← MiniBatch((𝑋𝑝, 𝑌𝑝), 𝐶𝑝) ⊳ Pseudo-annotated data
3: {𝑥𝑣, 𝑦𝑣} ← MiniBatch((𝑋𝑣, 𝑌𝑣), 𝐶𝑣) ⊳ Expert-annotated data
4: 𝜃𝑚𝑡 ← 𝜃𝑡 ⊳ Assigning model parameters at 𝑡 to meta-net
5: �̂�𝑝 ← Forward(𝑥𝑝, 𝑦𝑝, 𝜃𝑚𝑡 ) ⊳ Forward pass of pseudo-annotated

data
6: 𝑤 ← 0; 𝑙𝑝 ←

∑𝐶𝑝
𝑖=1 𝑤𝑖

𝑝
𝑛(𝑦𝑝,𝑖, �̂�𝑝,𝑖) ⊳ Loss calculation; refers to

Eq. (2)
7: ∇𝜃𝑚𝑡 ← BackwardAD(𝑙𝑝, 𝜃𝑚𝑡 ) ⊳ Backward automatic

differentiation
8: �̂�𝑚𝑡 ← 𝜃𝑚𝑡 − 𝛼∇𝜃𝑚𝑡 ⊳ Updating the meta-net parameters
9: �̂�𝑣 ← Forward(𝑥𝑣, 𝑦𝑣, �̂�𝑚𝑡 ) ⊳ Forward pass of expert-annotated

data
10: 𝑙𝑣 ← 1

𝐶𝑣

∑𝐶𝑣
𝑖=1 

𝑣
𝑛(𝑦𝑣,𝑖, �̂�𝑣,𝑖) ⊳ Loss calculation; refers to Eq. (4)

11: ∇𝑤 ← BackwardAD(𝑙𝑣, 𝑤) ⊳ Backward automatic
differentiation

2: �̃�𝑝 ← max(−∇𝑤, 0); �̃�𝑝 ←
�̃�𝑝

∑

�̃�𝑝+𝛿(
∑

𝑗 �̃�𝑝,𝑗 )
⊳ Refers to Eq. (5)

13: 𝑔𝑒𝑚 = 𝛿
𝛿𝜃𝑚𝑜𝑢𝑡

𝑙𝑝 ⊳ 𝜃𝑚𝑜𝑢𝑡: parameters of the output layer; refers to
Eq. (6)

4: �̃�𝑢 ← max(𝑔𝑒𝑚, 0); �̃�𝑢 ←
�̃�𝑢

∑

�̃�𝑢+𝛿(
∑

𝑗 �̃�𝑢,𝑗 )
⊳ Refers to Eq. (7)

5: �̃�𝑐𝑜𝑚 ← 𝜆�̃�𝑝 + (1 − 𝜆)�̃�𝑢 ⊳ Refers to Eq. (8)
6: �̃� ∗

𝑐𝑜𝑚 ← �̃�𝑐𝑜𝑚 if �̃�𝑐𝑜𝑚 ≥ 1∕𝐶𝑝; else 0 ⊳ Rectification od weights
7: �̂�𝑝 ← Forward(𝑥𝑝, 𝑦𝑝, 𝜃𝑡) ⊳ Forward pass to actual model in

training
8: 𝑙𝑝 ←

∑𝐶𝑝
𝑖=1 �̃�

∗
𝑐𝑜𝑚,𝑖

𝑝
𝑛(𝑦𝑝,𝑖, �̂�𝑝,𝑖) ⊳ Loss calculation with

re-weighting
19: ∇𝜃𝑡 ← BackwardAD(𝑙𝑝, 𝜃𝑡) ⊳ Backward automatic

differentiation
20: 𝜃𝑡+1 ← 𝜃𝑡 − 𝛼∇𝜃𝑡 ⊳ Updating the model parameters; refers to

Eq. (9)
21: end for

transcription polymerase chain reaction (RT-PCR) in China. COVID-
19 infection in these CT volumes was initially segmented using a
previously trained model to segment the COVID-19 lesion (Yang et al.,
2021). Later, a group of experienced radiologists used the initial seg-
mentation as a starting point for the subsequent ITKSnap-based adjudi-
cation and correction of infection masks.

