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Abstract

Numerous studies have examined the neural substrates of intertemporal decision-

making, but few have systematically investigated separate neural representations of

the two attributes of future rewards (i.e., the amount of the reward and the delay

time). More importantly, no study has used the novel analytical method of represen-

tational connectivity analysis (RCA) to map the two dimensions' functional brain net-

works at the level of multivariate neural representations. This study independently

manipulated the amount and delay time of rewards during an intertemporal decision

task. Both univariate and multivariate pattern analyses showed that brain activity in

the dorsomedial prefrontal cortex (DMPFC) and lateral frontal pole cortex (LFPC) was

modulated by the amount of rewards, whereas brain activity in the DMPFC and dor-

solateral prefrontal cortex (DLPFC) was modulated by the length of delay. Moreover,

representational similarity analysis (RSA) revealed that even for the regions of the

DMPFC that overlapped between the two dimensions, they manifested distinct neu-

ral activity patterns. In terms of individual differences, those with large delay dis-

counting rates (k) showed greater DMPFC and LFPC activity as the amount of

rewards increased but showed lower DMPFC and DLPFC activity as the delay time

increased. Lastly, RCA suggested that the topological metrics (i.e., global and local
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efficiency) of the functional connectome subserving the delay time dimension

inversely predicted individual discounting rate. These findings provide novel insights

into neural representations of the two attributes in intertemporal decisions, and offer

a new approach to construct task-based functional brain networks whose topological

properties are related to impulsivity.
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dorsal medial prefrontal cortex, graph theory, intertemporal decision-making, multivariate
pattern analysis, representational similarity analysis

1 | INTRODUCTION

Intertemporal decision-making is ubiquitous in daily life and has been

considered a crucial factor in individuals' development and success. In

general, people are more likely to choose immediate-but-smaller

rewards than delayed-but-larger rewards. This common phenomenon

is known as temporal discounting, namely, the subjective value of

future benefits devalues as the time to delivery increases

(Ainslie, 1975; Samuelson, 1937). Steepness of the discounting rates

has been associated with real world problems such as substance

abuse (Bickel, Odum, & Madden, 1999), pathological gambling

(Alessi & Petry, 2003), and attention deficit hyperactivity disorder

(ADHD) (Paloyelis, Asherson, Mehta, Faraone, & Kuntsi, 2010).

Previous functional imaging studies have indicated that decision-

makers with higher discounting rates (k) frequently exhibit hyper-

activation in the valuation network (McClure, Laibson, Loewenstein, &

Cohen, 2004) and hypoactivation in the prospection (Peters &

Büchel, 2011) and cognitive control networks (Figner et al., 2010).

Because the subjective value of future rewards and k are dependent

on two attributes of the rewards: the amount and the length of delay

(Kable & Glimcher, 2007; Rangel, Camerer, & Montague, 2008),

researchers have also been interested in understanding how the brain

represents these two attributes. Earlier studies implicated the brain

areas of the ventromedial prefrontal cortex (VMPFC), ventral striatum

(VS), and posterior cingulate cortex (PCC) in the processing of the

amount of rewards, and the brain regions of the dorsolateral prefron-

tal cortex (DLPFC) and posterior parietal cortex (PPC) in the

processing of the delay time (Ballard & Knutson, 2009; Li et al., 2013).

Subsequent research showed that the dorsomedial prefrontal cortex

(DMPFC) was also associated with the processing of delay time. Spe-

cifically, an fMRI study showed that blood-oxygen-level-dependent

(BOLD) signal change in the DMPFC was sensitive to delay time

(Massar, Libedinsky, Chee, Huettel, & Chee, 2015). A morphological

analysis also revealed that DMPFC atrophy was linked to attenuated

sensitivity to delay time among patients with Alzheimer's disease and

healthy control subjects (Beagle et al., 2020).

The above-mentioned studies, however, all utilized traditional

univariate (voxel-wise) activation analysis. Such analytical approach

has been found to be less sensitive to distributed coding of infor-

mation than the newer method of multivoxel pattern analysis

(MVPA) (Jimura & Poldrack, 2012; Kahnt, 2018; Zha et al., 2019). In

contrast, MVPA concerns the spatial distributed patterns of voxel

activity that can be used to decode the specific cognitive processes

(Ritchie, Kaplan, & Klein, 2019). Using MVPA, our previous study

(Wang et al., 2014) manipulated the amount of future rewards (with

fixed length of delay, 120 days) and found distributed neural repre-

sentation of the amount of future rewards in the DMPFC. Here, we

extended from prior studies to manipulate both the amount and

the delay time of rewards simultaneously and independently, in

order to examine distributed neural representations of these two

attributes.

In addition to using multivariate analyses, the current study also

used a novel network construction approach (i.e., representational

connectivity analysis [RCA]) to examine the functional networks

involved in the processing of the two attributes during intertemporal

decision-making (Zhao et al., 2017). This approach measures the

degrees of similarity of the representational spaces of different

regions through a “second-order representational similarity analysis

(RSA)” (Kriegeskorte, Mur, & Bandettini, 2008). Traditional connectiv-

ity analyses (both functional and structural) have revealed significant

associations between small-world properties of human brain and

intertemporal decision-making. Specifically, individual differences in

discounting rates were found to be related to global topological orga-

nization including small-world and rich-club regimes in both functional

and structural connectivity networks (Chen, Hu, Chen, & Feng, 2019;

Wang, Lv, He, & Xue, 2020a) and the network-based (Li et al., 2013)

and voxel-based (Cai, Chen, Liu, Zhu, & Yu, 2020; Wang et al., 2020b)

intrinsic functional connectivity during resting-state functional mag-

netic resonance imaging (fMRI). Such individual differences are

recently investigated via connectome-based prediction model (CPM),

which is widely applied to explore the brain connectivity-behavior

associations due to reliable, simple, and highly efficient characteristics

(Shen et al., 2017). However, it remains unknown about amount-

related and delay-related function-specific representational brain net-

works, and their associations with discounting rate. Relative to RCA,

traditional connectivity analysis might only provide relatively little

information related to specific amount and delay representations,

which is thought to play a critical role in understanding cognitive and

neural mechanisms of decision-making based on recent attribute-wise

decision theory. Thus, we used RCA approach to reconstruct

function-specific brain networks corresponding to amount and delay

time, and used graph theoretical analysis to establish the link between
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topological metrics of the brain networks related to the two attributes

and temporal discounting rates.

2 | MATERIALS AND METHODS

2.1 | Subjects

Twenty-four subjects (8 males; age, 21.21 ± 1.22 years old) partici-

pated in the study. Five volunteers were excluded from final analyses

due to one of the following two reasons: large head motion [3 sub-

jects; mean framewise displacement (FD) > 0.5 mm in any one of

three runs], or misunderstanding of task instructions (2 subjects). All

subjects were free from neurological or psychiatric disorders.

Informed written consent was obtained from subjects before the

experiment. This study was approved by the Institutional Review

Board of the Faculty of Psychology at Tianjin Normal University in

China.

2.2 | Intertemporal choice task

Figure 1 depicts the stimuli and the experimental procedures of the

intertemporal choice task. Such experimental procedure has also been

applied in another study that provided more detailed information

(Wang et al., 2021). Subjects were instructed to choose between a

fixed immediate reward (always RMB 40, which is about US$6) and a

delayed reward that varied across trials. To independently estimate

the neural responses to the amount and delay of future rewards, the

two dimensions were manipulated independently and orthogonally,

with the amount ranging from RMB 40 to 115 (16 levels in RMB

5 increments), and the delay varying from 1 to 150 days (16 levels in

9-day or 10-day increments). These ranges were chosen based on our

previous study (Wang et al., 2014) and an additional pilot study of an

independent sample (n = 12). All the possible combinations of each

amount and delay level yielded a total of 256 trials. These trials were

divided pseudo-randomly into three runs (e.g., run1 = 86 trials,

run2 = 85 trials, and run3 = 85 trials), with each run having the same

number of amount/delay time levels (e.g., 16 levels of amount and

delay time with 5–6 trials, respectively). We utilized an event-related

fMRI design and optimized the timing and order of stimulus presenta-

tion using optseq2 in order to maximize the estimation efficiency

(Dale, 1999).

Following a similar procedure done in a previous study (Kable &

Glimcher, 2007), for each trial, the amount and delay time of the

future reward were shown on the screen but the fixed but immediate

reward was told to the participant beforehand and was not shown.

The amount and the delay time appeared side by side divided by a

vertical line (see Figure 1) and whether the amount or the delay time

appeared on the right side was determined randomly. Subjects were

asked to respond as quickly as possible within 3-s trial duration. If no

response was made within this window, the task continued to the

next trial. The trials with no responses (ranging from 0 to 7 trials,

mean ± SD = 1.52 ± 1.84 trials) were modeled as a separate regressor

of no interest in the general linear model (GLM). To encourage sub-

jects to reflect true preference for each decision rather than a fixed

decision rule (Tom, Fox, Trepel, & Poldrack, 2007), we required them

to indicate one of four responses to each decision (strongly choose

F IGURE 1 An illustration of the event-related experimental design. During each trial, the amount and delay time of a future reward were
presented side by side divided by a vertical line on the screen (for 3 s), but the fixed immediate option (RMB 40) was told to the participants
beforehand and was not displayed visually. Participants were required to make a decision between the immediate and delayed alternatives based
on their preference. The chosen option turned to yellow after choice. The amount and time of delayed rewards for each trial were sampled from
the amount/time matrix, shown here as one sample trial. A decision from each cell in this 16 × 16 matrix was presented during scanning, but the
data were collapsed into a 4 × 4 matrix for analysis. The interstimulus interval (ISI) was jittered to optimize design efficiency
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the immediate option, weakly choose the immediate option, weakly

choose the delayed option, and strongly choose the delayed option)

using a four-button response box. After each decision, the chosen

option turned yellow as the feedback.

At the end of the experiment, all participants received the non-

contingent compensation of RMB 50 plus a bonus based on the

amount they earned on one randomly chosen trial (i.e., the partici-

pants did not receive the actual total amount earned). In other words,

each participant received 50+ either 40 (for choosing the immediate

reward, with the total amount paid at the end of the experiment) or

45–115 (for choosing the delayed reward, with noncontigent com-

pensation paid at the end of the experiment and the bonus paid as

indicated by the delay time) in RMB.

2.3 | Functional imaging procedure

Imaging data were collected using a Siemens Prisma 3 T scanner with

a 64-channel head coil at the Center for MRI Research of Tianjin Nor-

mal University. Subjects laid supine on the scanner bed and viewed

visual stimuli back-projected onto a screen through a mirror attached

to the head coil. Foam pads were used to minimize head motion. The

experiment was programmed and run with MATLAB (MathWorks)

and Psychtoolbox with version of 3.1 (www.psychtoolbox.org) on a

PC laptop. Subjects' responses were collected using an MRI-

compatible button box.

For each functional session, T2*-weighted functional images were

acquired with a simultaneous multi-slice (SMS) sequence supplied by

Siemens. The following parameters were used: repetition time

(TR) = 2,000 ms; echo time (TE) = 30 ms; GRAPPA factor = 2; multi-

band acceleration factor = 2; flip angle = 90�; field-of-view

(FOV) = 224 × 224 mm2; slice thickness = 2 mm; slice gap = 0.3 mm;

voxel size = 2 × 2 × 2 mm3. The scan time of each run was 8 min 4 s,

and thus 242 volumes were acquired for each run. The slices were

tilted approximately 30� clockwise from the AC–PC plane to obtain

better signals in the orbitofrontal cortex. Additionally, MP-RAGE

T1-weighted image for each subject was also obtained (192 slices,

TR = 2,530 ms, TE = 2.98 ms, multiband factor = 2, flip angle = 7�,

FOV = 224 × 256 mm2; voxel size = 0.5 × 0.5 × 1 mm3).

