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Abstract

Oncology is a highly siloed field of research in which sub-disciplinary specialization has lim-

ited the amount of information shared between researchers of distinct cancer types. This

can be attributed to legitimate differences in the physiology and carcinogenesis of cancers

affecting distinct anatomical sites. However, underlying processes that are shared across

seemingly disparate cancers probably affect prognosis. The objective of the current study is

to investigate whether multitask learning improves 5-year survival cancer patient survival

prediction by leveraging information across anatomically distinct HPV related cancers. Data

were obtained from the Surveillance, Epidemiology, and End Results (SEER) program data-

base. The study cohort consisted of 29,768 primary cancer cases diagnosed in the United

States between 2004 and 2015. Ten different cancer diagnoses were selected, all with a

known association with HPV risk. In the analysis, the cancer diagnoses were categorized

into three distinct topography groups of varying specificity. The most specific topography

grouping consisted of 10 original cancer diagnoses differentiated by the first two digits of the

ICD-O-3 topography code. The second topography grouping consisted of cancer diagnoses

categorized into six distinct organ groups. Finally, the third topography grouping consisted

of just two groups, head-neck cancers and ano-genital cancers. The tasks were to predict 5-

year survival for patients within the different topography groups using 14 predictive features

which were selected among descriptive variables available in the SEER database. The

information from the predictive features was shared between tasks in three different ways,

resulting in three distinct predictive models: 1) Information was not shared between patients

assigned to different tasks (single task learning); 2) Information was shared between all

patients, regardless of task (pooled model); 3) Only relevant information was shared

between patients grouped to different tasks (multitask learning). Prediction performance

was evaluated with Brier scores. All three models were evaluated against one another on

each of the three distinct topography-defined tasks. The results showed that multitask clas-

sifiers achieved relative improvement for the majority of the scenarios studied compared to

single task learning and pooled baseline methods. In this study, we have demonstrated that

sharing information among anatomically distinct cancer types can lead to improved predic-

tive survival models.
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Introduction

Humans have the ability to transfer relevant knowledge from previous experiences to new

ones, mastering them more easily and faster. Analogously in machine learning, multitask

learning (MTL) methods attempt to improve model generalization and performance by using

shared representations to exploit commonalities and differences across related tasks, while

avoiding using information from unrelated tasks [1, 2]. MTL has shown to be an effective

approach for overcoming the challenges of low quality datasets, such as scarce or highly

skewed training data, that can degrade predictive performance [3–6].

While MTL has a history of over 20 years in machine learning, only recently has it started

making its way into the field of predictive oncology. In the vast majority of such applications,

MTL methods (and the related methods of transfer learning) are used to allow sharing of infor-

mation across related datasets of the same type of cancer (e.g., breast cancers [7], skin cancers

[8], and lung or prostate cancers [9]). In other words, tasks are defined in terms of datasets

limited to a specific type of cancer.

However, as stark as the differences between distinct cancers may be, there probably exist

underlying processes that are shared, even across seemingly very disparate cancer types. For

example, it is known that human papillomavirus (HPV) plays a role in roughly 5% of all can-

cers worldwide [10]. While HPV is considered a necessary cause of cervical cancer, it is also

linked to cancers in other anatomical sites, with rates varying according to susceptibility to

oncogenic types of HPV. For instance, 90% of anal and 74% of vaginal cancers appear to be

induced by HPV [11, 12]. Nearly 30% of penile and vulvar cancers may be caused by this virus

[13, 14]. Likewise, about 30% of all head and neck cancers are HPV positive [15]. This propor-

tion has been increasing over time, approaching 80% of incident tonsil cancers in some coun-

tries [16]. In addition to the similarities in the etiology, better survival has been observed

among patients with HPV-related cancers who were tested positive for HPV, such as patients

with penile cancer [17, 18], nasopharyngeal cancer [19], anal cancer [20], and vulvar cancer

[17, 21]. In contrast to traditional tobacco- and alcohol-associated oropharyngel cancers,

patients with positive HPV findings have demonstrated improved survival and significantly

higher cure rates [22–24]. In spite of the commonalities described for HPV-related cancers,

these patients have been managed through different oncology disciplines such as gynecologic

oncologist, otolaryngologist or head and neck surgeons, onco-gastroenterologists, and onco-

urologists. With low annual incidence rate, some less than 4 per 100,00 individuals, the clinical

experience is not only modest, but also rarely shared across the segregated fields of oncology.

In the majority of developed countries, oncology care units regularly report selected infor-

mation on each cancer patient to the nation-wide cancer registry surveillance program. While

the information sent to the surveillance programs is less nuanced than information available

in the clinics, it is standardized following international conventions and the quality of the

selected variables are formally assured for accuracy over time. Data-driven statistics are com-

puted on incidence, mortality and survival, informing aspects on evidence-based care and

changes in disease burden on a regular basis. Consequently, cancer registry data has been a

valuable source of research for hypothesis generation and testing [25–27].

Encouraged by recent developments in the field of multitask learning (MTL) and increased

availability of accurate registry data, our aim is to investigate whether MTL can be used to

leverage registry data for 5-year survival prediction. Potentially, the prediction performance

for rare cancer types with limited patient records may be improved via leveraging patient rec-

ords of similar cancer types but with larger number of patient records. Hence, as opposed to

sharing information across different datasets of the same cancer type, we approach MTL for

cancer from a different perspective: leverage MTL to share information across anatomically

PLOS ONE Improving cancer survival predictions via multitask learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0241225 November 16, 2020 2 / 25

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0241225


distinct cancer types. In this context, HPV related cancers serve an excellent model to test the

accuracy of the different survival prediction models.

Many existing MTL methods rely on explicit assumptions about the relationships between

tasks. These assumptions are incorporated into machine learning algorithms through specifi-

cally designed priors [6, 28] or regularization functions [29–31]. More recently proposed

methods are capable of learning the relationships between tasks from the data and incorporat-

ing this information into the learning process [4, 5]. The MTL method proposed in this study

is built upon the MSSL approach proposed in Goncalves et al. [5], which, aside from learning

tasks coefficients, also estimates the relationship among the tasks represented as an undirected

graph. This is useful in inferring how information is shared across the different tasks during

model training.