3.3. COVID-19 CT private dataset

The third database is composed of 1473 CT scans of 623 patients of
Imam Khomeini Hospital, Esfarayen, Iran (henceforth, ‘‘hospital’’ refers
to these data). We accessed these data with all required ethics approvals
in place (IR.ESFARAYENUMS.REC.1398.019, Esfarayen Faculty of Med-
ical Sciences, 2020-03-18; 2020s0128, Simon Fraser University). Of
these scans, 567 were confirmed to be from COVID-19 patients and 906
are from non-COVID patients. None of the scans in this third database
had pixel-level annotation of lung infections. These data were acquired
using the Toshiba Alexion CT scanner (Toshiba, Minato City, Tokyo,
Japan). The axial pixel dimension ranges between 0.571 and 0.763 mm.
The thickness of the slice was set to 7 mm.

4. Implementation details

To standardize the clinical datasets, we resampled all CT volumes
to have a common voxel dimension of 1.6×1.6×3.2 mm3 by trilinear in-
erpolation. We used a modified version of 3D UNet (Çiçek et al., 2016)
s CNN (for both 𝛷 and 𝛷 ), which has residual connections around
5

𝑠𝑙 𝑠𝑠𝑙
he convolutional blocks as in Kerfoot et al. (2018). We show our 3D
Net architecture as a tabular form in Table 1, which also mentions

he number of trainable parameters in each layer of the network. We
se Adam optimizer with an initial learning rate of 0.01 to train our
etworks. We carried out two experiments, one using Benchmark and
ospital data and the other using Challenge and Hospital data. We used
hallenge and Hospital data for the ablation study (i.e., experiment 2)
nd the Benchmark and Hospital data for the comparison of our perfor-
ance with respect to the state-of-the-art approaches (i.e., experiment
). In both cases, the hospital scans constituted the data without voxel-
evel annotation (i.e., (𝑋𝑝, 𝑌𝑝)). Before running the experiments, we
ugmented the Benchmark and Challenge datasets by flipping left–right
nd up-down (i.e., the sample size was increased 4×). For experiment 1,
e used 16 volumes from the Benchmark dataset as 𝑋𝑡𝑟 during super-
ised learning (Step 1 in Fig. 1). We used the remaining 64 Benchmark
T volumes in 4-fold cross-validation, where we used 48 volumes as
𝑣 (i.e., used in gradient similarity estimation during training) and 16
olumes as 𝑋𝑡 (i.e., held out for testing) in each fold. For experiment
, we used the pseudo annotations from experiment 1, thus used 636
i.e., 4 × 159; used in gradient similarity estimation during training)
olumes as 𝑋𝑣 and 160 (i.e., 4 × 40; held out for testing) volumes as 𝑋𝑡
n 5-fold cross-validation. In both experiments, the entire third dataset
as used as annotation-free data 𝑋𝑝. We ensured that the augmented
ata of a patient was never split between the training, validation, and
est sets. Training 𝛷𝑠𝑙 and 𝛷𝑠𝑠𝑙 are scheduled to run for 500 epochs
ach in both experiments, which is supposed to take about 1 day and
days, respectively. However, we often stopped training early if the

raining error was found to be saturated. We also chose 𝐶𝑣 = 𝐶𝑝 = 4
(i.e., the size of the training batch) and 𝜆 = 0.5. We implemented our
method in PyTorch version 1.6.0 and Python version 3.7.4. The training
was performed on a workstation with an Intel E5-2650 v4 Broadwell
2.2 GHz processor, an Nvidia P100 Pascal GPU with 16 GB of VRAM,
and 64 GB of RAM.

5. Results and discussion

In this section, we first present our ablation study on the Chal-
lenge dataset and then compare the pneumonia infection segmentation
performance of our proposed method with that of the state-of-the-art
methods on the Benchmark dataset.