2.4 | Behavioral data analysis

Statistical analyses of the behavioral data were performed using

MATLAB (MathWorks). Subjects' indifference points were firstly calcu-

lated at each delay to fit individualized discounting curves. After col-

lapsing strong/weak responses into immediate (0) and delay

(1) categories, subjects' choices for a given delay were extracted, and

then fitted to a logistic function to determine the amount at which

there was a 50% probability of choosing the immediate versus the del-

ayed option (i.e., the indifference point). Subjective discounted value

(SDV) of the delayed option relative to the immediate option (RMB 40)

was calculated for each delay (SDV = 40/indifference point). Previous

studies (Ballard & Knutson, 2009; Green & Myerson, 1996) have dem-

onstrated that the hyperbolic discounting model fits individuals' behav-

ior equally well as other models, and has been widely adopted in both

human and animal studies (Green &Myerson, 2004). Therefore, we cal-

culated individuals' discounting rate by using the hyperbolic dis-

counting function (SDV = 1/[1 + k × D]), where D is the length of the

delay in days and k is an individual discounting parameter. Larger

k value indicates greater impulsivity, whereas smaller k value indicates

more patience. For cross-validation and comparison, we also fit each

subject's discount curve with a sum of double exponential functions:

SDV = 0.5 × (e−βD + e−δD), where β and δ are subject-specific con-

stants. The double exponential model is one formulation of an eco-

nomic model that explains hyperbolic-like discounting by the two

systems. One is the β system that discounts more steeply while the

other is δ system that discounts less steeply. Not surprisingly, as the

function can account for hyperbolic-like discounting, the double expo-

nential function (average accuracy of prediction = 89.42 ± 4.26%) fit

the data marginally better than single parameter hyperbolic function

(average accuracy of prediction = 88.46 ± 4.42%) (t[18] = 2.095,

p = .051). Table S1 provides more details.

2.5 | fMRI data analysis

Image preprocessing and statistical analyses were performed by using

the FMRI Expert Analysis Tool (version 6.00; part of the FSL package;

http://www.fmrib.ox.ac.uk/fsl). The first four volumes before the task

were automatically discarded by the scanner to allow for T1 equilib-

rium. The remaining images were then realigned to correct for head

movements. Data were spatially smoothed by using a 5-mm full width

at half maximum Gaussian kernel and filtered in the temporal domain

using a nonlinear high-pass filter with a 90 s cutoff. EPI images were

first registered to the MPRAGE structural images and then into

MNI standard space, using affine transformations (Jenkinson &

Smith, 2001). Registration fromMPRAGE structural images to standard

space was further refined using FNIRT nonlinear registration. Statistical

analyses were performed in the native image space, with the statistical

maps normalized to the standard space, before higher-level analysis.

Firstly, traditional parametric fMRI design was used to identify the

neural correlates of the amount and delay of future rewards. The data

were modeled at the first level using a GLM within FSL's FILM module.

Four parametric regressors were included during the decision-making

period starting from the presentation of inter-temporal alternatives

and ending when subjects responded: (a) the overall task regressor

(1 for each trial); (b) the amount of future reward; (c) the delay of future

reward; and (d) reaction time (RT; Sripada, Gonzalez, Phan, &

Liberzon, 2011). For all the models, each regressor (except for the task

regressor) was first demeaned and normalized to the same range (−1

vs. 1) and then convolved with the double-gamma canonical hemody-

namic response function. Trials with no valid response were modeled

as a separate regressor of no interest.

Previous studies have suggested that vmPFC, nucleus accumbens

(NAcc), and posterior cingulate cortex (PCC) might represent different
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value signals, such as the relative value (Wang et al., 2014), the subjective

value (Kable & Glimcher, 2007), the chosen value (Kable &

Glimcher, 2009), the summed value (Sripada et al., 2011), and even the

amount of delayed reward (Ballard & Knutson, 2009; Li et al., 2013).

These values were calculated as follow: relative value = abs (40– subjec-

tive value), summed value = (40+ subjective value). The chosen value

was calculated as the subjective value of the option subjects chosen

(i.e., if immediate option chosen, the chosen value is 40; Otherwise, the

chosen value is the subjective value of delayed reward). These ROIs were

further defined as the peak point with a radius of 9 mmbased on the arti-

cle of Kable and Glimcher (2007) (VMPFC, Talairach coordinate = −3,

38, 13; NAcc = −12, 5, 1; PCC = −3, −43, 37). Here, we applied several

simple GLMmodels with only the task and one of these value regressors

mentioned above to examine whether these regions encoded the differ-

ent value signals or the amount of future reward in the experiment.

Given the collinearity of the subjective value, chosen value, summed

value, and relative value, we expected to see consistent neural responses

across these value regressors in these regions.

A second-level analysis was performed using a fixed-effect model

where all three functional runs were combined within individual par-

ticipants. Finally, these second-level results were then fed into a

random-effect model for group analysis and regression analysis for

each individual's discounting rate using a FLAME1 model. Considering

the impacts of head motion on the functional activations, the FD was

additionally included as a confounding factor in the main GLM. Group

images were thresholded using cluster detection statistics, with a

height threshold of z > 3.1 and a cluster probability of p < .05,

corrected for whole-brain multiple comparisons using Gaussian Ran-

dom Field Theory.

To evaluate signal change for each level of amount and delay of

future rewards, we constructed two additional models to estimate the

brain signal change for each of the 16 levels of amount and delay of

future rewards, respectively. For each model, all trials with the same

amount (or delay) information were grouped into separate regressors

(16 in total); the delay time (or amount) and the RT were included as

covariates of no interest. In one version of the model, we used the

smoothed data and fitted the value function. In another version, we

used the unsmoothed data to conduct the MVPA and network con-

struction via RCA.

By using a fast event-related design, we were able to present all

possible pairs of amount and delay levels at a relatively wide range

and small steps, which improves the resolution and accuracy of

reward representations. A similar method has been employed to

examine the neural representations of gain and loss in risky decision-

making (Jimura & Poldrack, 2012), and neural representation of imme-

diate and delayed reward in intertemporal choices (Wang et al., 2014).

2.6 | Support vector regression analysis

High-dimensional regression MVPA was performed using a searchlight

procedure with a 3-voxel radius. Epsilon-insensitive support vector

regression (SVR) (Drucker, Burges, Kaufman, Smola, & Vapnik, 1997)

with a linear kernel, as implemented in PyMVPA (http://www.

pymvpa.org) (Hanke et al., 2009), was used to estimate the target

amount and delay time of future rewards (Jimura & Poldrack, 2012;

Wang et al., 2014). Three-fold cross-run validation was used within

subjects. For each level of the amount or delay time, test and training

data were normalized (i.e., with the mean subtracted out and then

divided by SD) across voxels within each region of interest (ROI,

including 27 voxels) (i.e., searchlight) (Misaki, Kim, Bandettini, &

Kriegeskorte, 2010). This procedure allows the evaluation of the pat-

tern of activity across voxels without contamination from the mean

signal differences within the searchlight. Based on previous studies

(Jimura & Poldrack, 2012; Wang et al., 2014), the SVR cost parameter

was set to 0.001 and the ε parameter was set to 0.01.

Voxel-wise accuracy of SVR prediction was then calculated,

defined as the z-transformed Pearson's correlation coefficient

between actual and predicted values of the amount or delay of future

reward for the left-out BOLD periods. Then, individuals' prediction

maps were further smoothed with an isotropic 6 mm FWHM Gauss-

ian kernel. Group analysis used mixed FLAME 1 models to facilitate

the comparison with the univariate analyses. Group images were

thresholded using cluster detection statistics, with a height threshold

of z > 3.1 and a cluster probability of p < .05, corrected for whole-

brain multiple comparisons using Gaussian Random Field Theory.

2.7 | ROI analyses

The clusters showing significant modulation of the amount (DMPFC,

LFPC) and delay of reward (DMPFC, DLPFC) were firstly defined as

the ROIs. ROIs analyses were conducted by extracting parameter esti-

mates (betas) of each event type from the fitted model and averaging

across all voxels in each significant cluster for each subject. Percent-

age signal changes were computed via the following formula: [contrast

image/(mean of run)] × ppheight × 100%, where ppheight is the peak

height of the hemodynamic response versus the baseline level of

activity (Mumford, 2007).

2.8 | Representational similarity analysis between
amount and delay time conditions in DMPFC

The DMPFC ROI was functionally defined with a conjunction analysis

of the amount and delay time conditions (i.e., Figures 3a and 4a. Voxel

size = 409) (Friston, Penny, & Glaser, 2005). We extracted the signal

for each individual voxel within this ROI and investigated the degree

of similarity in the fMRI activity patterns between the amount and

delay time conditions, using the Pearson correlation coefficient as the

similarity metric. Due to unknown the distributions of the representa-

tional patterns responsible to the amount and delay time, Spearman's

correlational analysis was also utilized to further confirm the robust-

ness of our findings.
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2.9 | Functional brain network construction via
representational connectivity analysis

In the graph-theoretical analysis, defining the nodes of the brain net-

work is an extremely important step that directly determines the suc-

cess of brain network construction. Based on numerous previous

studies, we utilized both the low-resolution automated anatomical

labeling (AAL-90) atlas and high-resolution Power-264 atlas to

parcellate the whole brain into different nodes. In addition, calculating

the edge of any pair of all nodes is another important step in network

construction. In our study, for a given node from AAL-90 or Power-

264 atlas, the multivoxel response pattern (beta estimates) for each of

the 16 levels of amount or delay time was firstly extracted for each

participant separately. Then all possible pairs of these 16 activation

patterns (120 in total) were subjected to Pearson correlation analysis,

generating a 16 × 16 matrix of the neural similarity in each node. In

order to control for global or similar confounding processing, the

mean global signal across the 16-level amount or delay time condi-

tions was subtracted from such analysis initially. Following

Kriegeskorte et al. (2008), we calculated representational connectivity

among the 90 nodes from low-resolution atlas or among the

264 nodes from high-resolution atlas, using Spearman correlation

between the neural similarity patterns of every pair of these nodes,

which yielded a 90 × 90 or 264 × 264 functional brain network for

each amount and delay time condition for each subject.

Next, we quantified the topological metrics of function-specific con-

nectivity networks by the Graph Theoretical Network Analysis (GRETNA)

Toolbox (https://www.nitrc.org/project/gretna; Wang et al., 2015).

According to previous studies (Rubinov et al., 2009; Rudie et al., 2013),

the sparsity-band was chosen from 5 to 40% with step-to-step width of

1% increase as a threshold to determine whether an edge exists between

nodes in the amount-related and delay-time-related functional networks.

Then, we computed a series of small-world characteristics in both amount

and delay-time-related brain networks, including clustering coefficient,

shortest path length, Lambda, Gamma, Sigma, and efficiency. The specific

algorithm of topological metrics of functional brain network is available

from previous literature (Bullmore & Bassett, 2011). Subsequently, the

Pearson correlational analysis was used to examine the association

between these metrics and delay-discounting rate.

2.10 | Connectome-based prediction modeling

Connectome-based prediction modeling (CPM) has been demonstrated

as a reliable and highly efficient approach to identify brain networks

associated with a behavioral variable of interest from whole-brain func-

tional connectivity, which can be used to predict behavioral perfor-

mance at the single subject level (Shen et al., 2017). Here, we employed

this method to predict delay-discounting rate (k) using the amount-

related and delay-time-related networks constructed by the RCA. In

particular, the whole subjects were divided into a training subjects and

a testing subject. In the training subjects, each edge in the connectivity

matrices was correlated with k using Pearson's correlation analysis with

a statistical significance threshold of p < .001 to identify positive and

negative predictive networks. Next, we computed single-subject sum-

mary value by summing the significant edge weights in positive and

negative networks. Then, a predictive model was generated that

assumed a linear relationship between the single-subject summary

value of connectivity data (independent variable) and the behavioral

variable (dependent variable). In the testing subject, the summary value

was computed for this subject and was then inputted into the predic-

tive model. The resulting value was the predicted behavioral variable

for the current test subject. We employed a leave-one-out cross-

validation strategy to test the prediction performance. Finally, model

performance was assessed by the magnitude and statistical significance

of the Pearson's correlation between actual and predicted k. The statis-

tical significance of the correlation between actual and predicted k was

assessed using 10,000 times permutation testing. Based on the null dis-

tribution, the p value for the leave-one-out prediction was calculated as

the proportion of sampled permutations that were greater than or

equal to the true prediction correlation. Due to the potential impacts of

head motion on functional connectivity and skewed distribution of k,

above-mentioned analyses were conducted again via the log-

transformation strategy and including the FD as the covariates.