When predicting whether or not patient will survive for at least five years (i.e., binary classi-

fication problem) based on patient features, it is important that the learning algorithms are

capable of handling censored data, to avoid potential bias [32]. In Vock et al. [33], a general-

purpose technique for adapting machine learning algorithms to right-censored, time-to-event

data is presented. The method is based on computing inverse probability of censoring weights

(IPCW) which are then used to construct a weighted loss function and weighted performance

metrics used in the training and testing of the given learning algorithm. In this paper, we

extend the MSSL formulation of Goncalves et al. [5] to appropriately handle right-censored

data using the inverse probabilities of censoring weights.

In summary, the objective of the current study is to investigate whether multitask learning

improves 5-year survival cancer patient survival prediction by leveraging information across

anatomically distinct HPV related cancers.

Material and methods

Cohort selection

Data was obtained from the Surveillance, Epidemiology, and End Results (SEER) program

database [34], which provides de-identified information on cancer statistics of the United

States’ population. Specifically, data from nine SEER registries were used: Atlanta, Connecti-

cut, Detroit, Hawaii, Iowa, New Mexico, San Francisco-Oakland, Seattle-Puget Sound, and

Utah. Although data is available for cases diagnosed from 1973 through 2015, we only used

data from 2004 onwards due to the fact that in that year there was a major change in the

criteria used for both cancer stage and grade definitions. In this study, we focus on cancers in

anatomical sites for which evidence of an association between HPV and cancer has been estab-

lished. Based on evidence suggesting etiological link between infection with human papilloma-

virus (HPV) infection and cancer, we selected the following cancer sites to the study using the

International Classification of Diseases for Oncology, 3rd edition (ICD-O-3) topography

codes [35]: cervix (C53), anus and anal canal (C21), vulva (C51), vagina (C52), and penile can-

cer (C60). Regarding head and neck cancers, we included all cancers coded as C01, C09, and

C10 where all sub-sites are HPV related [36]. C02, C05 and C11 are types of head and neck

sited with mixed etiology in respect to HPV infection. Regarding cancers coded as C02 (other

and unspecified parts of tongue), sub-sites C02.0-3 and C02.9 have been referred to as not

HPV-related and therefore not included, while sub-sites C02.4 and C02.8 are linked to HPV

infection and are included in this study. Regarding cancers coded as C05 (palate) sub-sites

C05.1 (soft palate) and C05.2 (uvula) are HPV related (included) while sub-sites C05.8 and

C05.9 are typically not HPV related (excluded). We did not include cancers in lip, gum, floor

and other unspecified parts of mouth, cancers in glands, sinuses and hypopharynx due to the

lack of strong evidence of being associated with HPV-infection. We also excluded C11
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(nasopharynx), which is linked to infection with Ebstein-Barr virus [37] and where the HPV-

etiology is not firmly established [38] partly because this site is difficult to study as the deep

structures of the skull base related to the nasopharynx are inaccessible to routine clinical

examinations.

In addition we removed all cases for which: 1) survival time and/or event information were

missing; 2) age at diagnosis was under 18 years; 3) the case is a pre-cancer (cases in which the

cancer stage is 0); 4) the number of survival months after being diagnosed is zero; 5) the cancer

was not the first diagnosed cancer case of the patient.

After exclusions, the cohort consisted of 29,768 primary cancer cases diagnosed in the

United States between 2004 and 2015 with anatomical sites associated with HPV risk. The

cohort contains a total of 11,887 men and 17,818 women, with mean age of 57 years. A descrip-

tive table of the population data used in this paper is shown in Table 1.

Tasks definition

In MTL an important step is to define the “tasks”. In many applications of MTL, tasks are eas-

ily identified. In our application, defining the tasks is not straightforward, as there are many

possible ways to do so. We next provide details of our criteria for tasks definition.

Because we aim to implement MTL methodologies across cancer types, the task definition

will be determined by how cancer “type” is defined. For the purposes of this study we will

define a cancer type based on the anatomical location of the cancer diagnosis. We consider

three distinct strategies for grouping individual cancer sites with a decreasing degree of speci-

ficity. The most specific grouping, Topography group 1 (TP1), consists of 10 cancer sites which

are defined by the first two digits of the ICD Topography code. In the next most specific

grouping, Topography group 2 (TP2), cancers from Topography group 1 were grouped by

organ, resulting in a total of six cancer sites. Finally, in the least specific grouping, Topography
group 3 (TP3), related organs are grouped into broad anatomical regions, resulting in just two

cancer sites. Table 2 presents the groupings utilized in our experiments.

Given a particular topography group, a task is defined as the binary classification problem

of predicting whether a patient with a cancer diagnosis at a particular cancer cite (as defined

Table 1. Population data description per anatomical site, classified by ICD-O-3 topography codes: Number of cancer cases (N), age information, and 5-year survival

rate.

ICD-O-3 code Anatomical site N Age 5 year Survival (%)

mean median min–max

C01 Base of tongue 4421 61.03 60 19–102 63.3

C02 Other/Unsp tonge � 244 59.79 59 26–96 59.7

C05 Palate�� 488 61.06 61 20–101 56.2

C09 Tonsil 5511 57.91 57 19–102 72.0

C10 Oropharynx 943 60.79 59 25–94 42.2

C21 Anus & Anal canal 4287 60.29 59 19–105 63.5

C51 Vulva 2733 66.11 66 19–102 62.6

C52 Vagina 645 65.43 64 23–100 41.9

C53 Cervix Uteri 9729 48.90 47 19–103 68.7

C60 Penis 767 65.85 66 26–98 58.0

Total 29,768 57.05 57 19–105 62.5

�Subsite C02.0-3/9 excluded.

��Subsite C05.8/9 excluded.

https://doi.org/10.1371/journal.pone.0241225.t001
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by the topography group) will survive less than five years or more from the time of diagnosis.

Demographic and cancer-related information are used as predictive features. By looking into

distinct topography groups of anatomical specificity, we aim to investigate the performance of

the multitask learning methods under the different strategies of splitting the data into tasks.

Variable selection and re-coding

Inspired by the work of Lynch et al. [39], a total of 14 predictive variables, listed in Table 3, are

chosen. Variables with prefix “X_” are derived from features in the SEER database. The pro-

cess is described in the next paragraph. Variables indicated with an asterisk are re-coded ver-

sions of the original variables in the SEER database. The re-coding process for each of these

variables are presented in the S1 File. The main reason for re-coding is to group similar catego-

ries into larger groups, reducing the number of categories for the modelling to be more effec-

tive, without loosing predictive power.