5.1. Ablation study on the challenge data

Here, we present the results of our ablation study in Table 2 to
demonstrate the incremental contributions by different modules of our
proposed method. In this table, we present 5-fold cross-validated Dice
scores and Hausdorff distances by different approaches such as our fully
supervised method, a semi-supervised approach adopting the training
strategy from Fan et al. (2020), the proposed gradient similarity-based
sample re-weighting method (RGS; re-weighting with 𝜆 = 1 but without
rectification of �̃�𝑐𝑜𝑚,𝑡), the proposed last layer gradient magnitude-
based sample re-weighting method (RGM; re-weighting with 𝜆 = 0
but without rectification of �̃�𝑐𝑜𝑚,𝑡), proposed gradient similarity and
last layer gradient magnitude-based sample re-weighting (RGS&M; re-
weighting with 𝜆 = 0.5 but without rectification of �̃�𝑐𝑜𝑚,𝑡), and the
proposed gradient similarity- and last layer gradient magnitude-based
sample re-weighting with AL method (RGS&M+AL; re-weighting with
�̃� ∗

𝑐𝑜𝑚,𝑡 and 𝜆 = 0.5). Note that for the semi-supervised approach, we only
adopted the semi-supervision strategy from Fan et al. (2020) but not
their deep model, as it was designed for 2D data. This semi-supervision
strategy used machine-generated annotation (i.e., noisy annotation) for
the annotation-free data pool during training. As a result, we see in
Table 2 that the performance of this approach in terms of the mean Dice
and mean Hausdorff distance is worse than that of our fully supervised
approach for folds 3 and 4. The overall performance of the semi-
supervised method is slightly better than that of the fully supervised
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Table 1
Our 3D UNet architecture. Acronyms—BN: batch normalization, Conv3D: 3D convolution, Conv3D-Res: Conv3D is used for residual connection,
PReLU: parametric rectified linear unit, and I: identity connection.

Block Conv3D Stride Activation BN Repeat Input Output # trainable
type Kernel function size size parameters

Conv3D 33 2 PReLU Yes 2 963 × 1 483 × 16 897
Conv3D 33 1 PReLU Yes 1 483 × 16 483 × 16 6,929
Conv3D-Res 33 2 – – 1 483 × 16 483 × 16 0
Conv3D 33 2 PReLU Yes 2 483 × 16 243 × 32 27,713
Conv3D 33 1 PReLU Yes 1 243 × 32 243 × 32 27,681
Conv3D-Res 33 2 – – 1 243 × 32 243 × 32 0
Conv3D 33 2 PReLU Yes 2 243 × 32 123 × 64 110,720
Conv3D 33 1 PReLU Yes 1 123 × 64 123 × 64 110,657
Conv3D-Res 33 2 – – 1 123 × 64 123 × 64 0
Conv3D 33 2 PReLU Yes 2 123 × 64 63 × 128 442,625
Conv3D 33 1 PReLU Yes 1 63 × 128 63 × 128 442,497
Conv3D-Res 33 2 – – 1 63 × 128 63 × 128 0
Conv3D 33 1 PReLU Yes 2 63 × 128 63 × 256 918,017
Conv3D 33 1 PReLU Yes 1 63 × 256 63 × 256 1,769,729
Conv3D-Res 13 1 – – 1 63 × 256 63 × 256 0
Conv3D 33 2 PReLU Yes 1 63 × (256 + 128a) 123 × 64 663,617
Conv3D 33 1 PReLU Yes 1 123 × 64 123 × 64 110,657
Conv3D-Res I – – – 1 123 × 64 123 × 64 0
Conv3D 33 2 PReLU Yes 1 123 × (64 + 64a) 243 × 32 110,621
Conv3D 33 1 PReLU Yes 1 243 × 32 243 × 32 27,681
Conv3D-Res I – – – 1 243 × 32 243 × 32 0
Conv3D 33 2 PReLU Yes 1 243 × (32 + 32a) 483 × 16 27,665
Conv3D 33 1 PReLU Yes 1 483 × 16 483 × 16 6,929
Conv3D-Res I – – – 1 483 × 16 483 × 16 0
Conv3D 33 2 PReLU Yes 1 483 × (16 + 16a) 963 × 2 1,731
Conv3D 33 1 – – 1 963 × 2 963 × 2 110
Conv3D-Res I – – – 1 963 × 2 963 × 2 0