3 | RESULTS

3.1 | Behavioral results

Individual participants' temporal discounting rates (k) ranged from

0.0019 to 0.0609, similar as those reported in previous studies

(Ballard & Knutson, 2009; Kable & Glimcher, 2009). The mean

framewise displacement (FD) was 0.161 ± 0.062 and its range was

from 0.084 to 0.278. Table S2 provided details on absolute and rela-

tive FD for each subject. Discounting rates did not vary significantly

as a function of age (r = 0.269, p = .265), head motion (r = −0.349,

p = .144), or gender (t[18] = −1.262, p = .224).

Figure 2 shows the average response time and probability of choos-

ing delayed rewards in whole sample. As expected, the probability of

F IGURE 2 Color-coded heatmaps of the average probability of
choosing delayed rewards (a) and response time (b) at each level of
amount/time combination in whole sample. Red represents higher
willingness to choose the delayed rewards (a) and slower response
time (B). Blue indicates lower willingness to choose delayed rewards
(a) and faster response time (b)
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choosing delayed rewards increasedwith the amount of delayed rewards

but decreased with the delay time (Figure 2a). Subjects responded faster

when the relative difference between the two options increased

(Figure 2b). In terms of the hyperbolic model, the mean modeled accu-

racy of prediction was 88.46% (SD = 4.42%). One-sample t-test analysis

showed significant prediction accuracy than chance (t[18] = 37.97,

p < .001). Table S1 providesmore details for each subject.

3.2 | Imaging results

3.2.1 | Brain regions representing the amount of
future rewards

Neural representations of the amount and delay of future rewards

were examined using both univariate and MVPA. Univariate analysis

revealed that the activities in the left DMPFC (x = −2, y = 10, z = 52 in

MNI coordinates, peak Z = 4.48; Figure 3a) and the left lateral frontal

pole cortex (LFPC; xyz: −32, 44, 14, peak Z = 4.51; Figure 3c) were

negatively correlated with the amount of future rewards. Other brain

regions showing similar negative correlations included the right

precentral gyrus, left middle temporal gyrus (MTG), bilateral inferior

frontal gyrus (IFG), left caudate, left insula, and right thalamus

(Figure S1a and Table 1). Focusing on the DMPFC and LFPC, ROIs

analysis confirmed the linear decreases in BOLD response as the

amount of delayed rewards increased (Figure 3b,d). No brain activa-

tions were found to be positively associated with the amount of

future rewards.

We then examined whether individual differences in neural

responses to the amount of future rewards correlated with individual

differences in rates of temporal discounting (k) in the whole-brain

analysis. Such brain regions were found in the left DMPFC (xyz: −12,

16, 64, Z = 4.91) (Figure 3e) and left LFPC (xyz: −40, 44, −12,

Z = 4.02) (Figure 3g), whose activations were positively correlated

with discounting rates. Similar patterns were also found in the bilat-

eral middle frontal gyrus (MFG), right dorsolateral prefrontal cortex

(DLPFC), left insula, right supramarginal gyrus (SMG), and right frontal

operculum cortex (Figure S1c and Table 3). Focusing on the DMPFC

F IGURE 3 The brain regions modulated by the amount of future rewards. The DMPFC (a) and the LFPC (c) showed sensitivity to the amount
of future rewards based on the univariate analysis. Percentage signal change was linearly associated with the amount of future rewards in the
DMPFC (B) and LFPC (d). Neural responses to the amount of future rewards in the DMPFC (e) and LFPC (G) were positively correlated with
discounting rates (k). Percentage signal change was also linearly associated with k in the DMPFC (f) and LFPC (h). The DMPFC and LFPC showed
sensitivity to the amount of future rewards in the multivariate analysis (i). Conjunction analysis revealed overlapping regions in the DMPFC and
LFPC across these three types (f). The 16-level amount was further collapsed into 8-level in order to reducing noise
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and LFPC, ROIs analysis confirmed the linear increases in the neural

activations in these two brain regions to the increasing amount of del-

ayed rewards (Figure 3f,h). Due to the skewed distribution of k, log-

transformed (log k) were used and similar linear correlations were also

observed in the DMPFC (r = 0.798, p < .001) and LFPC (r = 0.779,

p = .0001) regions. These findings suggested few impacts of the

skewed distribution exhibits on the main results. In addition, individual

differences in neural responses to the amount of future rewards were

not observed negatively correlated with the individual's variation in

the discounting rate (k).

In addition, MVPA results revealed that activities in the right

DMPFC (xyz: 8, 38, 38, Z = 4.16) and the right LFPC (xyz: −18,

48, 26, Z = 4.23) successfully predicted the amount of future

rewards (Figure 3i). Other regions included the left precentral gyrus,

bilateral SMG, left inferior temporal gyrus (ITG), left angular gyrus,

left superior parietal lobule (SPL), left lateral occipital cortex (LOC),

and left MFG (Table 2). Conjunction analysis revealed overlapping

brain regions in the DMPFC and LFPC among these three types

(Figure 3j), suggesting that DMPFC and LFPC represented the

amount of future rewards.

3.2.2 | Brain regions representing the delay time
of future rewards

Next, we sought to identify brain regions whose activities were corre-

lated with the delay time of future rewards. Univariate analysis

revealed that the activities in the left DMPFC (xyz: −2, 24, 58,

Z = 6.03) (Figure 4a) and right DLPFC (xyz: 52, 16, 26, Z = 4.90;

Figure 4c) were negatively correlated with the delay time. Other brain

regions showing a similar pattern included the right ITG, bilateral LOC,

left posterior cingulate cortex (PCC), right occipital fusiform gyrus, left

caudate, left frontal pole, and left insular (Figure S1b and Table 1).

Focusing on the DMPFC and DLPFC, ROIs analysis confirmed the lin-

ear decreases in BOLD response as the delay time increased

(Figure 4b,d). However, we did not observed any positive correlations

between brain activations and the delay time of future rewards.

We further examined whether individual neural responsiveness

to the delay time correlated with the delay discounting rate in the

whole-brain analysis. Regression analysis revealed several brain

regions, including the right DMPFC (xyz: 10, 16, 68, Z = 5.39)

(Figure 4e) and right DLPFC (xyz: 56, 20, 8, Z = 4.64) (Figure 4g),

whose activations were negatively correlated with discounting

rates. Other brain regions exhibiting similar negative correlations

included the right ITG, left postcentral gyrus, right SPL, left LOC,

right frontal pole, left PCC, right LOFC, right putamen, and right

cerebellum (Figure S1d and Table 3). ROIs analysis further con-

firmed the linear decreases in the neural activity in these two brain

regions as delay time increases (Figure 4f,h). Due to the skewed

distribution of k, log-transformed were used and similar linear cor-

relations were also observed in the DMPFC (r = −0.801, p < .001)

and DLPFC (r = −0.768, p = .0001) regions. These findings further

indicated few impacts of such confounding factors on the main

results.

TABLE 1 Brain regions represented
amount and delay time attributes in
univariate analysis Effect Brain region Cluster size (voxels)

MNI coordinates

Zx y z

Amount L DMPFC 975 −2 10 52 4.48

L LFPC 486 −32 44 14 4.51

R precentral gyrus 10,455 32 −22 70 5.95

L middle temporal gyrus 3,296 −56 −38 −2 5.14

L inferior frontal gyrus 3,238 −58 16 10 5.18

R inferior temporal gyrus 299 56 −26 −18 4.46

R thalamus 268 14 −22 6 5.28

R inferior frontal gyrus 99 58 16 −2 4.34

L caudate 77 −10 4 18 3.84

L insular 66 −32 24 4 3.77

Delay time L DMPFC 2,387 −2 24 58 6.03

R DLPFC 1,230 52 16 26 4.90

L lateral occipital cortex 21,911 −42 −72 40 6.65

R lateral occipital cortex 767 42 −66 44 5.28

L PCC 1,578 −2 −40 38 5.51

R occipital fusiform gyrus 1,129 6 −82 −24 5.57

R inferior temporal gyrus 873 58 −28 −16 5.94

L caudate 623 −10 12 8 5.11

L frontal pole 218 −20 44 −18 4.68

L insular 169 −34 −16 −2 3.90
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F IGURE 4 The brain regionsmodulated by the delay length of future rewards. TheDMPFC (a) and theDLPFC (c) showed sensitivity to the delay
time of future rewards based on the univariate analysis. Percentage signal changewas linearly associatedwith the length of delay time of future reward
in theDMPFC (b) andDLPFC (d). Neural responses to the delay time of future rewards in theDMPFC (e) andDLPFC (G) were negatively correlated
with discounting rates (k) in the univariate analysis. Percentage signal changewas also associatedwith k in theDMPFC (f) andDLPFC (h). TheDMPFC
andDLPFC also showed sensitivity to the amount of future rewards in themultivariate analysis (i). Conjunction analysis revealed overlapping regions in
theDMPFC across these three types (f). The 16-level delay timewas further collapsed into 8-level in order to reducing noise

TABLE 2 Brain regions represented
amount and delay time attributes in
multivariate analysisEffect Brain region Cluster size (voxels)

MNI coordinates

Zx y z

Amount R DMPFC 102 8 38 38 4.16

L LFPC 28 −18 48 26 4.23

L precentral cortex 406 −30 −14 68 4.68

R supramarginal gyrus 253 62 −44 36 4.54

L interior temporal gyrus 160 −62 −36 −20 4.27

L supramarginal gyrus 154 −56 −52 40 5.07

L lateral occipital cortex 132 −26 −66 38 4.75

L angular gyrus 124 −60 −50 16 4.60

L superior parietal lobule 114 −34 −52 44 5.17

L middle frontal gyrus 72 −40 6 62 4.35

Delay time DMPFC 66 0 24 44 3.66

L DLPFC 159 −44 32 30 4.00

L central opercular cortex 285 −44 −18 20 4.03

R precentral cortex 277 44 −16 56 3.46

L precentral cortex 258 −30 −28 46 4.33

L superior parietal lobule 77 −46 −42 56 3.92

L posterior cingulate cortex 70 −4 −26 36 3.40
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Additionally, MVPA results likewise revealed that activities in the

DMPFC (xyz: 0, 24, 44, Z = 3.66) and DLPFC (xyz: −44, 32, 30,

Z = 4.00) predicted the delay time (Figure 4i). Other brain regions

included the left central operculum cortex, bilateral precentral, right

frontal operculum cortex, left SPL, left PCC (Table 2). Conjunction

analysis revealed overlapping regions in the DMPFC across these

three types (Figure 4j), suggesting that DMPFC also represented the

delay time of rewards.