X_PRIMSITE_1 is derived from SEER variable PRIMSITE, such that the first two digits

of PRIMSITE are assigned to X_PRIMSITE_1. X_TUMSIZ_COMB_NUM is derived from

SEER variable CSTUMSIZ, which contains both numeric values (actual sizes of tumors in mil-

limeters) as well as ordinal values (codes that indicate that the tumor size lies within a range of

10 millimeters). In X_TUMSIZ_COMB_NUM all the numeric values are retained while the cate-

gorical values were mapped to the median of the range of the bin to which the given tumor

was assigned.

Variables other than the ones with prefix “X_” or “�” are maintained as originally coded.

Feature encoding

To be used by the machine learning algorithms, all predictive variables must be represented

numerically. This process is referred to as feature encoding. Different encoding strategies are

applied to different types of predictive variables, the selection of which depends on the charac-

teristics of the variable under consideration. In what follows we use the terms variable and fea-

ture interchangeably.

Numerical predictive variables such as AGE_DX and X_TUMSIZ_COM_NUM are already

real numbers, so they can directly be used as features by the methods without any additional

encoding.

Table 2. ICD-O-3 codes included in the cohort and topography group division used in our experiments.

PRIMSITE Topography Group 1 Topography Group 2 Topography Group 3

Task ID Task ID Task ID

Tasks C01 T-01: Base Tongue T-01: Tongue T-01: Head & Neck

C02 T-02: Other/Unsp. Parts of Tongue

C05 T-03: Palate T-02: Palate

C09 T-04: Tonsil T-03: Oropharynx & Tonsils

C10 T-05: Oropharynx

C21 T-06: Anus & Anal Canal T-04: Anus & Anal Canal T-02: Ano-Genital

C51 T-07: Vulva T-05: Genital Female

C52 T-08: Vagina

C53 T-09: Cervix Uteri

C60 T-10: Penis T-06: Genital Male

Topography group 1 through 3 represent groupings of ICD-O-3 codes with decreasing degree of specificity.

https://doi.org/10.1371/journal.pone.0241225.t002
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Variables that are purely categorical (qualitative variables with no clear ordering or associ-

ated numerical values) are usually represented via one-hot-encoding. In this encoding strategy

the variable is represented by a binary vector of the same size as the number of categories. The

vector contains zeros everywhere except for the position corresponding to the given category,

in which case a 1 appears. This is equivalent to introducing dummy variables for categorical

variables in standard regression analysis. The following variables are encoded using this

strategy: REG, SEX, RAC_RECA, HISTREC, X_PRIMSITE_1, SURGSCOF, and X_SURG-
PRIF_GEN. Cases with “Unknown” / “Not Applicable” categories are treated as an additional

category for that feature.

Stage-related variables have an intrinsic ordering of the categories. For example, the catego-

ries in the feature DAJCCSTG have an increasing order related to the severity of the cancer

diagnosis: stage I, stage II, stage III, and stage IV. To preserve this ordinal relationship we used

a label encoding strategy in which each stage category is assigned an integer value correspond-

ing to its relative severity. For example, in the feature DAJCCSTG stage I is represented by ‘1’,

stage II by ‘2’ and so on. However, in the SEER dataset these variables also have an “Unknown”

/ “Not applicable” category that breaks the natural ordering of the categories. To deal with

these cases, we propose to represent this particular category as the empirical mean of all

assigned integer valued labels in the observed data. Note that this process is a type of imputa-

tion which treats the “Unknown” / “Not applicable” category as data that is missing at random.

We used this encoding approach for the following features: GRADE, DAJCCT, DAJCCN,

DAJCCM, and DAJCCSTG.

Outcome definition

A binary outcome, X_SURV_TIME_5Y, derived from the SEER feature SRV_TIME_MON,

was used as the outcome variable. A value of 1 indicates that a patient has survived at least five

Table 3. Variables obtained from SEER database and used as 5-year survival prediction features.

SEER variable Description Type # Levels

REG Registry ID Categorical 9 levels

AGE_DX Age at diagnosis Numerical -

SEX Sex Categorical 2 levels

RAC_RECA Race recode (White, Black, Other) Categorical 5 levels

SURGSCOF Scope of regional lymph node surgery Categorical 3 levels

HISTREC Histology recode, broad groupings Categorical 3 levels

�GRADE (Recoded) Grade Numerical -

�DAJCCT (Recoded) AJCC ‘T’ component (6th Ed.) Numerical -

�DAJCCN (Recoded) AJCC ‘N’ component (6th Ed.) Numerical -

�DAJCCM (Recoded) AJCC ‘M’ component (6th Ed.) Numerical -

�DAJCCSTG (Recoded) AJCC ‘stage group’ component (6th Ed.) Numerical -

�SURGPRIF (Recoded) Surgery of primary site, generic Numerical -

X_PRIMSITE_1 First two digits of ICD-O-3 code for anatomical site Categorical 10 levels

X_TUMSIZ_COMB_NUM Tumor size Numerical -

SURV_TIME_MON Survival time in months Numerical -

X_SURV_TIME_5Y Five year survival Binary -

Variables indicated with “�” are re-coded versions of the original SEER variables (see S1 File). Variables with prefix “X_” refer to modified variables derived from

original SEER variables (see text). All other variables are kept as originally coded. SURV_TIME_MON and X_SURV_TIME_5Y are predictands of the model, thus they

are not considered in the input feature set. AJCC stands for American Joint Committee on Cancer.

https://doi.org/10.1371/journal.pone.0241225.t003
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years from the time of diagnosis, and a value of 0 indicates that the patient survived less than

five years from the time of diagnosis. Five-year survival has been the de facto method for

reporting cancer survival in major epidemiological studies, the most recent being the Con-

corde Programme [40]. The use of five-year survival originates from the fact that until recently,

cancer was a fatal disease and patients surviving for that long could be considered cured [41].

Although the proportion of patients who survive for 5 years has been increasing over the years,

it remains a widely used benchmark, even though it cannot be directly interpreted as the pro-

portion of patients who are cured [42].