Total 4,806,481

aRepresents the skip connection between the encoder and decoder sides of the network.
Table 2
5-fold cross-validation performance in terms of Dice scores and Hausdorff distances using our methods implemented for segmenting COVID-19
pneumonia infection in Challenge data. The upward arrow (↑) indicates that ‘higher is better, and the downward arrow (↓) indicates that ‘lower
is better’. Values indicated by the colors blue and red indicate the best performance in terms of the Dice score and the Hausdorff distance,
respectively. (Acronyms—RGS: sample re-weighting based on gradient similarity only, RGS+AL: sample re-weighting based on gradient similarity
followed by active learning, RGS&M+AL: sample re-weighting based on both gradient similarity and last layer gradient magnitude followed by
active learning, Met: metrics, DS: Dice score, HD: Hausdorff distance.)
Method Met. Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Average

Fully supervised DS↑ 0.573 ± 0.240 0.565 ± 0.236 0.589 ± 0.225 0.642 ± 0.214 0.573 ± 0.229 0.588 ± 0.228
HD↓ 35.68 ± 10.27 37.50 ± 09.54 34.71 ± 10.50 32.80 ± 13.28 34.41 ± 11.23 35.02 ± 10.96

Semi-supervised DS↑ 0.574 ± 0.228 0.577 ± 0.256 0.588 ± 0.223 0.637 ± 0.211 0.576 ± 0.220 0.590 ± 0.227
HD↓ 35.50 ± 09.13 35.05 ± 10.45 38.59 ± 11.66 33.21 ± 11.13 33.58 ± 11.20 35.18 ± 10.71

Proposed RGS DS↑ 0.588 ± 0.215 0.583 ± 0.231 0.592 ± 0.217 0.644 ± 0.220 0.583 ± 0.214 0.598 ± 0.219
HD↓ 37.52 ± 09.51 36.06 ± 08.61 35.13 ± 11.99 33.58 ± 10.64 34.26 ± 11.35 35.31 ± 10.42

Proposed RGM DS↑ 0.592 ± 0.228 0.583 ± 0.243 0.626 ± 0.208 0.657 ± 0.198 0.577 ± 0.226 0.607 ± 0.221
HD↓ 33.59 ± 10.33 34.85 ± 11.71 36.85 ± 11.72 33.86 ± 10.73 37.22 ± 09.66 35.27 ± 10.83

Proposed RGS&M DS↑ 0.593 ± 0.224 0.604 ± 0.232 0.622 ± 0.203 0.660 ± 0.203 0.599 ± 0.217 0.616 ± 0.216
HD↓ 34.06 ± 09.06 36.06 ± 09.18 35.54 ± 12.71 32.37 ± 12.56 36.19 ± 10.63 34.84 ± 10.82

Proposed RGS&M+AL DS↑ 0.600 ± 0.224 0.613 ± 0.222 0.631 ± 0.197 0.661 ± 0.200 0.600 ± 0.210 0.621 ± 0.211
HD↓ 32.33 ± 11.55 33.28 ± 10.23 34.37 ± 12.39 34.91 ± 10.34 37.36 ± 11.12 34.45 ± 11.12
o
t
a

approach in terms of average Dice; however, the opposite is seen in
terms of the mean Hausdorff distance. Next, we see in Table 2 that
the sample re-weighting strategy using the gradient similarity and the
last-layer gradient magnitude (used in the RGS and RGM methods,
respectively) leads to better segmentation performance in terms of Dice
score than fully supervised and semi-supervised approaches because
of incorporating the ‘‘trustworthiness’’ (in terms of �̃�𝑝,𝑡) and ‘‘infor-