3.2.3 | Distinct neural patterns in the DMPFC for
the amount and delay time of future rewards

The above analyses indicated that the DMPFC represented both the

amount and delay time of future rewards during intertemporal

choices. We then investigated whether these neural representations

were common or distinct by re-estimating the model with

unsmoothed data. RSA showed low degrees of pattern similarity

between the amount and delay time conditions in the DMPFC

(Pearson's r value: run1 = −0.011 ± 0.118, run2 = 0.028 ± 0.098,

run3 = 0.004 ± 0.078; Spearman's r value: run1 = −0.004 ± 0.121,

run2 = 0.029 ± 0.108, run3 = −0.009 ± 0.081; Figure 5c). For illustra-

tion, Figure 5a shows the similarity of activity in the DMPFC across

16 levels of the amount of reward and 16 levels of delay time in one

run for one subject and Figure 5b depicts the degree of pattern simi-

larity between the amount and delay time conditions for this subject

(Pearson's r = −0.015, p = .871; Spearman's r = 0.002, p = .980). Such

TABLE 3 Correlations between discounting rate (k) and amount and delay time-related brain regions

Effect Brain region Cluster size (voxels)

MNI coordinates

Zx y z

Amount versus k L DMPFC 588 −12 16 64 4.91

L LFPC 206 −40 44 −12 4.02

L middle frontal gyrus 389 −48 22 36 4.44

L insula 308 −40 14 −4 4.21

R middle frontal gyrus 242 46 30 28 4.46

R DLPFC 208 36 18 56 4.28

R supramarginal gyrus 74 46 −40 50 4.23

R frontal operculum cortex 74 36 26 2 4.18

Delay time versus k R DMPFC 2,474 10 16 68 5.39

R DLPFC 70 56 20 8 4.64

R frontal pole 169 42 52 −2 5.60

R superior parietal lobule 853 32 −50 48 5.39

L postcentral gyrus 805 −50 −32 56 4.83

L lateral occipital cortex 481 −38 −70 48 5.61

R interior temporal gyrus 257 58 −28 −16 5.24

L posterior cingulate cortex 162 −2 −32 28 4.70

R lateral OFC 148 36 28 −4 4.50

R putamen 76 20 16 −2 4.39

R cerebellum 125 12 −48 −18 4.27

F IGURE 5 Distinct activation patterns of the amount and delay

time representations in the DMPFC. The amount-related and delay-
time-related representational similarities were calculated in the
DMPFC (a) in one run for one subject (ID = Sub105). Scatter plots of
linear correlation between the representational similarity analysis
(RSA) of the amount and delay time conditions in the DMPFC (b).
Violin plots of the relationships between the RSA of the amount and
delay time conditions across runs and across subjects (c)
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similar pattern was also observed in the remaining subjects. The above

analysis suggested distinct neural patterns for the processing of the

amount and delay time of future rewards.

3.2.4 | Value representations in the VMPFC, NAcc,
and PCC

Previous studies have implicated the VMPFC, NAcc, and PCC in the

processing of different value signals, such as the relative value (Wang

et al., 2014), the subjective value (Kable & Glimcher, 2007), and the

amount of delayed reward (Ballard & Knutson, 2009; Li et al., 2013). To

examine specific value representations of these brain regions systemat-

ically and independently and to reduce model-selection bias, we cre-

ated five simple models, which included only the task regressor, one of

the five regressors [i.e., amount, subjective value (SV), decision value

(DV), chosen value (CV), and summed value (SmV)]. As expected, inde-

pendent models clearly showed that distinct value signals were both

represented in the VMPFC (SV, xyz: 4, 50, −10, Z = 4.24; DV, xyz: 2, 58,

−2, Z = 4.45; CV, xyz: −6, 52, −14, Z = 4.39; SmV, xyz = 4, 50, −10,

Z = 4.24; Figure 6a). The conjunction analysis further revealed that the

overlapping brain region among these different types of value signals

mainly concentrated on the VMPFC (Figure 6a). However, we found

that the amount of future reward was represented in the DMPFC but

not VMPFC (Figure 6a), which was consistent with the overall model. In

addition, we found that the VMPFC (AM:CV:DV:SmV:

SV = 0.18%:0.68%:0.36%:0.62%:0.62%), NAcc (AM:CV:DV:SmV:

SV = −0.03%:0.11%:0.08%:0.08%:0.08%), and PCC (AM:CV:DV:SmV:

SV = −0.03%:0.24%:0.14%:0.16%:0.16%) were modulated by all value

signals but not by the amount of reward (Figure 6b). One-way ANOVA

revealed that there was a significant main effect of value categories in

brain signal changes in the VMPFC (F[4,90] = 7.659, p < .001) but not in

the NAcc (F[4,90] = 1.564, p = .191) or in the PCC (F[4,90] = 1.470,

p = .218). Post-hoc Bonferroni comparisons suggested that signal

change of VMPFC in the Amount condition was significantly lower than

CV, Summed value, and SV condition (all ps < .001). Moreover, correla-

tional analyses further revealed that the brain signals responsible to the

amount attribute were not significantly correlated with other value sig-

nals especially in the VMPFC region (all ps > 0.131; see Tables S3–S5).

Collectively, these findings suggested that value signals were consis-

tently represented in the VMPFC, NAcc, and PCC, while the amount

and delay time of rewards were not processed in these brain regions.

F IGURE 6 Distinct subjective values and physical attribute representation during intertemporal decision-making. (a) Different values were
commonly represented in the VMPFC, including the subjective value of delayed reward, chosen value, decision value, and summed value, while
the physical attribute of amount of delayed reward was independently represented in the DMPFC. Percentage signal changes for different value
regressors were presented in the VMPFC, PCC, and NAcc (b). It is evident that these regions are particularly sensitive to chosen value, summed
value, subjective value, but not the amount attribute
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3.2.5 | Task-based functional networks related to
the amount and delay time of future rewards

We used a method of representational connectivity analysis (RCA),

which reflects representational strengths across different brain

regions, to construct the brain networks related to the amount and

delay time of future rewards. We produced the average matrices for

both the amount and delay time related functional networks with

AAL-90 and Power-264 parcellation scheme (Figure 7a,b). For the

visual inspection of the above-mentioned matrices, all functional net-

work matrices were displayed in a three-dimensional glass ICBM152

brain with native space, implemented by BrainNet Viewer Toolbox

(Figure 7c,d; Xia, Wang, & He, 2013). These visualized matrices

showed the specific connectivity patterns corresponding to the

F IGURE 7 Functional connectivity matrices construction and small-world property based on representational connectivity analysis. Panel
(a) represents the group-averaged functional connectivity matrices with AAL-90 and Power-264 node-defined schemes in the amount-related
network. Panel (b) represents the group-averaged functional connectivity matrices with the same node-defined schemes in the delay-time-related
network. Amount-related (c) and delay-time-related (d) average metrics with different atlas were reconstructed into the 3D glass brain model with
ICBM-152 MNI space for visualization, respectively. The part figures (e) and (f) indicate small-world properties in the amount-related and delay-
time-related functional connectome, including clustering coefficient, characteristic path length, lambda, gamma, and sigma over a range of 5–40%
network sparsity in 1% increments
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amount and delay time attributes across different brain regions, indi-

cating the well-established connectivity networks (Van den Heuvel,

Stam, Boersma, & Pol, 2008). After showing that the task-based net-

work construction via RCA produced reliable brain connectomes, we

proceeded to conduct graph theoretical analysis.

The small-world properties (gamma γ > 1,Lambda λ ≈ 1, Sigma

σ > 1) were successfully observed in both amount and delay time

related networks across the range of 5–40% sparsity in low-resolution

AAL-90 atlas, but not in high-resolution Power-264 atlas, especially

for small-world property (Figure 7e–f; Table 4). One possible reason is

that each node of high-resolution Power-264 atlas had relatively

fewer voxels (only 10 mm diameter sphere), which affected the simi-

larity matrix variation. As a result, further graph theoretical analysis

only used the AAL atlas. Group-level analysis revealed that delay-

discounting rate was significantly and positively correlated with path

length (Lp) along all 36 thresholds (all uncorrected ps < .05) (Figure 8a),

but negatively correlated with brain global efficiency [Eg] along the

35 thresholds (all uncorrected ps < 0.05) (Figure 8c) and local efficiency

(Eloc) along the 21 thresholds (all uncorrected ps < .05) (Figure 8e) in

the delay time-related network. In order to correct for multiple com-

parisons, we selected the area under the curve (AUC) value of topo-

logical regimes of brain connectomes (i.e., Eg, Eloc, and Lp) to link

with delay discounting rates. The delay discounting rate was positively

correlated with the AUC value of Lp (aLp; r = 0.624, p = .004)

(Figure 8b), but negatively correlated with the AUC value of Eg (aEg;

r = −0.659, p = .002) (Figure 8d) and Eloc (aEloc; r = −0.577, p = .009)

(Figure 8f) in the delay time-related network. Considering the skewed

distribution of k, log-transformation was further used to confirm the

associations between discounting-rate and topological indexes. The

results replicated the above-mentioned findings (aLp, r = 0.494,

p = .032; aEg, r = −0.588, p = .008,; aEloc, r = −0.490, p = . 032). Even

after controlling for head motion (FD), we still observed the significant

correlations between brain network properties and delay discounting

rate (aEg, r = −0.596, p = .009; aEloc, r = −0.502, p = .034; aLp,

r = 0.552, p = .018). However, such patterns were not observed in the

amount-related network. In summary, the topological properties of

TABLE 4 Group-average
characteristics of amount-related and
delay-time-related functional graph
matrices (threshold-average) with AAL-
90 atlas

Characteristic

Amount-network Delay-time-network

Mean SD Mean SD

Small-world properties

Clustering coefficient, Creal 0.561 0.117 0.559 0.118

Characteristic path length, Lreal 2.489 1.237 2.437 1.103

Normalized C, gamma 1.323 0.305 1.319 0.310

Normalized L, lambda 1.057 0.064 1.058 0.059

Small-worldness, sigma 1.245 0.229 1.242 0.245

Efficiency properties

Global efficiency, Eglob 0.466 0.145 0.468 0.141

Local efficiency, Eloc 0.676 0.133 0.676 0.131

F IGURE 8 The associations between delay-time-related network
properties and delay discounting rate across a network sparsity of
5–40% in 1% increments. Panel (a, c, e), respectively, indicates
significant correlations of delay discounting rates with shortest path
length (Lp) in the threshold of all 36-network sparsity, with global
efficiency (Eg) in 35-network sparsity, and with local efficiency in
21-network sparsity. (b, d, f) Scatter plots of area under the curve
value of network properties, such as aLP (b), aEg (d), and aEloc (f), as
a function of discounting rate
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the functional network for the delay time predicted discounting rate,

but amount-related network did not.

Next, we examined whether whole-brain functional profiles of

amount and delay time networks could predict delay discounting rates

using connectome-based prediction model (CPM). This method is a

data-driven and linear predictive model of brain-behavior relationships

from connectivity data using cross-validation, which includes feature

selection, feature summarization, model building, and assessment of

prediction significance. We observed that delay-discounting rate was

successfully predicted from amount-related functional connectivity

within the positive network (r = 0.62, p = .005, 10,000-time permuta-

tion r = 0.350, corresponding p < .05; Figure 9a), but not within the

negative network (r = 0.040, p = .870). Although a slightly different

set of edges was selected as features in each iteration of the cross-

validation, we reported all delay discounting rate-relevant edges.

Figure 9b displays the connectivity of high-degree nodes, which

included bilateral DMPFC, left VMPFC, right LFPC, left IFG, bilateral

angular, bilateral thalamus, right IPL, left middle temporal pole

(TPomid), left paracentral (PCL), and right middle occipital gyrus

(MOG). These nodes by and large were found to represent the

amount of reward in univariate and multivariate analyses reported

earlier. However, such a prediction pattern was not observed in func-

tional connectivity related to the processing of delay time within the

positive network (r = 0.323, p = .170) and the negative network

(r = −0.261, p = .280). These findings suggested that the neural activa-

tion and representational connectivity related to the amount of

reward might be the primary determinant of intertemporal decision-

making.