Censored cases

The censor variable used in this study was built from SEER’s variable STAT_REC, which

describes whether the patient is dead or alive at the end of follow-up. All follow-up is censored

at the cut-off date (Dec 31st, 2015). Any patient that dies after this date is considered alive as of

the cut-off date. Since we are focusing on 5-year survival prediction, any patient that is alive

but its survival time (SRV_TIME_MON) is less than 60 months, due to the cut-off date, is con-

sidered censored. Therefore, all alive cases that were diagnosed after 2011 are censored. If

STAT_REC indicates death, then it is uncensored. In case the patient is alive and has already

survived for at least 60 months, then it is uncensored.

Methods

To evaluate our hypothesis that combining data from apparently disparate cancer types could

lead to model performance improvements, a multitask classifier was compared against two sin-

gle task baselines. The three methods are described below in the section Classifiers.
Our learning tasks are classification problems using distinct datasets. We denote by T the

number of tasks, d the number of features in each dataset, assumed to be identical for all learn-

ing tasks, and nt the number of samples for the t-th task. Xt 2 R
nt�d and yt 2 f0; 1g

nt are the

feature (covariate) matrix and the binary outcome vector for the t-th task. W 2 Rd�T is the

MTL parameter matrix, where columns are vector parameters wt 2 R
d, t = 1, . . ., T, for each

task. For any matrix A, tr(A) is the trace operator and kAk1 is the ℓ1-norm of matrix A, defined

as the sum of the absolute values of its entries.

Treatment of censored data

We applied a general-purpose technique for adapting machine learning algorithms to right-

censored time-to-event data [33]. Inverse probability weighting is a method of constructing

estimators and likelihood functions that account for sampling biases and missing data [43].

The idea is to use the probability of being sampled, or estimates thereof, to calculate weights

that adjust the number of unlikely samples by inflating their representation in the observed

data to better reflect the true sampling population. For example, suppose the probability of

being sampled is known, and a particular sample xi has a probability of being sampled pi> 0.

The value 1

pi
can be used to weight the observed sample xi when constructing estimators or like-

lihood functions to essentially create a set of pseudo-samples that increases the effective sample

size of the observed data. Intuitively if pi is close to one, then the sample was very likely to have

been selected, thus no adjustment is needed. Consequently, 1

pi
is also close to one resulting in

minimal adjustments. On the other hand if pi is very small, then there are many more samples

similar to xi in the true population that were not selected. To represent these samples, the

inverse probability weight 1

pi
, which is now much larger than one, is used to inflate the number

of samples similar to xi in the observed data. More concretely, if pi ¼ 1

10
then on average for
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every xi in the observed data, there are 10 such samples in the true population that were not

chosen. Thus we inflate the number of samples of the type xi by a factor of 1

pi
¼ 10.

Censoring is a type of sampling bias, and the method of inverse probability of censoring

weights (IPCW) constructs weights that use the empirical distribution of censoring times to

compute inverse probability weights to adjust estimators and likelihood functions in survival

models. To see how censoring can lead to biased predictions in the case of binary classification,

consider the following standard survival analysis set-up. Indexing patients by i, let ti be the sur-

vival time, ci the censoring time and xi the features of patient i. We assume the existence of a

joint probability distribution P(c, t, x) such that the complete data is (ci, ti, xi)� P(c, t, x).

Defining vi = min{ci, ti} and δi = I(ti< ci), where I(�) is the indicator function, the observed
data is (vi, δi, xi). Traditional survival analysis seeks to make inference about the distribution

P(t|x) given the observed data {vi, δi, xi}. In the binary classification problem, we want to pre-

dict whether patient i survives for τ> 0 years after the date of diagnosis, given the data xi.

Define the binary random variable yi = I(ti� τ) with expected value π(xi) = E(yi|xi). In the

presence of right-censoring, the value of yi will be unknown for some patients, namely those

patients with vi< τ and δi = 0. Restricting analysis to patients with known yi will lead to bias in

the predictions since patients with small event times, i.e. small ti, are less likely to be censored.

Thus we will over sample patients with yi = 0, leading to potentially biased predictions.

To correct for this oversampling, IPCW can be used to essentially artificially inflate the

dataset by weighting the influence of uncensored individuals with large event times. The intui-

tion behind this weighting is that the longer a patient survives, the more unobserved patients

with similar survival times there are that dropped out due to censoring. These longer-surviving

patients are weighted to represent these unobserved censored patients. Weights are computed

via inverse probabilities [43] and require estimates of the censoring distribution’s survival

function (the complement of the cumulative distribution function). If we assume that the cen-

soring distribution is independent of event times and patient features, i.e. P(c, t, x) = P(c)P(t,
x), then we can estimate the censoring distribution’s survival function via the Kaplan-Meier

estimator, which is defined as

ĜðtÞ ¼
Y

i:vi<t

1 �
ki
mi

� �

; ð1Þ

where ki are the number of events observed at time vi and mi is the number of individuals who

have not yet experienced an event and are not yet censored just before time vi. The IPCW for

patient i is then defined as

oi ¼

di

Ĝðminfvi; tgÞ
if minfti; tg < ci;

0 otherwise:

8
><

>:
ð2Þ

Note that patients who are censored before the threshold τ have a weight of zero and do not

contribute directly to the data, but instead are incorporated indirectly through the weights. As

outlined in [33], these weights can be used to adjust loss functions and performance metrics to

account for right-censored data.

Classifiers

In this study, in addition to the MTL classifier, two baseline methods were considered: Single

task learning (STL) models and pooled models. These two baselines represent the two

extremes in the spectrum of information sharing across cancer types. At one end of the
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spectrum, STL utilizes one model per task, so there is no sharing of any information across

tasks. At the other end, the pooled model utilizes a single model for all tasks, so all information

is shared across all tasks. The MTL method lies somewhere in between these two baselines,

providing a principled way of controlling the level and nature of information sharing across

subsets of tasks.

Baseline 1: Single task classifiers. This baseline consists of building individual classifiers

separately for each task, i.e., cancer type (listed in Table 2). The data presented to each classifier

consists of samples from the same cancer group, and hence is much more homogeneous than

the data presented to the other two types of classifiers described below. However, as some can-

cer groups have low incidence, the corresponding STL classifiers are trained with relatively

small training sets. The classification model is a ℓ1-penalized (lasso) logistic regression. The

choice for ℓ1-penalization is due to its variable selection property and success in practical appli-

cations [44, 45].