ativeness’’ (in terms of �̃�𝑢,𝑡) of pseudo-annotated samples into the
model loss calculation. However, the Hausdorff distance by the RGS
method is seen to be worse than that by the semi-supervised approach
for folds 1, 2, 4, and 5. A similar but marginally worse performance
trend is seen in the case of the RGM approach for folds 4 and 5. We
further see in Table 2 that the RGS&M method, where we combined
the similarity of the gradients and the magnitude of the gradient of
6

the last layer with 𝜆 = 0.5, improves the segmentation performance 0
in terms of the Dice score more than the RGS or RGM method alone.
However, mixed performance is seen in terms of the Hausdorff dis-
tance for folds 1 to 5, compared to semi-supervised, RGS, and RGM
approaches. Nonetheless, the average Hausdorff distance performance
by the RGS&M method is better than that by the fully supervised, semi-
supervised, RGS, and RGM approaches. Finally, we see in Table 3 that
our active learning strategy using weight rectification (i.e., �̃� ∗

𝑐𝑜𝑚,𝑡 with
𝜆 = 0.5), which completely removes the contribution of less trustworthy
and informative samples in batch-wise loss calculation, leads to the
best segmentation performance in terms of the Dice score. Furthermore,
the average Hausdorff distance by the proposed RGS&M+AL method
utperforms all other methods. We also performed the two-sample t -
est for the 5-fold mean Dice scores between our proposed RGS&M+AL
nd other methods mentioned in Table 2. The estimated p-values are

.0027, 0.0048, 0.0330, 0.1963, and 0.6404 for the fully supervised,
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Table 3
4-fold cross-validation performance in terms of Dice scores and Hausdorff distances by our implemented methods for
segmenting pneumonia infection in the Benchmark data. The upward arrow (↑) indicates that higher is better, and the
downward arrow (↓) indicates that lower is better. The values indicated by the colors blue and red indicate the best
performance in terms of dice score and Hausdorff distance, respectively. (Acronyms—RGS: sample re-weighting based on
gradient similarity only, RGS+AL: sample re-weighting based on gradient similarity followed by active learning, RGS&M+AL:
sample re-weighting based on both gradient similarity and last layer gradient magnitude followed by active learning, Met:
metrics, DS: Dice score, HD: Hausdorff distance.)
Method Met. Fold-1 Fold-2 Fold-3 Fold-4 Average

Fully supervised DS↑ 0.751 ± 0.075 0.696 ± 0.113 0.705 ± 0.038 0.768 ± 0.038 0.730 ± 0.066
HD↓ 39.78 ± 10.71 49.97 ± 05.53 45.51 ± 06.20 41.10 ± 04.75 44.08 ± 06.79

Proposed RGS DS↑ 0.755 ± 0.126 0.708 ± 0.010 0.741 ± 0.084 0.814 ± 0.040 0.754 ± 0.065
HD↓ 39.31 ± 11.64 50.67 ± 06.23 46.88 ± 09.26 41.19 ± 05.71 44.51 ± 08.21

Proposed RGS+AL DS↑ 0.758 ± 0.119 0.711 ± 0.099 0.741 ± 0.082 0.814 ± 0.038 0.756 ± 0.084
HD↓ 39.45 ± 11.40 50.41 ± 06.63 45.85 ± 08.99 40.68 ± 04.89 44.09 ± 07.97

Proposed RGS&M+AL DS↑ 0.767 ± 0.065 0.727 ± 0.089 0.744 ± 0.079 0.815 ± 0.042 0.763 ± 0.068
HD↓ 39.26 ± 11.24 50.07 ± 06.60 44.95 ± 09.26 42.25 ± 04.85 43.91 ± 07.98
Fig. 2. Qualitative performance comparison by our implemented methods in pneumonia infection segmentation on the Challenge data. The first row shows the axial CT slices
of seven COVID-19-infected patients. The second row shows the expert-generated infection mask overlaid on the corresponding CT slices. The third to eighth rows show infection
segmentation masks generated by different approaches. Blue arrows indicate false positives and yellow arrows indicate false negatives.
semi-supervised, RGS, RGM, and RGS&M methods, respectively. Since,
RGS, RGM, and RGS&M methods are intrinsic parts of our proposed
RGS&M+AL method, differences in segmentation performance by these
approaches may be non-significant. However, as expected, the proposed
RGS&M+AL showed statistically significant improvements (p < 0.01) in
terms of Dice score compared to fully supervised and semi-supervised
approaches.