4 | DISCUSSION

The present study investigated the neural representations of the

amount and delay time of future rewards during intertemporal

decision-making. Both univariate and multivariate analyses revealed

that brain activity in the DMPFC and LFPC was modulated by the

amount of reward whereas brain activity in the DMPFC and DLPFC

was modulated by the delay time. Within the DMPFC, the two attri-

butes of rewards showed distinct patterns of activity. In terms of

individual differences, impulsive decision makers (with higher k)

exhibited increased amount-related activity in the DMPFC and LFPC

and decreased delay time-related activity in the DMPFC and DLPFC

activation to the delay time. We further found that although the

VMPFC is involved in the processing of subjective value, chosen

value, relative value, and summed value, it is not involved in rep-

resenting the two attributes of rewards (i.e., amount and delay time).

Finally, using RCA approach, we found that topological metrics of

the delay-related network (i.e., global and local efficiency) were neg-

atively correlated with delay discounting rate, whereas whole-brain

connectivity of the amount-related network was positively associ-

ated with individual's discounting rate. Taken together, our findings

provided novel insights into the distributed neural representations

(especially in the DMPFC) of the two attributes of future rewards,

and showed the utility of using a novel network construction

approach to identify topological properties related to discounting.

4.1 | Distributed neural representations of the
amount attribute of delayed rewards

The univariate analysis found that the amount of future rewards was

negatively correlated with the BOLD signals in the DMPFC, which

replicated our previous findings in an independent sample (Wang

et al., 2014). Our MVPA further confirmed that the amount of future

rewards was represented in the DMPFC. Our findings were consistent

with the broader literature that has identified the DMPFC as a critical

brain region implicated in high-level cognitive processes during deci-

sion making, including outcome evaluation (Bush et al., 2002;

Gehring & Willoughby, 2002), reward anticipation (Kahnt, Heinzle,

Park, & Haynes, 2010), risk experiences (Hsu, Bhatt, Adolphs, Tranel, &

Camerer, 2005; Van Duijvenvoorde et al., 2015; Xue et al., 2009), and

decision-related control (Pochon, Riis, Sanfey, Nystrom, &

Cohen, 2008; Van Duijvenvoorde et al., 2015). DMPFC has been also

considered critical for cognitive control, with consistent evidence of

activation in tasks related to involving conflict and strategic control

(Botvinick, Nystrom, Fissell, Carter, & Cohen, 1999). Furthermore, the

DMPFC studies which used both univariate and multivariate pattern

analyses found that this region also represented the potential gains

during risky decision-making (Jimura & Poldrack, 2012; Tom

et al., 2007). Multivariate analysis also showed that DMPFC is

involved in the emotion-related perception with high decoding accu-

racy (Jastorff, Huang, Giese, & Vandenbulcke, 2015; Kim et al., 2015).

Thus, this region has become one of the high-efficiency target sites of

noninvasive treatment via repetitive transcranial magnetic stimulation

for reward/emotion-related disorders like major depression disorder

(MDD) (Downar et al., 2014; Salomons et al., 2014) and posttraumatic

stress disorder (PTSD) (Woodside et al., 2017).

F IGURE 9 Functional connectivity model predicted discounting
rate. Scatter plot shows correlation between observed delay-
discounting rate and predicted delay-discounting rate by positive
network and general linear model that taken into account positive
network strength in amount-relevant connectome constructed via
representational connectivity analysis (RCA) (a). Functional
connections predicting discounting is visualized in 3D glass brain
model with ICBM-152 MNI space (b)
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However, some prior studies reported that the VMPFC but not

DMPFC was involved in the processing of the amount of future

rewards (Ballard & Knutson, 2009; Li et al., 2013). There are two

potential reasons for this inconsistency. The first is that our study

includes a wider range of the amounts of future rewards (i.e., 16 levels

vs. 7 levels in previous studies), which may provide a greater power to

detect amount-related activity in the DMPFC. The other explanation

is that our independent manipulations of the amount and delay time

helped clarified the contributions of the DMPFC. Additionally, there is

extensive evidence supporting the functional and structural coupling

between DMPFC and VMPFC, a region associated with value integra-

tion, emotional experiences, and self-processing (Koush et al., 2019;

Kuzmanovic, Rigoux, & Tittgemeyer, 2018). Such objective amount

representation and subjective amount processing might reflect com-

plex neural mechanisms of inter-temporal choices at different stages

of decisions. Furthermore, the subjective amount process is difficult

to separate from other value signals such as relative value, chosen

value, and summed value due to the low temporal resolution.

4.2 | Distributed neural representations of the
delay-time attribute of delayed rewards

On both univariate and multivariate analyses found that the DLPFC is

one of key regions that represent the delay time attribute. This finding

was consistent with prior univariate studies (Ballard & Knutson, 2009;

Li et al., 2013). Delay time is an important attribute taken into account

when people make inter-temporal choices, and largely determines the

subjective value computed by this attribute and reward amount infor-

mation (Ainslie, 1975). In general, the time attribute is viewed as a

cost and has been attracting attention in neuroeconomics and

econophysics combined with a variety of computational models

(Takahashi, Oono, & Radford, 2008). Recent studies have also demon-

strated be predictive of this attribute on the individual's actual choices

based on eye tracking technique (Amasino, Sullivan, Kranton, &

Huettel, 2019), which is summarized as the attribute-wise choice the-

ory. Functional MRI studies have suggested the involvement of pre-

frontal cortex in the time perception, including the DLPFC and

DMPFC (Pouthas et al., 2005), which are also involved in the inter-

temporal choices (Peters & Buchel, 2010). Prior evidence has pointed

out that long delays might reduce activations in reward-magnitude-

related regions (Kable & Glimcher, 2007), elicit activations in

uncertainty-related regions (Preuschoff, Quartz, & Bossaerts, 2008),

and require cognitive control and inhibition of prepotent responses

such as DLPFC, IFG, and posterior parietal cortex (Aron, Fletcher,

Bullmore, Sahakian, & Robbins, 2003; McClure et al., 2004) when

waiting for a larger future reward. Although there are suggestive evi-

dence of top-down control processes instantiated in the DLPFC via

connections with the DLPFC with VMPFC, NAcc, and PCC (Figner

et al., 2010; Peters & Büchel, 2011; Steinbeis, Haushofer, Fehr, &

Singer, 2016; Wang et al., 2016), researchers are still debating about

the precise functional role of the DLPFC in intertemporal decision-

making and how it may differ across different decision stages (Figner

et al., 2010; Luo, Ainslie, Giragosian, & Monterosso, 2009; Peters &

Büchel, 2011).

In addition to the DLPFC region, our MVPA also showed that the

delay time was represented in the DMPFC. This finding was consis-

tent with prior univariate studies (Li et al., 2013) and structural imag-

ing studies (Beagle et al., 2020; Massar et al., 2015). Prior behavioral

studies have observed the intimate associations between subjective

time perception and delay discounting (Takahashi et al., 2008). If

delays are subjectively perceive longer than they actually are, individ-

uals might more prefer to choose smaller but sooner rewards. Previ-

ous imaging studies also have implicated the critical role of the

DMPFC, a functionally defined region that is overlapping with the

pre-SMA and dorsal ACC (Addis & Schacter, 2008; Buckner &

Carroll, 2007), on the episodic prospection and predictive of far-

sighted choices before making decisions (Benoit, Gilbert, &

Burgess, 2011; Peters & Buchel, 2010) possibly via familiarity (Sasse,

Peters, Büchel, & Brassen, 2015). Subjects who were more sensitive

to the delay time exhibited decreased activity in the DMPFC

(Ballard & Knutson, 2009; Li et al., 2013). Individual differences in

temporal preferences were associated with the ability of episodic

thinking of future events (Peters & Büchel, 2011). The present study

not only replicates the prior findings, but also suggests a distributed

neural coding of such region to delay attribute of future rewards.

4.3 | Brain activities and network properties
responsible to the amount and delay time predict
discounting rate

Our individual differences analyses also showed close associations

between brain responses to the amount and delay time of future

rewards and discounting rates, consistent with previous studies

(Ballard & Knutson, 2009). Impulsive decision makers are generally

characterized by hyperactivation in the valuation when responding to

immediate rewards but hypoactivation in the cognitive control net-

work and prospection network (Figner et al., 2010; Hariri et al., 2006;

McClure et al., 2004). Similarly, we found increased neural activity in

valuation network in response to the amount of future rewards and

decreased neural activation in the prospection network or cognitive

control (especially the DLPFC and DMPFC) in response to the delay

time. There is also converging evidence from morphological (i.e., gray

matter volume and thickness) and functional connectivity studies

(i.e., regional homogeneity, activation level, couplings with other

regions, and activation patterns in risky decisions) that the DMPFC is

related to delay discounting (Beagle et al., 2020; Lv et al., 2019; Lv,

Wang, Chen, Xue, & He, 2020; Sripada et al., 2011; Wang

et al., 2016). A recent study found the independent contributions of

amount and delay time on individual's choices combined with behav-

ioral analyses, computational models and eye tracking measures

(Amasino et al., 2019), which supports the attributed-wise choice pat-

tern compared with option-wise pattern. Consistent with this view,

3464 WANG ET AL.



our functional imaging findings further confirmed the independent

role of these two attributes of future rewards via multivariate pattern

analysis and RSA. Together with previous studies, our study results

further suggested that the DMPFC-related attributes representations

play a crucial role in impulsive behaviors.

Using representational connectivity analysis, our study con-

structed brain networks for the representations of the amount and

delay time. Considerable evidence from multiple-modalities brain data

has consistently implicated that human brain is a highly integrated

network system, manifesting a small-world organization via graph the-

oretical analysis (Sporns, 2010; Van den Heuvel, Kahn, Goni, &

Sporns, 2012). For this organization, it is widely characterized by

greater cliquishness but relatively shorter path length. Such features

were consistently observed in the amount/time-related representa-

tional networks, irrespective of which parcellation scheme was con-

ducted in present study. In general, the small-world organization is

inevitably associated with parallel information processing, which in

large determines the efficiency of both local and global high-order

cognitive communication (Bassett & Bullmore, 2017). Interestingly,

we found that the delay-time-related network's efficiency (the

shortest path length, global efficiency, and local efficiency) was nega-

tively correlated with discounting rates. In other words, individuals

with low efficiency in their processing of the delay time were more

impulsive. Network efficiency is a critical index used to estimate the

brain's capability of information separation and integration

(Sporns, 2010; Van den Heuvel et al., 2012), and has been shown to

be significantly associated with impulsivity (Chen et al., 2019; Wang,

Lv, et al., 2020a). Although such association between brain efficiency

and discounting-rate was also found in traditional network con-

structed based on the resting-state fMRI data (Chen et al., 2019;

Wang, Zhu, et al., 2020b), it is the first work to compute the specific-

attribute functional topological metrics and make a prediction on

behavioral performance in present study. Such network construction

indeed provides some special principles of brain neural representa-

tional organization, which cannot be probed based on the strategy of

traditional network construction. Collectively, our findings further

demonstrated the important role of network efficiency supporting

specific reward attributes in intertemporal decisions (Peters &

Büchel, 2011).

Similarly, connetome-based characteristics were also found to be

associated with the amount of rewards in which the critical functional

connectivity predominantly distributed on brain regions responsible

for amount attribute. Combined with the prediction of the delay-

related network efficiency, amount and delay time might indepen-

dently determines the individual's behavioral performances such as

choices and discounting rate, manifesting as distinct brain patterns

such as network efficiency and functional connectivity strength. It is

consistent with recent attribute-wise choice theory that highlights

separated roles of amount and delay time in the intertemporal choices

from the perspective of behavioral analyses, computational model and

eye tracking technique (Amasino et al., 2019). Furthermore,

connectome-based functional connectivity was composed of the con-

nectivity of the hub amount-related area (i.e., DMPFC) with other

brain regions such as visual, ventral prefrontal, and parietal cortex.