To deal with censored data inputs, we adapt the lasso logistic regression formulation using

the method proposed in Vock et al. [33] discussed in section Treatment of censored data. The

result is a weighted version of the traditional ℓ1-penalized logistic regression. The adapted for-

mulation is defined as

w ¼ arg min
w

1

n

Xn

i¼1

oiLðyi; xi;wÞ þ lkwk1; ð3Þ

where Lðyi; xi;wÞ is the cross-entropy loss function, ω the IPCW weights, yi 2 {0, 1} and

xi 2 R
d are the label and features of the i-th data instance, and λ� 0 is a hyper-parameter that

controls the amount of regularization. The cross-entropy loss function is defined as:

Lðyi; xi;wÞ ¼ � ðyi logðsðw⊺xiÞÞ þ ð1 � yiÞ logð1 � sðw⊺xiÞÞÞ

where σ(�) is a sigmoid function. Note that in Eq 3, λ must be specified by the user or selected

via cross-validation. The regularization aims to attenuate the overfitting that is likely to occur,

particularly for tasks with small sample sizes. Our implementation of the IPCW ℓ1-penalized

logistic regression is based on the Scikit-learn package [46].

Baseline 2: Pooled classifier. The pooled baseline consists of a single classifier for the

entire cohort. In this case, data from all tasks are pooled into one monolithic task and a single

classifier is trained over all cancer types. The feature used to define the tasks in the MTL model

(described in section Classifiers) and to define individual classifiers in Baseline 1 (described in

section Classifiers), is passed to this classifier as an additional predictor feature. Similar to the

model in Baseline 1, our implementation of the IPCW ℓ1-penalized logistic regression uses Sci-

kit-learn [46]. The advantages of this pooled classifier baseline are that the training set is much

larger (albeit more heterogeneous compared to Baseline 1), and smaller model complexity

than MTL, which implies a lower risk of model overfitting with smaller datasets. This pooled

classifier makes the strong assumption that all tasks have a high level of similarity, ignoring

particularities of individual cancer groups.

Multitask learning classifier. For this study, we extended the MTL formulation proposed

in Goncalves et al. [5] called Multi-task Sparse Structure Learning (MSSL) to deal with right-

censored data using the IPCW adaptation. The MSSL formulation has shown promising

results on classification problems from a variety of domains. Aside from learning task coeffi-

cients, MSSL also estimates the relationship among the tasks represented by an undirected
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graph, which can be further analyzed. The adapted IPCW-MSSL formulation is defined as

W ¼ arg min
W;Ω�0

XT

t¼1

1

nt

Xnt

i¼1

ot
iLðy

t
i ; x

t
i ;wtÞ þ l1trðWΩWTÞ � d logjΩj þ l2kΩk1; ð4Þ

where Lðyt;Xt;wtÞ is the cross-entropy loss function on the t-th task, and d is the problem

dimension. The matrix O is an inverse covariance (precision) matrix that captures the depen-

dence among tasks and is learned together with the task-specific parameters W. Finally, λ1� 0

and λ2� 0 are hyper-parameters that control the trade-off between the corresponding terms

and need to be specified by the user. A detailed discussion on the role of each term is provided

in Goncalves et al. [5]. For our experiments, we adapted the python code made publicly avail-

able by the authors.

Experimental setup

For each experiment, we randomly selected 70% of the available data for training and the

remaining 30% for testing. Each experiment was repeated 30 times with different random

train/test partitions to account for the variability of training and test splits. In every repetition,

the three methods received exactly the same training and test sets. The hyper-parameters of

the methods were selected by cross-validation. The hyper-parameters values resulting in the

smallest average performance metric (Brier score) over all tasks were selected.

To assess the performance of the methods, the Brier score [47] was used. In the MTL set-

ting, there are two complementary approaches for evaluating predictive performance: 1) ‘per-

sample basis’, where for each experiment repetition, test sets from all tasks are pooled together

and a score is computed; and 2) ‘per-task basis’, where the performance metric is computed

for each task individually, such that each task contributes equally regardless of sample size.

To determine whether the improvement in performance obtained by MTL was practically

significant, two measures of effect size were used: Cohen’s d [48] and common language effect
size (CLES) [49]. The notion of effect size is typically associated with randomized experiments

with both control and treatment group. In our context, the population of Brier scores from

randomly sampled test/train splits from the various algorithms constitute our control and

treatment groups. Results from STL and Pooled models will be considered control groups

while the MTL results will be the treatment group. Thus larger effect sizes are indicative of

more significant differences in model performance. Each Brier score in the control group

is paired with one of the treatment group by nature of the fact that they were trained on the

same test/train split. Let bci and bti be the Brier scores from the i-th test/train split in the control

group and the treatment group respectively. Let Di ¼ bci � bti be the difference of the ith Brier

scores. Then Cohen’s d for paired samples is the sample mean of Δi divided by the sample stan-

dard deviation of the Δi:

d ¼
�D i

SDðDiÞ
:

As an empirical measure of the signal-to-noise ratio, larger values are indicative of a larger

effect of the treatment (MTL). In contrast to Cohen’s d, CLES is a probabilistic measure of

effect size. Specifically, CLES is defined as the probability that two individuals randomly cho-

sen from each population will differ in a particular way. In our case, we would like to know if

the mean Brier score is significantly less in the treatment group than the control group. Thus

in our case CLES is the probability that a randomly chosen Brier score from the treatment

group is less than a randomly chosen Brier score from the control group. Because our samples
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are paired we simply compute the fraction of paired samples in which the treatment group’s

Brier score is lower than the control group’s:

CLES ¼
1

n

Xn

i¼1

1fbci>btig:

All measures of effect size can be found in Appendix B of S1 Appendix.

Results

The sample sizes for the different tasks vary widely, particularly for the most fine-grained task

definition (Topography group 1). In this case, the total number of samples per task is as low as

244 for other/unsp. parts of tongue cancer (ICD code C02), to higher than 9,729 for cervical
cancer (ICD code 53) (Table 1). Likewise, 5-year survival also varies significantly across tasks,

with rates as low as 42.2% for oropharyngeal cancer (ICD code 10) and as high as 72% for tonsil
cancer (ICD code C09).