In Fig. 2, we demonstrate the qualitative performance comparison of
fully supervised, semi-supervised, RGS, RGM, RGS&M, and RGS&M+AL
methods. Here, we show the axial CT slices and corresponding expert-
annotated pneumonia infection masks for seven COVID-19-positive
7

patients. We see in this figure that all methods performed reasonably
well in identifying pneumonia infections in the lung. However, for more
irregular and complex infection patterns (e.g., patients I, IV, V, and
VII), the masks produced by the proposed RGS&M+AL method, shown
in the last row, are the best match to the expert-annotated infection
masks, shown in the second row. We also see in the last three columns
that there are considerable false positives (indicated with blue arrows)
and false negatives (indicated with yellow arrows) in infection masks
produced by different methods except for the proposed RGS&M+AL
approach. This evidence further supports the efficacy of the proposed
RGS&M+AL method.
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5.2. Performance comparison on the benchmark data

In Table 3, we show the Dice scores and Hausdorff distances
achieved in 4-fold cross-validation by our fully supervised method, pro-
posed gradient similarity-based sample re-weighting method (RGS; re-
weighting but no rectification of �̃�𝑐𝑜𝑚,𝑡), proposed gradient similarity-
based sample re-weighting with AL (RGS+AL; re-weighting with �̃� ∗

𝑐𝑜𝑚,𝑡
nd 𝜆 = 1), and proposed gradient similarity- and last layer gradient
agnitude-based sample re-weighting with AL method (RGS&M+AL;

re-weighting with �̃� ∗
𝑐𝑜𝑚,𝑡 and 𝜆 = 0.5). Since we also compared our

erformance to those of the state-of-the-art methods on the same bench-
ark data set, and we had to use part of the data as 𝑋𝑡𝑟 to generate
seudo annotation, we had to use 4-fold cross-validation so that we
ave the same number of data samples in the test cohort as in the state-
f-the-art. Table 3 shows that the proposed RGS method, where we
sed CT volumes with noisy annotation during training, performs better
n terms of the Dice score than the fully supervised approach. This
erformance confirms that the gradient similarity between the data
ith expert annotation and noisy annotation helps to automatically
mphasize more trustworthy samples in a training batch in the loss
alculation and thus update the model parameters during the back-
ropagation. We further see in Table 3 that the RGS+AL method
erforms better in terms of Dice score than the RGS method alone in
ll folds except Fold 4, which demonstrates that the complete removal
f the contribution from less trustworthy samples (i.e., AL in terms
f rectification of �̃�𝑐𝑜𝑚,𝑡 with 𝜆 = 1) in batch-wise loss calculation

improves the model’s segmentation performance. We further see in
Table 3 that the RGS&M+AL method performs the best in terms of the
Dice score compared to all other approaches in all folds. It proves that
the re-weighting of a machine-annotated sample, based on its gradient
similarity and last layer gradient magnitude reflecting its ‘‘trustwor-
thiness’’ and ‘‘informativeness’’, respectively, improves the accuracy
of the deep segmentation model. Here also, after incorporating both
the data informativeness and label trustworthiness into the sample re-
weighting, followed by the complete removal of the contribution of less
trustworthy and informative samples (i.e., AL in terms of rectification
of �̃�𝑐𝑜𝑚,𝑡 with 𝜆 = 0.5) in batch-wise loss calculation, we obtain a
etter-performing model. We also observe in Table 3 that the average
ausdorff distance by the proposed RGS&M+AL method is the best

among all other techniques. We further performed the two-sample t -
test for the 5-fold mean Dice scores between our proposed RGS&M+AL
and other methods mentioned in Table 3. The estimated p-values are
0.0021, 0.3399, and 0.5180 for the fully supervised, RGS, and RGS+AL
methods, respectively. Since RGS and RGS+AL methods are intrinsic
parts of our proposed RGS&M+AL method, differences in segmentation
performance by these approaches may not be significant. However,
as expected, the proposed RGS&M+AL showed statistically significant
improvements (p < 0.01) in terms of Dice score compared to the fully
supervised approach.