The functional communications among these regions might reflect the

integral processes of decisions, including visual information input,

parietal cognitive control, and their modulations on reward processing

(i.e., DMPFC, LFPC, and VMPFC). Taken together, the separated dis-

tributed neural representation of amount and delay time and

corresponding prediction on individual differences further provide the

brain functional supports for attribute-wise choice theory, which sug-

gests novel neural mechanisms underlying human inter-temporal

choices.

4.4 | Neural mechanisms underlying
representation of physical attributes and subjective
computation

The physical attributes of future rewards such as amount of reward

and delay time were represented in the DMPFC with distinct activa-

tion patterns via RSA. It is consistent with recent study that found

separable processing for amount and time information but not inte-

grated processing via drift diffusion model combined with eye tracking

measures (Amasino et al., 2019). Such attribute-wise manner is largely

not predicted based on the traditional option-wise comparison pat-

tern, which emphasizes the integrated option of these two attributes.

Furthermore, amount and time information has different contributions

to individual differences in intertemporal choice, which was also

observed in our individual differences analysis, manifesting as positive

prediction of amount-related brain responses and negative prediction

of time-related brain responses on discounting rate. However, individ-

ual differences with higher subjective value in the VMPFC were not

directly associated with individual variability in the discounting rate,

which might support the attribute-wise decision processing not

option-wise processing during intertemporal choice.

The present study indicates that several value signals such as the

subjective value, chosen value, summed value, and relative value, both

were represented in the VMPFC, one critical area processing value-

related information that wisely demonstrated in the fMRI studies

(Kable & Glimcher, 2007; Wang et al., 2014). Due to the fixed immedi-

ate option manipulation, these value signals might exhibit a collinear-

ity issue, which did not identify the precise function of VMPFC in

decision stage in our study. Indeed, VMPFC has been demonstrated

to process the relative value (Wang et al., 2014), chose value, and sub-

jective value in several discounting-related studies (Kable &

Glimcher, 2007; Li et al., 2013).

4.5 | Strengths and limitations

The present study features several novel strengths. This study is the

first work to examine parametric variations in amount and delay time

estimation combined with univariate and multivariate pattern analysis.

The amount and delay time were independently manipulated to distin-

guish the mental processes responsible for these two attributes.
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Furthermore, individual differences analysis and novel RCA-based

graph-theoretical analysis both showed consistent patterns and pro-

vided cross-validation, which improve the confidence of make a con-

clusion. Compared with univariate analysis, multivariate analysis

further extends our understanding of the neural representations of

physical attributes of delayed rewards on medial and lateral PFC with

distributed coding pattern. Furthermore, physical attribute-based net-

work reconstruction indeed carries on the specific topological infor-

mation used to predict individual's performance.

Beyond the benefits conferred by the present design, there are

several limitations. Firstly, the sample size is relative small and might

influence the generalization of our findings in a larger population.

Recently, a number of studies have systematically investigated the

possible influence of sample size on stability and interpretation of

brain–behavior correlations in task-based fMRI data (Braver, Cole, &

Yarkoni, 2010; Dubois & Adolphs, 2016; Grady, Rieck, Nichol, &

Rodrigue, 2021). In order to further increase the robustness of our

results, different strategies were used for the cross-validation, includ-

ing strictly statistical power, permutation test, and controlling of con-

founding factors. Secondly, due to the fixed immediate option, it is

difficult to separate neural responses to distinct value signals such as

the subjective value, chosen value, summed value, and relative value

because of the issue of collinearity. Thirdly, non-neural related signals

(i.e., respiration and pulse) are potential factors that might impact the

connectivity analysis, which further needs to be taken into account in

future study in order to exclude their impacts.

4.6 | Conclusion

The present study examined neural representations (especially in the

DMPFC) of the amount and delay time of rewards during inter-

temporal decision-making, and identified brain networks for those

representations. Together with prior studies, our results support a

ventral-dorsal dissociation of MFPC in neural representations of

values (e.g., subjective values and relative value) and attributes of the

reward (i.e., amount and delay time); RCA-based network construction

is reliable and carries on specific topological information used to pre-

dict individual variations in behavioral task. These findings provide

novel insights into the neural representations of amount and delay

attribute, and support attribute-wise processing during intertemporal

decision-making.

ACKNOWLEDGMENTS

This study was supported by the Humanities and Social Science Fund

Project of the Ministry of Education (20YJC190018), the Major Pro-

gram of National Social Science Foundation of China (20ZDA079), the

National Natural Science Foundation of China (32000786,

31800920), and the National Institute of Health K01 award

(K01DK115638 [PI: S.L.]).

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

AUTHOR CONTRIBUTION

Qiang Wang: Developed the study concept and design. Pinchun Wang,

Yajie Wang, Manman Zhang, Yuxuan Zhu, and Shiyu Wei: Performed

the data collection. Qiang Wang, Pinchun Wang, Maomiao Peng, and

Yajie Wang: Performed the data analysis and interpretation under the

supervision of Xuejun Bai; Qiang Wang, Pinchun Wang, Shan Luo, and

Chuansheng Chen: Drafted the manuscript; Xuejun Bai, Chuansheng

Chen, and Shan Luo: Provided critical revisions. All the authors

approved the final manuscript for submission.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the

Functional MRI Center at Tianjin Normal University (TJNU). Data and

code are available from the corresponding authors with the permis-

sion of the TJNU.

ORCID

Qiang Wang https://orcid.org/0000-0002-1081-6690

REFERENCES

Addis, D. R., & Schacter, D. L. (2008). Constructive episodic simulation:

Temporal distance and detail of past and future events modulate hip-

pocampal engagement. Hippocampus, 18(2), 227–237. https://doi.org/
10.1002/hipo.20405

Ainslie, G. (1975). Specious reward: A behavioral theory of impulsiveness

and impulsive control. Psychological Bulletin, 82(4), 463–496.
Alessi, S., & Petry, N. M. (2003). Pathological gambling severity is associ-

ated with impulsivity in a delay discounting procedure. Behavioural

Processes, 64(3), 345–354. https://doi.org/10.1016/S0376-6357(03)

00150-5

Amasino, D. R., Sullivan, N. J., Kranton, R. E., & Huettel, S. A. (2019).

Amount and time exert independent influences on intertemporal

choice. Nature Human Behaviour, 3, 383–392.
Aron, A. R., Fletcher, P. C., Bullmore, E., Sahakian, B. J., & Robbins, T. W.

(2003). Stop-signal inhibition disrupted by damage to right inferior

frontal gyrus in humans. Nature Neuroscience, 6, 115–116. https://doi.
org/10.1038/nn1003

Ballard, K., & Knutson, B. (2009). Dissociable neural representations of

future reward magnitude and delay during temporal discounting.

Neuroimage, 45(1), 143–150. https://doi.org/10.1016/j.neuroimage.

2008.11.004

Bassett, D. S., & Bullmore, E. (2017). Small-world brain networks revisited.

The Neuroscientist, 23(5), 499–516. https://doi.org/10.1177/

1073858416667720

Beagle, A. J., Zahir, A., Borzello, M., Kayser, A. S., Hsu, M., Miller, B. L., …
Chiong, W. (2020). Amount and delay insensitivity during inter-

temporal choice in three neurodegenerative diseases reflects dors-

omedial prefrontal atrophy. Cortex, 124, 54–65. https://doi.org/10.
1016/j.cortex.2019.10.009

Benoit, R. G., Gilbert, D. T., & Burgess, P. W. (2011). A neural mechanism

mediating the impact of episodic prospection on farsighted decisions.

The Journal of Neuroscience, 31(18), 6771–6779. https://doi.org/10.
1523/JNEUROSCI.6559-10.2011

Bickel, W. K., Odum, A. L., & Madden, G. J. (1999). Impulsivity and ciga-

rette smoking: Delay discounting in current, never, and ex-smokers.

Psychopharmacology, 146(4), 447–454. https://doi.org/10.1007/

PL00005490

Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999).

Conflict monitoring versus selection-for-action in anterior cingulate

cortex. Nature, 402, 179–181. https://doi.org/10.1038/46035

3466 WANG ET AL.

https://orcid.org/0000-0002-1081-6690
https://orcid.org/0000-0002-1081-6690
https://doi.org/10.1002/hipo.20405
https://doi.org/10.1002/hipo.20405
https://doi.org/10.1016/S0376-6357(03)00150-5
https://doi.org/10.1016/S0376-6357(03)00150-5
https://doi.org/10.1038/nn1003
https://doi.org/10.1038/nn1003
https://doi.org/10.1016/j.neuroimage.2008.11.004
https://doi.org/10.1016/j.neuroimage.2008.11.004
https://doi.org/10.1177/1073858416667720
https://doi.org/10.1177/1073858416667720
https://doi.org/10.1016/j.cortex.2019.10.009
https://doi.org/10.1016/j.cortex.2019.10.009
https://doi.org/10.1523/JNEUROSCI.6559-10.2011
https://doi.org/10.1523/JNEUROSCI.6559-10.2011
https://doi.org/10.1007/PL00005490
https://doi.org/10.1007/PL00005490
https://doi.org/10.1038/46035


Braver, T. S., Cole, M. W., & Yarkoni, T. (2010). Vive les differences! Indi-

vidual variation in neural mechanisms of executive control. Current

Opinion in Neurobiology, 20(2), 242–250. https://doi.org/10.1016/j.

conb.2010.03.002

Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends

in Cognitive Sciences, 11(2), 49–57. https://doi.org/10.1016/j.tics.

2006.11.004

Bullmore, E. T., & Bassett, D. S. (2011). Brain graphs: Graphical models of

the human brain connectome. Annual Review of Clinical Psychology, 7,

113–140. https://doi.org/10.1146/annurev-clinpsy-040510-143934
Bush, G., Vogt, B. A., Holmes, J., Dale, A. M., Greve, D., Jenike, M. A., &

Rosen, B. R. (2002). Dorsal anterior cingulate cortex: A role in reward-

based decision making. Proceedings of the National Academy of Sci-

ences, 99(1), 523–528. https://doi.org/10.1073/pnas.012470999
Cai, H., Chen, J., Liu, S., Zhu, J., & Yu, Y. (2020). Brain functional

connectome-based prediction of individual decision impulsivity. Cor-

tex, 125, 288–298. https://doi.org/10.1016/j.cortex.2020.01.022
Chen, Z., Hu, X., Chen, Q., & Feng, T. (2019). Altered structural and func-

tional brain network overall organization predict human intertemporal

decision-making. Human Brain Mapping, 40(1), 306–328. https://doi.
org/10.1002/hbm.24374

Dale, A. M. (1999). Optimal experimental design for event-related fMRI.

Human Brain Mapping, 8(2), 109–114. https://doi.org/10.1002/(SICI)
1097-0193(1999)8:2/3%3C109::AID-HBM7%3E3.3.CO;2-N

Downar, J., Geraci, J., Salomons, T. V., Dunlop, K., Wheeler, S.,

McAndrews, M. P., … Giacobbe, P. (2014). Anhedonia and reward-

circuit connectivity distinguish nonresponders from responders to

dorsomedial prefrontal repetitive transcranial magetic stimulation in

major depression. Biological Psychiatry, 76(3), 176–185.
Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J., & Vapnik, V. (1997).

Support vector regression machines. Paper presented at the Advances

in neural information processing systems. 28(7):779–784.
Dubois, J., & Adolphs, R. (2016). Building a science of individual differ-

ences from fMRI. Trends in Cognitive Sciences, 20(6), 425–443. https://
doi.org/10.1016/j.tics.2016.03.014

Figner, B., Knoch, D., Johnson, E. J., Krosch, A. R., Lisanby, S. H., Fehr, E., &

Weber, E. U. (2010). Lateral prefrontal cortex and self-control in inter-

temporal choice. Nature Neuroscience, 13(5), 538. https://doi.org/10.

1038/nn.2516

Friston, K., Penny, W., & Glaser, D. (2005). Conjunction revisited.