We start by comparing MSSL, STL, and pooled classifiers on a per-sample basis for the

three tasks split definitions. Brier score is used as the performance metric: lower Brier score

indicates that the method has a better prediction performance. For each method we combined

the true and predicted values from all tasks, and computed a single Brier score by combining

all test observations, regardless of task assignment. The per-sample basis comparison was per-

formed for each task definition. As shown in Fig 1, the MSSL classifier consistently outper-

formed both STL and pooled classifiers, across all task definitions. Specifically, we grouped the

ICD-O-3 codes into two broader anatomical classes, listed in Table 2, and performed the same

type of comparisons above. The groups were designed in increasing level of specificity within a

hierarchy: Topography group 1 (first two digits of ICD-O-3 anatomical codes) with 10 tasks,

Topography group 2 with 6 tasks, and finally Topography group 3 with only 2 tasks. All models

show a decreasing trend in the Brier score as we go from Topography group 1 to Topography

Fig 1. Brier score (y-axis) performance by classifiers (pooled, STL, and MSSL). Results show the aggregated

performance from all tasks. Boxplots are composed of the mean Brier score over all 30 independent runs. MSSL shows

superior performance in all three tasks splitting approaches.

https://doi.org/10.1371/journal.pone.0241225.g001

PLOS ONE Improving cancer survival predictions via multitask learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0241225 November 16, 2020 11 / 25

https://doi.org/10.1371/journal.pone.0241225.g001
https://doi.org/10.1371/journal.pone.0241225


group 3. The best performance for all methods was obtained in the coarsest task split (Topogra-
phy group 3). This is intuitively pleasing because in the coarsest task split we have more data

per task, and all models benefit from this. Nevertheless, across all comparisons, the MSSL clas-

sifier outperformed both STL and pooled classifiers for the large majority of cases.

Figs 2, 3 and 4 present per-task performance for the three topography groups. A prevalent

pattern across all three topography groups can be observed (particularly for TP2 and TP3):

MSSL obtained the best performance (lowest Brier score), followed by STL and then the

pooled classifier. For other/unspecified parts of tongue, the pooled method presented better per-

formance than MSSL and STL. It indicates that information from other related cancers is help-

ful for predicting survival for patients diagnosed with other/unspecified parts of tongue cancer.

Further investigation is required to properly determine the reason for MSSL’s poor perfor-

mance in other/unspecified parts of tongue, in which a significant difference in Brier score was

observed. On the other hand, for oropharynx and vagina (Fig 2), pooled performed much

worse than its counterparts, indicating that these two groups do not share much with the other

cancer types.

When comparing the three different strategies for task definition based on topography

groups (Table 2) in Fig 1, we observe that the definition based on Topography group 3 shows

the best results (lowest Brier score) for all methods. However, even in the coarsest scenario,

MSSL produced better results than STL and pooled methods, indicating that intelligent infor-

mation sharing helps improve 5-year survival predictability at any level of cancer grouping.

Fig 2. Brier scores (x-axis) for pooled, STL, and MSSL classifiers for Topography group 1 data split. Boxplots show results from 30 independent runs.

https://doi.org/10.1371/journal.pone.0241225.g002
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Relative variable importance

Fig 5 shows the relative importance of the variables for STL, MSSL, and pooled models consid-

ering the task division by Topography group 1. The values showed are the average variable

relevance computed over 30 independent model runs. To conserve space, the figures for

Topography group 2 and Topography group 3 are provided in the Appendix A of S1 Appendix.

The relative importance of the i-th variable (ri) is computed as:

ri ¼
jwij � minðjwjÞ

maxðjwjÞ � minðjwjÞ
ð5Þ

where w is the array of coefficients estimated by the model for all variables, and |wi| denotes

the absolute value of the model coefficient associated with the i-th variable in the model. For

the variables encoded with the one-hot-encoding strategy, |wi| is calculated as the Euclidean

norm of the coefficient vector associated with their binary variables. Note that relative impor-

tance is 0 for variables not relevant for predicting 5-year survival, and is close to 1 for variables

which are highly predictive of the outcome. For MSSL and STL, this metric is computed inde-

pendently for each task, implying that ri = 1 in two different tasks does not imply identical

importance in each task. The value is relative to the task. Note that we have ignored the sign of

the variable while computing importance, as the large majority of the variables used in the

model are categorical and not ordinal.

Fig 3. Brier scores (x-axis) for pooled, STL, and MSSL, and pooled classifiers for Topography group 2 data split. Boxplots show results from 30 independent

runs.

https://doi.org/10.1371/journal.pone.0241225.g003
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Fig 5 shows the heat map of the relative variable importance for Topography group 1. We

observe that the age at the time of diagnosis (AGE_DX) is the most relevant variable for Pooled

and MSSL models, followed by DAJCCT, DAJCCN, and DAJCCM. These are stage-related vari-

ables that indicate the level of severity of the cancer, which clearly reflects in the 5-year survival

prediction. We also noticed that for MSSL, registry ID (REG) is relevant for some tasks, indi-

cating that there might be differences across the registries for those anatomical sites. For the

STL model, the variables’ importance is more dependent on the anatomical site, which can be

explained by the fact that STL approach fits one logistic regression model for each task sepa-

rately. Therefore, STL model is more susceptible to spurious correlations in the task’s dataset.

To conserve space, relative variable importance heat maps for Topography group 2 (S1 Fig)

and Topography group 3 (S2 Fig) are presented in Appendix A of S1 Appendix.

(a) STL relative coefficients (variable) importance.

(b) MSSL relative coefficients (variable) importance.

(c) Pooled relative coefficients (variable) importance.

Learned tasks relationship

Aside from estimating the regression coefficients (w), MSSL also learns the precision matrix

(O) that reveals tasks relationship. Precision matrix is the inverse of the covariance matrix,

which is estimated based on the regression coefficients as we can see from Eq 4. Therefore,

looking at either the precision or the covariance matrix inferred by MSSL can provide relevant

Fig 4. Brier scores (x-axis) for pooled, STL, and MSSL classifiers for Topography group 3 data split. Boxplots show results from 30 independent runs.

https://doi.org/10.1371/journal.pone.0241225.g004

PLOS ONE Improving cancer survival predictions via multitask learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0241225 November 16, 2020 14 / 25

https://doi.org/10.1371/journal.pone.0241225.g004
https://doi.org/10.1371/journal.pone.0241225


information about cancer commonalities, conditioned on the set of variables used in the

model. Figs 6 and 7 present the covariance matrices for Topography group 1 and Topography
group 2 task split. Lighter colors (yellow) are associated with higher tasks commonalities, while

darker (red) means weaker relationship between the pair of tasks.