In Fig. 3, we present the qualitative performance comparison of the
fully supervised, RGS, RGS+AL, and RGS&M+AL methods. Here, we
show the axial CT slices and corresponding expert-annotated pneumo-
nia infection masks for five COVID-19-positive patients. Similar to the
segmentation performance on the challenge data, here we see in this
figure that all the methods performed reasonably well in identifying
pneumonia infections in the lung. However, for more irregular and
complex infection patterns (i.e., patients I, III, IV, and V), the masks
produced by the proposed RGS&M+AL method (shown in the last row)
match the best with the expert-annotated infection masks (shown in the
second row). Therefore, this qualitative performance further supports
the efficacy of the proposed RGS&M+AL approach.

Next, in Table 4, we show the Dice scores achieved by different
methods to segment pneumonia infection in the benchmark dataset.
Here, we show results for two fully supervised learning approaches
(Isensee et al. (2019) and our 3D UNet implementation), five semi-
8

supervised learning approaches (Chen et al. (2020), Yu et al. (2019), Ma
Table 4
Dice scores achieved by contrasting methods in the segmentation of pneumonia infec-
tions in Benchmark data. (Acronyms—RGS: sample re-weighting based on gradient
similarity only, RGS+AL: sample re-weighting based on gradient similarity followed by
active learning, RGS&M+AL: sample re-weighting based on both gradient similarity and
last layer gradient magnitude followed by active learning.)

Method type Methods Mean Dice

Fully supervised Isensee et al. (2019) 0.6728 ± 0.2220
Our 3D UNet 0.7307 ± 0.0660

Semi-supervised

Chen et al. (2020) 0.6759 ± 0.2230
Yu et al. (2019) 0.6962 ± 0.2030
Ma et al. (2020a) 0.7225 ± 0.1989
Fan et al. (2020) 0.5970
Proposed RGS 0.7548 ± 0.06517

Active Learning from Noisy Teacher Proposed RGS+AL 0.7562 ± 0.0848
Proposed RGS&M+AL 𝟎.𝟕𝟔𝟑𝟓 ± 𝟎.𝟎𝟔𝟖𝟕

et al. (2020a), Fan et al. (2020), and proposed RGS method), and
two active learning by noisy teacher approaches, namely, ‘proposed
RGS+AL’ and ‘proposed RGS&M+AL.’ Note that Ma et al. (2020a)
are the curator and publishers of this Benchmark dataset (Ma et al.,
2020b) that we use in this paper for validation. Furthermore, the
methods of Isensee et al. (2019), Chen et al. (2020), and Yu et al.
(2019) were implemented and tested on the same Benchmark dataset
of Ma et al. (2020a), where they adhered to the exact computation
and pre-processing steps discussed in the respective articles. There-
fore, in Table 4, we report the mean Dices of methods by Isensee
et al. (2019), Chen et al. (2020), Yu et al. (2019), and Ma et al.
(2020a), as reported by Ma et al. (2020a). In this way, we also
avoided any deteriorated performance that could have resulted from
our own implementation of these methods. We also plot the mean
Dice by Fan et al. (2020) in Table 4, which was reported on the
same Benchmark dataset although they did not report the standard
deviation. Comparing Dice scores by different methods in Table 4,
we see that our base 3D UNet outperformed all other methods in
infection segmentation. Further improvement in the mean Dice score
is achieved by our proposed semi-supervised RGS method. Although
trained with the machine-annotated data, the proposed RGS method
outperformed our base 3D UNet model because of using the gradient
similarity-based sample re-weighting. Finally, we see in Table 4 that
the proposed RGS+AL method further improves the Dice score than
the RGS method, and the proposed RGS&M+AL method performs the
best among all methods. We also performed the two-sample t -test
between our proposed RGS&M+AL and other state-of-the-art methods
mentioned in Table 4, where the estimated p-values are 0.0002, 0.0001,
0.0003, 0.0023, 0.0567, and 3.86e−36 for the methods by Isensee et al.
2019), our 3D UNet, Chen et al. (2020), Yu et al. (2019), Ma et al.
2020a), and Fan et al. (2020), respectively. Except for the method
y Ma et al. (2020a), the performance improvement by the proposed
GS&M+AL is statistically significant (p < 0.01) compared to other