Neuroimage, 25(3), 661–667. https://doi.org/10.1016/j.neuroimage.

2005.01.013

Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and

the rapid processing of monetary gains and losses. Science, 295(5563),

2279–2282. https://doi.org/10.1126/science.1066893
Grady, C. L., Rieck, J. R., Nichol, D., & Rodrigue, K. M. (2021). Influence of

sample size and analytic approach on stability and interpretation of

brain-behavior correlations in task-related fMRI data. Human Brain

Mapping, 2021(42), 204–219.
Green, L., & Myerson, J. (1996). Exponential versus hyperbolic discounting

of delayed outcome: Risk and waiting time. American Zoologist, 36(4),

496–505.
Green, L., & Myerson, J. (2004). A discounting framework for choice with

delayed and probabilistic rewards. Psychological Bulletin, 130(5), 769–
792. https://doi.org/10.1037/0033-2909.130.5.769

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V., &

Pollmann, S. (2009). PyMVPA: A python toolbox for multivariate pat-

tern analysis of fMRI data. Neuroinformatics, 7, 37–53. https://doi.org/
10.1007/s12021-008-9041-y

Hariri, A. R., Brown, S. M., Williamson, D. E., Flory, J. D., de Wit, H., &

Manuck, S. B. (2006). Preference for immediate over delayed rewards

is associated with magnitude of ventral striatal activity. Journal of

Neuroscience, 26(51), 13213–13217. https://doi.org/10.1523/

JNEUROSCI.3446-06.2006

Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural sys-

tems responding to degrees of uncertainty in human decision-making. Sci-

ence, 310(5754), 1680–1683. https://doi.org/10.1126/science.1115327
Jastorff, J., Huang, Y.-A., Giese, M. A., & Vandenbulcke, M. (2015). Com-

mon neural correlates of emotion perception in humans. Human Brain

Mapping, 36(10), 4184–4201. https://doi.org/10.1002/hbm.22910

Jenkinson, M., & Smith, S. M. (2001). A global optimisation method for

robust affine registration of brain images. Medical Image Analysis, 5(2),

143–156. https://doi.org/10.1016/S1361-8415(01)00036-6
Jimura, K., & Poldrack, R. A. (2012). Analyses of regional-average activa-

tion and multivoxel pattern information tell complementary stories.

Neuropsychologia, 50(4), 544–552. https://doi.org/10.1016/j.

neuropsychologia.2011.11.007

Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective

value during intertemporal choice. Nature Neuroscience, 10(12), 1625.

https://doi.org/10.1038/nn2007

Kable, J. W., & Glimcher, P. W. (2009). The neurobiology of decision: Con-

sensus and controversy. Neuron, 63(6), 733–745. https://doi.org/10.
1016/j.neuron.2009.09.003

Kahnt, T. (2018). A decade of decoding reward-related fMRI signals and

where we go from here. Neuroimage, 180, 324–333. https://doi.org/
10.1016/j.neuroimage.2017.03.067

Kahnt, T., Heinzle, J., Park, S. Q., & Haynes, J.-D. (2010). The neural code

of reward anticipation in human orbitofrontal cortex. Proceedings of

the National Academy of Sciences, 107(13), 6010–6015. https://doi.
org/10.1073/pnas.0912838107

Kim, J., Schultz, J., Rohe, T., Wallraven, C., Lee, S.-W., & Bulthoff, H. H.

(2015). Abstract representations of associated emotions in the human

brain. The Journal of Neuroscience, 35(14), 5655–5663. https://doi.org/
10.1523/JNEUROSCI.4059-14.2015

Koush, Y., Pichon, S., Eickhoff, S. B., Van De Ville, D., Vuilleumier, P., &

Sharnowski, F. (2019). Brain networks for engaging oneself in positive-

social emotion regulation. Neuroimage, 189, 106–115. https://doi.org/
10.1016/j.neuroimage.2018.12.049

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational simi-

larity analysis-connecting the branches of systems neuroscience. Fron-

tiers in Systems Neuroscience, 2, 1–28.
Kuzmanovic, B., Rigoux, L., & Tittgemeyer, M. (2018). Influence of vmPFC

on dmPFC predicts valence-guided belief formation. The Journal of

Neuroscience, 38(37), 7996–8010. https://doi.org/10.1523/

JNEUROSCI.0266-18.2018

Li, N., Ma, N., Liu, Y., He, X.-S., Sun, D.-L., Fu, X.-M., … Zhang, D. R. (2013).

Resting-state functional connectivity predicts impulsivity in economic

decision-making. Journal of Neuroscience, 33(11), 4886–4895. https://
doi.org/10.1523/JNEUROSCI.1342-12.2013

Luo, S., Ainslie, G., Giragosian, L., & Monterosso, J. R. (2009). Behavioral and

neural evidence of incentive bias for immediate rewards relative to

preference-matched delayed rewards. Journal of Neuroscience, 29(47),

14820–14827. https://doi.org/10.1523/JNEUROSCI.4261-09.2009

Lv, C., Wang, Q., Chen, C., Qiu, J., Xue, G., & He, Q. (2019). The regional

homogeneity patterns of the dorsal medial prefrontal cortex predict

individual differences in decision impulsivity. Neuroimage, 200, 556–
561. https://doi.org/10.1016/j.neuroimage.2019.07.015

Lv, C., Wang, Q., Chen, C., Xue, G., & He, Q. (2020). Activation patterns of

the dorsal medial prefrontal cortex and frontal pole predict individual

differences in decision impulsivity. Brain Imaging and Behavior, 15,

421–429. https://doi.org/10.1007/s11682-020-00270-1
Massar, S. A., Libedinsky, C., Chee, W., Huettel, S. A., & Chee, M. W.

(2015). Separate and overlapping brain areas encode subjective value

during delay and effort discounting. Neuroimage, 120, 104–113.
https://doi.org/10.1016/j.neuroimage.2015.06.080

McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Sepa-

rate neural systems value immediate and delayed monetary rewards. Sci-

ence, 306(5695), 503–507. https://doi.org/10.1126/science.1100907

WANG ET AL. 3467

https://doi.org/10.1016/j.conb.2010.03.002
https://doi.org/10.1016/j.conb.2010.03.002
https://doi.org/10.1016/j.tics.2006.11.004
https://doi.org/10.1016/j.tics.2006.11.004
https://doi.org/10.1146/annurev-clinpsy-040510-143934
https://doi.org/10.1073/pnas.012470999
https://doi.org/10.1016/j.cortex.2020.01.022
https://doi.org/10.1002/hbm.24374
https://doi.org/10.1002/hbm.24374
https://doi.org/10.1002/(SICI)1097-0193(1999)8:2/3%3C109::AID-HBM7%3E3.3.CO;2-N
https://doi.org/10.1002/(SICI)1097-0193(1999)8:2/3%3C109::AID-HBM7%3E3.3.CO;2-N
https://doi.org/10.1016/j.tics.2016.03.014
https://doi.org/10.1016/j.tics.2016.03.014
https://doi.org/10.1038/nn.2516
https://doi.org/10.1038/nn.2516
https://doi.org/10.1016/j.neuroimage.2005.01.013
https://doi.org/10.1016/j.neuroimage.2005.01.013
https://doi.org/10.1126/science.1066893
https://doi.org/10.1037/0033-2909.130.5.769
https://doi.org/10.1007/s12021-008-9041-y
https://doi.org/10.1007/s12021-008-9041-y
https://doi.org/10.1523/JNEUROSCI.3446-06.2006
https://doi.org/10.1523/JNEUROSCI.3446-06.2006
https://doi.org/10.1126/science.1115327
https://doi.org/10.1002/hbm.22910
https://doi.org/10.1016/S1361-8415(01)00036-6
https://doi.org/10.1016/j.neuropsychologia.2011.11.007
https://doi.org/10.1016/j.neuropsychologia.2011.11.007
https://doi.org/10.1038/nn2007
https://doi.org/10.1016/j.neuron.2009.09.003
https://doi.org/10.1016/j.neuron.2009.09.003
https://doi.org/10.1016/j.neuroimage.2017.03.067
https://doi.org/10.1016/j.neuroimage.2017.03.067
https://doi.org/10.1073/pnas.0912838107
https://doi.org/10.1073/pnas.0912838107
https://doi.org/10.1523/JNEUROSCI.4059-14.2015
https://doi.org/10.1523/JNEUROSCI.4059-14.2015
https://doi.org/10.1016/j.neuroimage.2018.12.049
https://doi.org/10.1016/j.neuroimage.2018.12.049
https://doi.org/10.1523/JNEUROSCI.0266-18.2018
https://doi.org/10.1523/JNEUROSCI.0266-18.2018
https://doi.org/10.1523/JNEUROSCI.1342-12.2013
https://doi.org/10.1523/JNEUROSCI.1342-12.2013
https://doi.org/10.1523/JNEUROSCI.4261-09.2009
https://doi.org/10.1016/j.neuroimage.2019.07.015
https://doi.org/10.1007/s11682-020-00270-1
https://doi.org/10.1016/j.neuroimage.2015.06.080
https://doi.org/10.1126/science.1100907


Misaki, M., Kim, Y., Bandettini, P., & Kriegeskorte, N. (2010). Comparison

of multivariate classifiers and response normalizations for pattern-

information fMRI. Neuroimage, 53(1), 103–118. https://doi.org/10.

1016/j.neuroimage.2010.05.051

Mumford, J. A. (2007). A guide of calculating percent change with

Featquery: Unpublished tech report. Retrieved from http://mumford.

bol.ucla.edu/perchange_guide.pdf.

Paloyelis, Y., Asherson, P., Mehta, M. A., Faraone, S. V., & Kuntsi, J. (2010).

DAT1 and COMT effects on delay discounting and trait impulsivity in

male adolescents with attention deficit/hyperactivity disorder and

healthy controls. Neuropsychopharmacology, 35(12), 2414. https://doi.

org/10.1038/npp.2010.124

Peters, J., & Buchel, C. (2010). Episodic future thinking reduces reward

delay discounting through an enhancement of prefrontal-

Mediotemporal interactions. Neuron, 66, 138–148. https://doi.org/10.
1016/j.neuron.2010.03.026

Peters, J., & Büchel, C. (2011). The neural mechanisms of inter-temporal

decision-making: Understanding variability. Trends in Cognitive Sci-

ences, 15(5), 227–239. https://doi.org/10.1016/j.tics.2011.03.002
Pochon, J., Riis, J., Sanfey, A. G., Nystrom, L. E., & Cohen, J. D. (2008).

Functional imaging of decision conflict. The Journal of Neuroscience, 28

(13), 3468–3473. https://doi.org/10.1523/JNEUROSCI.4195-07.

2008

Pouthas, V., George, N., Poine, J.-B., Pfeuty, M., VandeMoorteele, P.-F.,

Hugueville, L., … Renault, B. (2005). Neural network involved in time

perception: An fMRI study comparing long and short interval estima-

tion. Human Brain Mapping, 25(4), 433–441. https://doi.org/10.1002/
hbm.20126

Preuschoff, K., Quartz, S. R., & Bossaerts, P. (2008). Human insula activa-

tion reflects risk prediction errors as well as risk. The Journal of Neuro-

science, 28(11), 2745–2752. https://doi.org/10.1523/JNEUROSCI.