Fig 5. Relative variable importance for STL, MSSL, and Pooled models for the Topography group 1 experiment. AGE_DX, DAJCCT, DAJCCN, and DAJCCM are

the most relevant variables in the Pooled and MSSL models. For the STL model, the importance of the variables is more dependent on the anatomical site, as each

model is trained separately.

https://doi.org/10.1371/journal.pone.0241225.g005
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For the Topography group 1, MSSL found four groups of related tasks with distinct sizes

and magnitudes: 1) tonsil and cervix uteri; 2) tonsil, cervix uteri, base of tongue, anus and anal
canal, and vulva; 3) vulva, penis, and palate; and 4) vagina and oropharynx. Firstly, we notice

that tonsil and cervix uteri forms a group (group 1) within a larger group of tasks (group 2).

Fig 6. Task relationship learned by MSSL for task split Topography group 1. Lighter values indicate stronger relationships. Four groups of cancer sites were found:

1) tonsil and cervix uteri; 2) tonsil, cervix uteri, base of tongue, anus and anal canal, and vulva; 3) vulva, penis, and palate; and 4) vagina and oropharynx. Groups are

highlighted in the plot.

https://doi.org/10.1371/journal.pone.0241225.g006
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Fig 7. Task relationship learned by MSSL for task Topography group 2. Lighter values indicate stronger

relationships. Genital male and genital female are strongly related. Nasopharynx and palate, tongue, oropharynx and
tonsils forms a mutually related group. Oropharynx and tonsils is related with the majority of tasks, except for anus and
anal canal. Groups are highlighted in the plot.

https://doi.org/10.1371/journal.pone.0241225.g007
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This structure encourages MSSL to share more information between the two tasks in group 1

and with a lesser extent with tasks in the larger group 2. We observe that vulva is associated

with two different groups of tasks (groups 2 and 3). Therefore, the part of the model associated

with vulva cancers will share information and also be influenced by data from the two groups

of cancers simultaneously. That is possible to be captured in MSSL due to the pairwise nature

of the precision matrix learned by the model.

The four groups in Fig 6 appear to be closely related to the 5-year survival rate. For group

1, the survival rate is the highest varying from 68.7 to 72.0%. Group 4 has the lowest survival

and varies between 41.9% and 42.4%, while groups 2 and 3 have 5-year survival varying from

62.6%-72.0% and 56.2%-63.5%, respectively. Since we are modeling the 5-year survival predic-

tion, it makes sense that the coefficients of the tasks with similar survival time (tasks in the

same group) are more similar.

In the case of Topography group 2, Fig 7, oropharynx and tonsils, tongue, and genital female
forms a group of mutually related tasks (group 1). A second group of tasks is formed with geni-
tal female, genital male, and palate (group 2). Similar to what is observed in Fig 6 with vulva,

genital female appears in two different groups simultaneously. Anus and anal canal that

appeared in the larger group 2 for Topography group 1 in Fig 6, now is less related to other

cancer groups. This indicates that task definition has a significant effect on how data is shared

within the MTL model.

As observed for Topography group 1, the two groups are closely related to the 5-year survival

rates. The rate for group 1 is the highest, varying from 62.5% to 66.8%, while group 2 has lower

survival varying from 56.0% to 58.2%.

Sample size vs MTL performance improvement

In this study, we have five cancer sites with relative few cases: other/unsp tongue (C02), palate
(C05), oropharynx (C10), vagina (C52) and penis (C60) which all have less then 1000 cases.

Five others have relative more cases: base of tongue (C01), tonsil (C09), anus & anal canal
(C21), vulva (C51), and cervix uteri (C53) which have between 2,733 and 9,729 cases, see

Table 1. For all cancer sites with relative many cases, the Brier scores are rather similar. While

for cancer diagnosis with few cases, MSSL performs clearly better, except for C02 where the

pooled model is best, and the STL is doing the worst (see Fig 2).

Fig 8 shows the relationship between the number of training samples in the tasks split by

Topography group 1 and the relative performance improvement (RPI) of MSSL over STL. The

performance improvement for task k (RPIk) is computed as the relative gain in performance of

MSSL over STL in terms of the Brier Score:

RPIk ¼
BSðSTLkÞ � BSðMTLkÞ

BSðSTLkÞ
ð6Þ

where BS(�) is the Brier score performance on the test set obtained by the method. We clearly

observe that small-sample-size tasks benefit the most from the MSSL model. And, as the sam-

ple size increase, the difference in performance between MSSL and STL reduces.

Discussion

In this paper we demonstrated that multitask classifiers achieved significant improvements in

predicting survival for the majority of scenarios investigated, when compared to baseline

approaches such as single task and pooled classifiers. To the best of our knowledge this is the

first demonstration that sharing information across anatomically distinct cancer types can lead

to improved predictive survival models.

PLOS ONE Improving cancer survival predictions via multitask learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0241225 November 16, 2020 18 / 25

https://doi.org/10.1371/journal.pone.0241225


The present study demonstrates the benefits of leveraging a multitask learning approach to

combine clinical data from disparate cancer types in order to improve prediction of cancer

patient survival. Previous work has applied MTL approaches to cancer data; however, for the

most part, they focused on very specific and homogeneous cancer types, with MTL being

deployed for related datasets of the same cancer type. The one exception is the study by [50]

in which transfer learning (a machine learning technique related to MTL) was applied across

breast and ovarian cancer DNA copy number datasets. While molecular data such as DNA

copy number and genetic markers carry relatively high predictive power (in comparison to the

type of clinical data used here), they are not ubiquitously deployed in clinical practice for a

number of reasons, such as cost or lack of studies demonstrating their translation to courses of

action. In contrast, clinical surveillance data, such as the one used in this study and made avail-

able by SEER, is ubiquitous in clinical practice. This means that from the machine learning

point of view, larger datasets are available; but more importantly, methods trained on this type

of data have greater likelihood of actually being deployed to clinical practice to provide deci-

sion support to physicians.

Survival and time-to-event data are susceptible to incomplete observations or censoring.

While predicting patient survival times based on patient features is of interest, it is important

Fig 8. Correlation between task training sample size and MSSL relative performance improvement over STL. Tasks split by

Topography group 1. MSSL shows higher improvement over STL particularly for tasks with smaller sample sizes.

https://doi.org/10.1371/journal.pone.0241225.g008
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to be able to adapt the learning algorithms to handle censored cases to avoid potential bias

[32]. We thus extended IPCW to be used in MTL.