methods. This result again reinforces our claim that the re-weighting
of pseudo-annotated samples, based on their gradient similarity and
last layer gradient magnitude followed by the complete removal of the
contribution from lesser trustworthy and informative samples (i.e., AL
in terms of rectification of �̃�𝑐𝑜𝑚,𝑡) in batch-wise loss calculation, leads
to better model optimization and segmentation performance.

Although the proposed RGS&M+AL approach showed better seg-
mentation performance compared to other state of the art, this ap-
proach is slightly computationally expensive compared to training a
3D UNet under full supervision. The proposed approach needs an
additional forward pass and gradient calculation for the meta-network
in each iteration, although the parameters of the meta-network are
not updated. The meta-network is an identical 3D UNet that loads the
current state of parameters from the actual 3D UNet in training in each
iteration. Despite the use of an additional meta-network, the total num-
ber of trainable parameters of the proposed method remains the same
as shown in Table 1. Also because of an additional forward pass and
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Fig. 3. Qualitative performance comparison by our implemented methods in pneumonia infection segmentation on the Benchmark data. The first row shows the axial CT slices
of five COVID-19-infected patients. The second row shows the expert-generated infection mask overlaid on the corresponding CT slices. The third to sixth rows show infection
segmentation masks generated by different approaches.
gradient calculation for the meta-network in each iteration, the total
training time is slightly higher for our proposed model training than
for training a 3D UNet under full supervision. Despite a slightly longer
training time and more computational complexity while incorporating
larger training data without expert annotation, our approach showed
better segmentation performance compared to other state-of-the-art
approaches.

6. Conclusions

We proposed a new semi-supervised segmentation method that de-
ploys a noisy teacher-based active deep learning strategy. We use an ex-
ample re-weighting scheme that adaptively weights pseudo-annotated
training samples based on the similarity of their gradient directions
to those of the expert-annotated validation data and the gradient
magnitude of the last layer of the deep model. We incorporated the
trustworthiness and informativeness of pseudo-annotated data samples
within an active learning strategy by incorporating a query function
in the re-weighting process that favors more trustworthy and more
informative samples from batch data. We validated our approach using
3 different clinical CT databases of COVID-19 and non-COVID pneu-
monia lung images and demonstrated that our method outperformed
state of the art in COVID-19 pneumonia infection segmentation. Our
proposed method achieved the highest Dice score using a smaller num-
ber of expert-annotated data in the semi-supervised model training. The
conventional deep learning framework often faces various challenges
9

in maintaining a standard accurate predictability when training and
testing data come from different sources, which is referred to as the ‘do-
main shift.’ Since our proposed approach utilized the gradient similarity
between the training and validation data (from two different sources),
it can be more robust in the domain shift problem. Additionally, our
proposed approach showed efficacy in producing accurate pneumonia
infection masks, although we had extremely limited expert-annotated
data. Our method can significantly contribute to image-based diagnosis
procedures in the clinical environment via leveraging the commonly
available large pool of annotation-free data in the hospital records, as
attaining expert annotation by radiologists is a common bottleneck in
the volumetric medical image-based supervised learning framework.
While demonstrating the best COVID-19 pneumonia infection segmen-
tation performance compared to the state of the arts, our method has
a few limitations that require further improvement in the future. For
example, we empirically choose the value of 𝜆. Our future plan includes
developing an automatic data-driven process to set the value of 𝜆 on
the fly during model training. We also plan to validate our method on
a larger expert-annotated data pool once available.
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