4286-07.2008

Rangel, A., Camerer, C. F., & Montague, P. R. (2008). A framework for

studying the neurobiology of value-based decision making. Nature

Reviews Neuroscience, 9, 545–556. https://doi.org/10.1038/

nrn2357

Ritchie, J. B., Kaplan, D. M., & Klein, C. (2019). Decoding the brain: Neural

representation and the limits of multivariate pattern analysis in cogni-

tive neuroscience. The British Journal for the Philosophy of Science, 70

(2), 581–607. https://doi.org/10.1093/bjps/axx023
Rubinov, M., Knock, S. A., Stam, C., Sifis, M., Harris, A. W.,

Williams, L. M., & Breakspear, M. (2009). Small-world properities of

nonlinear brain activity in schizophrenia. Human Brain Mapping, 30(2),

403–416. https://doi.org/10.1002/hbm.20517

Rudie, J., Brown, J., Beck-Pancer, D., Hernandez, L., EL, D., Thomas, P., …
Dapretto, M. (2013). Altered functional and structural brain network

organization in autism. Neuroimage: Clinical, 2, 79–94. https://doi.org/
10.1016/j.nicl.2012.11.006

Salomons, T. V., Dunlop, K., Kennedy, S. H., Flint, A., Geraci, J.,

Giacobbe, P., & Downar, J. (2014). Resting-state cortico-thalamic-

striatal connectivity predicts response to dorsomedial prefrontal rTMS

in major depressive disorder. Neuropsychopharmacology, 39, 488–498.
https://doi.org/10.1038/npp.2013.222

Samuelson, P. A. (1937). A note on measurement of utility. The Review of

Economic Studies, 4(2), 155–161.
Sasse, L. K., Peters, J., Büchel, C., & Brassen, S. (2015). Effects of prospec-

tive thinking on intertemporal choice: The role of familiarity. Human

Brain Mapping, 36(10), 4210–4221. https://doi.org/10.1002/hbm.

22912

Shen, X., Finn, E. S., Scheinost, D., Rosenberg, M. D., Chun, M. M.,

Papademetris, X., & Constable, R. T. (2017). Using connectome-based

predictive modeling to predict individual behavor from brain connec-

tivity. Nature Protocols, 12, 506–518. https://doi.org/10.1038/nprot.
2016.178

Sporns, O. (2010). Networks of the brain. Cambridge, MA: MIT Press.

Sripada, C. S., Gonzalez, R., Phan, K. L., & Liberzon, I. (2011). The neural

correlates of intertemporal decision-making: Contributions of

subjective value, stimulus type, and trait impulsivity. Hum

Brain Mapping, 32(10), 1637–1648. https://doi.org/10.1002/hbm.

21136

Steinbeis, N., Haushofer, J., Fehr, E., & Singer, T. (2016). Development of

behavioral control and associated vmPFC-DLPFC connectivity

explains children's increased resistance to temptation in Intertemporal

choice. Cerebral Cortex, 26(1), 32–42. https://doi.org/10.1093/cercor/
bhu167

Takahashi, T., Oono, H., & Radford, M. H. (2008). Psychophysics of time

perception and intertemporal choice models. Physcia A: Statistical

Mechanics and its Applications, 387(8-9), 2066–2074. https://doi.org/
10.1016/j.physa.2007.11.047

Tom, S. M., Fox, C. R., Trepel, C., & Poldrack, R. A. (2007). The neural basis

of loss aversion in decision-making under risk. Science, 315(5811),

515–518. https://doi.org/10.1126/science.1134239
Van den Heuvel, M., Kahn, R. S., Goni, J., & Sporns, O. (2012). High-cost,

high-capacity backbone for global brain communication. Proceedings of

the National Academy of Sciences, 109(28), 11372–11377. https://doi.
org/10.1073/pnas.1203593109

Van den Heuvel, M., Stam, C., Boersma, M., & Pol, H. H. (2008). Small-

world and scale-free organization of voxel-based resting-state func-

tional connectivity in the human brain. Neuroimage, 43(3), 528–539.
https://doi.org/10.1016/j.neuroimage.2008.08.010

Van Duijvenvoorde, A. C., Huizenga, H. M., Somerville, L. H.,

Delgado, M. R., Powers, A., Weeda, W. D., … Figner, B. (2015). Neural

correlates of expected risks and returns in risky choice across develop-

ment. The Journal of Neuroscience, 35(4), 1549–1560. https://doi.org/
10.1523/JNEUROSCI.1924-14.2015

Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., & He, Y. (2015). GRETNA:

A graph theoretical network analysis toolbox for imaging con-

nectomics. Frontiers in Human Neuroscience, 9, 386. https://doi.org/

10.3389/fnhum.2015.00386

Wang, Q., Chen, C., Cai, Y., Li, S., Zhao, X., Zheng, L., … Xue, G. (2016). Dis-

sociated neural substrates underlying impulsive choice and impulsive

action. Neuroimage, 134, 540–549. https://doi.org/10.1016/j.

neuroimage.2016.04.010

Wang, Q., Luo, S., Monterosso, J., Zhang, J., Fang, X., Dong, Q., &

Xue, G. (2014). Distributed value representation in the medial pre-

frontal cortex during intertemporal choices. Journal of Neuroscience,

34(22), 7522–7530. https://doi.org/10.1523/JNEUROSCI.0351-

14.2014

Wang, Q., Lv, C., He, Q., & Xue, G. (2020a). Dissociable fronto-striatal

functional networks predict choice impulsivity. Brain Structure and

Function, 225(8), 2377–2386. https://doi.org/10.1007/s00429-020-

02128-0

Wang, Q., Wei, S., Im, H., Zhang, M., Wang, P., Zhu, Y., … Bai, X. (2021).

Neuroanatomical and functional substrates of the greed personality

trait. Brain Structure and Function, 1–12.
Wang, Q., Zhu, Y., Wang, Y., Chen, C., He, Q., & Xue, G. (2020b). Intrinsic

non-hub connectivity predicts human inter-temporal decision-making.

Brain Imaging and Behavior, 1–12. https://doi.org/10.1007/s11682-

020-00395-3

Woodside, D. B., Colton, P., Lam, E., Dunlop, K., Rzeszutek, J., &

Downar, J. (2017). Dorsomedial prefrontal cortex repetitive

transcranial magnetic stimulation treatment of posttraumatic

stress disorder in eating disorders: An open-label case series.

Eating Disorders, 50(10), 1231–1234. https://doi.org/10.1002/eat.
22764

Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualiza-

tion tool for human brain connectomics. PLoS One, 8(7), e68910.

https://doi.org/10.1371/journal.pone.0068910

3468 WANG ET AL.

https://doi.org/10.1016/j.neuroimage.2010.05.051
https://doi.org/10.1016/j.neuroimage.2010.05.051
http://mumford.bol.ucla.edu/perchange_guide.pdf
http://mumford.bol.ucla.edu/perchange_guide.pdf
https://doi.org/10.1038/npp.2010.124
https://doi.org/10.1038/npp.2010.124
https://doi.org/10.1016/j.neuron.2010.03.026
https://doi.org/10.1016/j.neuron.2010.03.026
https://doi.org/10.1016/j.tics.2011.03.002
https://doi.org/10.1523/JNEUROSCI.4195-07.2008
https://doi.org/10.1523/JNEUROSCI.4195-07.2008
https://doi.org/10.1002/hbm.20126
https://doi.org/10.1002/hbm.20126
https://doi.org/10.1523/JNEUROSCI.4286-07.2008
https://doi.org/10.1523/JNEUROSCI.4286-07.2008
https://doi.org/10.1038/nrn2357
https://doi.org/10.1038/nrn2357
https://doi.org/10.1093/bjps/axx023
https://doi.org/10.1002/hbm.20517
https://doi.org/10.1016/j.nicl.2012.11.006
https://doi.org/10.1016/j.nicl.2012.11.006
https://doi.org/10.1038/npp.2013.222
https://doi.org/10.1002/hbm.22912
https://doi.org/10.1002/hbm.22912
https://doi.org/10.1038/nprot.2016.178
https://doi.org/10.1038/nprot.2016.178
https://doi.org/10.1002/hbm.21136
https://doi.org/10.1002/hbm.21136
https://doi.org/10.1093/cercor/bhu167
https://doi.org/10.1093/cercor/bhu167
https://doi.org/10.1016/j.physa.2007.11.047
https://doi.org/10.1016/j.physa.2007.11.047
https://doi.org/10.1126/science.1134239
https://doi.org/10.1073/pnas.1203593109
https://doi.org/10.1073/pnas.1203593109
https://doi.org/10.1016/j.neuroimage.2008.08.010
https://doi.org/10.1523/JNEUROSCI.1924-14.2015
https://doi.org/10.1523/JNEUROSCI.1924-14.2015
https://doi.org/10.3389/fnhum.2015.00386
https://doi.org/10.3389/fnhum.2015.00386
https://doi.org/10.1016/j.neuroimage.2016.04.010
https://doi.org/10.1016/j.neuroimage.2016.04.010
https://doi.org/10.1523/JNEUROSCI.0351-14.2014
https://doi.org/10.1523/JNEUROSCI.0351-14.2014
https://doi.org/10.1007/s00429-020-02128-0
https://doi.org/10.1007/s00429-020-02128-0
https://doi.org/10.1007/s11682-020-00395-3
https://doi.org/10.1007/s11682-020-00395-3
https://doi.org/10.1002/eat.22764
https://doi.org/10.1002/eat.22764
https://doi.org/10.1371/journal.pone.0068910


Xue, G., Lu, Z.-L., Levin, I. P., Weller, J. A., Li, X., & Antoine, B. (2009).

Functional dissociations of risk and reward processing in the medial

prefrontal cortex. Cerebral Cortex, 19(5), 1019–1027. https://doi.org/
10.1093/cercor/bhn147

Zha, R., Bu, J., Wei, Z., Han, L., Zhang, P., Ren, J., … Zhang, X. (2019). Trans-

forming brain signals related to value evaluation and self-control into

behavioral choices. Human Brain Mapping, 40(4), 1049–1061. https://
doi.org/10.1002/hbm.24379

Zhao, L., Chen, C., Shao, L., Wang, Y., Xiao, X., Chen, C., … Xue, G. (2017).

Orthographic and phonological representations in the fusiform cortex.

Cerebral Cortex, 27(11), 5197–5210. https://doi.org/10.1093/cercor/
bhw300

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Wang Q, Wang Y, Wang P, et al.

Neural representations of the amount and the delay time of

reward in intertemporal decision making. Hum Brain Mapp.

2021;42:3450–3469. https://doi.org/10.1002/hbm.25445

WANG ET AL. 3469

https://doi.org/10.1093/cercor/bhn147
https://doi.org/10.1093/cercor/bhn147
https://doi.org/10.1002/hbm.24379
https://doi.org/10.1002/hbm.24379
https://doi.org/10.1093/cercor/bhw300
https://doi.org/10.1093/cercor/bhw300
https://doi.org/10.1002/hbm.25445

	Neural representations of the amount and the delay time of reward in intertemporal decision making
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Subjects
	2.2  Intertemporal choice task
	2.3  Functional imaging procedure
	2.4  Behavioral data analysis
	2.5  fMRI data analysis
	2.6  Support vector regression analysis
	2.7  ROI analyses
	2.8  Representational similarity analysis between amount and delay time conditions in DMPFC
	2.9  Functional brain network construction via representational connectivity analysis
	2.10  Connectome-based prediction modeling

	3  RESULTS
	3.1  Behavioral results
	3.2  Imaging results
	3.2.1  Brain regions representing the amount of future rewards
	3.2.2  Brain regions representing the delay time of future rewards
	3.2.3  Distinct neural patterns in the DMPFC for the amount and delay time of future rewards
	3.2.4  Value representations in the VMPFC, NAcc, and PCC
	3.2.5  Task-based functional networks related to the amount and delay time of future rewards


	4  DISCUSSION
	4.1  Distributed neural representations of the amount attribute of delayed rewards
	4.2  Distributed neural representations of the delay-time attribute of delayed rewards
	4.3  Brain activities and network properties responsible to the amount and delay time predict discounting rate
	4.4  Neural mechanisms underlying representation of physical attributes and subjective computation
	4.5  Strengths and limitations
	4.6  Conclusion

	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTION
	  DATA AVAILABILITY STATEMENT

	REFERENCES