For almost every cancer site selected in this study a common etiological factor linked to

infection with human papillomavirus has been reported [51]. Worldwide these virus related

cancer sites show an increasing trend, which has been linked to increased exposure to sexually

transmitted HPV in the population due to changes in sexual behaviour [52]. Furthermore,

some studies indicate a favorable survival pattern in HPV-positive tumors of anal [53], oro-

pharyngeal [54], vaginal [55], and penile cancers [56]. This suggests that these seemingly dispa-

rate cancer sites share commonalities which can be leveraged to improve the accuracy of

predictive algorithms. To evaluate our hypothesis, we compared the accuracy of a MTL classi-

fier against two baselines. The first baseline consisted of several classifiers (STL classifiers), one

for each cancer group. The second baseline consisted of a single classifier applied to the entire

cohort (pooled classifier), where the cancer group information used to define the MTL tasks

and the different STL classifiers was incorporated as an extra predictive feature. These two

baselines represent the approaches most commonly used in research and clinical practice, and

both make incorrect assumptions about the data.

In the first baseline (STL), different cancers types were treated individually as if they were

independent from each other. The accuracy of the predictions, however, depends heavily on

the size of the population, and the independence assumption becomes increasingly more con-

sequential with a decreasing number of patients. Generally, the small sample sizes can lead to

severe over-fitting, even for relatively simple models. The one-size-fits-all pooled baseline

makes the strong assumption that data from all cancers groups are identically distributed. In

other words, this approach completely ignores any differences between individual cancer

groups. These pooled models tend to approximate the mean distribution, which will be heavily

impacted by the categories with the most samples. MTL approaches make more nuanced

assumptions about the relationships between cancer types, allowing them to be treated as non-

identically distributed, but also not as entirely independent of one another. In this way certain

parameters’ sub-spaces can be shared across all or a subset of cancer groups, whereas others

are specific to individual cancer types.

Overall, MTL methods tend to outperform STL methods when there is latent information

shared across tasks. Task sample size also plays an important role in model performance. For tasks

with large sample sizes, the improvements of MTL over STL can be limited, whereas substantial

improvements can be seen for tasks with a smaller number of observations. This, of course, is all

dependent on the assumption that there is in fact similarities across the different tasks. If tasks are

truly independent, ideally the MTL approach will perform similarly to its STL counterpart.

When tasks are defined at Topography Group 2 and 3 (see Table 2), MTL improved predic-

tive performance over STL and pooled for the large majority of tasks, meaning that MTL was

able to exploit the commonality existing in the tasks (which we speculate is probably due to

HPV). While the MTL improvements were seen for all three anatomical cancer groups, signifi-

cant improvements were not seen in all individual tasks. In our view, these results provide an

optimistic perspective on our proposed approach of combining data from disparate cancer

types, but there remains many possible directions for improvement.

Analogously to the standard STL approach, the proposed MTL model estimates a set of

coefficients (one for each data attribute) for each task, that is, cancer site. The only and crucial

distinction is that, during training, the MTL model encourages coefficients of different but

related tasks to be similar. However, the model still permits attributes to have very different

coefficients for tasks that are not related. Recall that MSSL learns a matrix O to capture tasks

relationship from the data. For example, the importance of “Tumor size” or “Stage” for base of
tongue could be different to palate, if the data say so. The key point of MSSL is that even the
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model encouraging coefficients of tasks to be close to each other in the parameter space, it is

still flexible enough to accommodate any possibly unrelated tasks or particular attributes.

Thus, even if “Stage” does not have exactly the same meaning for one particular cancer type

compared to the others, including this feature into the MSSL model can still contribute to the

improvement of survival prediction.

Multitask learning methods tend to outperform single task learning approaches in the low

sample size regime. In such regimes, the implicit information transfer procedure in MSSL

diminish the impact of data scarcity, while in large sample sizes, STL models have already

enough data to construct an accurate model. In our experiment, we see that the MSSL and STL

models have similar performance with regard to Brier score when dealing with larger sample

sizes. For cancer sites with less than 1,000 cases, we see marked improvement when using the

MSSL methodology.

We attribute the better performance of both MTL and STL methods over pooled methods

to the heterogeneity of cancer cases when pooling all data into a single classifier. Even though

HPV is a common trigger of the cancer types considered in our cohort, the dissimilarities

among the cancer types also play an important role when determining the classifier to use.

Thus, the MTL model appears as a suitable candidate to find the correct balance between the

one-size-fits-all and completely independent models.

While our working example focuses on HPV-related cancers, there exist numerous other

examples in the literature of shared commonalities across distinct cancer types. In this work

we explicitly formulated the problem to deal with cancers that share a latent potential causal

factor. Many other such examples could similarly be formulated. For example, mutations in

the oncogenic signaling protein Ras are found in upwards of 30% of all human cancers [57].

Alternatively we may apply these methods to larger sets of data where we do not explicitly

filter the data on known latent causes, but instead extend the MTL framework to help discover

the latent connections between cancers automatically. Another possible extension is to use

observed survival times instead of binary survival outcomes.

One possible direction is to augment the patients’ information used as predictive features by

the machine learning model. Prescribed medications, type and length of treatments, medical

notes (unstructured text), medical test results, including images and physiological measure-

ments, are additional sources of relevant information for predicting patient survival. Dealing

with unstructured data, e.g., images and text, poses additional challenges, as computational rep-

resentations of such data need to be extracted. Fortunately, image and text data processing have

seen significant advancements in the last decade, particularly due to the development of deep

learning models [58]. Going forward, we will investigate how much these additional sources of

data can improve the performance of the machine learning models for survival prediction.

In conclusion, we have proposed a new approach for predicting 5-year cancer survival in

which data from anatomically distinct cancers can be combined via multitask learning to

improve overall prediction accuracy. While this work represents a proof-of-concept demon-

stration, and extrapolation to larger and broader cohorts remains to be demonstrated, there

are a number of potential research directions that could amplify the improvements in perfor-

mance obtained by MTL. If indeed this type of improvement can be shown to extrapolate

across different cohorts, and the improvements can be increased, it has the potential for real-

world impact in clinical research and practice.
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