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Collective transient ratchet 
transport induced by many 
elastically interacting particles
Cesar Manchein1*, Tulio M. de Oliveira2, Rafael M. da Silva2 & Marcus W. Beims2,3*

Several dynamical systems in nature can be maintained out-of-equilibrium, either through mutual 
interaction of particles or by external fields. The particle’s transport and the transient dynamics 
are landmarking of such systems. While single ratchet systems are genuine candidates to describe 
unbiased transport, we demonstrate here that coupled ratchets exhibit collective transient ratchet 
transport. Extensive numerical simulations for up to N = 1024 elastically interacting ratchets establish 
the generation of large transient ratchet currents (RCs). The lifetimes of the transient RCs increase 
with N and decrease with the coupling strength between the ratchets. We demonstrate one peculiar 
case having a coupling-induced transient RC through the asymmetric destruction of attractors. Results 
suggest that physical devices built with coupled ratchet systems should present large collective 
transient transport of particles, whose technological applications are undoubtedly appealing and 
feasible.

Besides some key developments related to fluctuations theorems1, nowadays the understanding of the funda-
mentals of nonequilibrium physics is still incomplete. It has been shown2,3 that out-of-equilibrium systems may 
remain in a thermodynamic state, which is the continuation of the equilibrium state under weak nonequilibrium 
constraints. Beyond some arbitrary threshold, the thermodynamic state becomes unstable and new states emerge 
by bifurcation with spatial or temporal inhomogeneities4. Consequently, such out-of-equilibrium systems can 
present anomalous (paradoxical) behaviors since the laws of equilibrium thermodynamics no longer possess 
validity: In special, we mention the anomalous transport phenomena observed in out-of-equilibrium systems in 
different problems. This scenario can be illustrated in a biological system, where the anomalous diffusion of the 
energy landscape in human chromosomes takes place5, in classical systems6–8, where Brownian particles moving 
in a system driven by thermal fluctuation and external forces that can exhibit anomalous transports, in collective 
motion and chaotic states9 or turbulent state10, in active particles11, in living cells12,13, in cold atoms14–16 and in 
quantum systems17–22, to mention a few.

Unveiling the main properties which produce the transport phenomena is a central issue in numerous prob-
lems in physics, and it is, undoubtedly, a challenge in spatially extended systems away from equilibrium. In 
coupled many-body quasi-integrable systems, the phase-space diffusion time is much longer than the Lyapunov 
time of the underlying chaotic dynamics. Consequently, relaxation processes leading to thermal equilibrium 
through mutual interaction between the bodies involve slow dynamics and a long transient motion may appear 
for intermediate times. Actually, for finite systems with N degrees of freedom, the time to reach the equilibrium 
state may increase without bounds as N increases and, subsequently, the time of the transient dynamics can be 
prolonged proportionally. In realistic situations and some numerical simulations, for larger values of N such 
enormous times can never be reached, and considering long transients become essential to describe the transport 
properties of the physical system.

Of particular interest in this context is the transient property of the net transport of many interaction particles 
due to the ratchet effect and the collective behavior. Ratchet transport is a directional transport of many particles 
in spatially periodic media, which results in the rectification of an external net-zero force applied to the system. 
After the theoretical contributions of Gabriel Lippmann, Marian Smoluchowski, and Richard Feynman23, the idea 
of a ratchet device was first adapted to biological circumstances and applied to study the transport of proteins 
within cells using molecular motors24–26. Connected to this, due to the influence of the thermal fluctuations on 
the movement of macromolecules, the dynamics described by a protein can be considered equal to the dynamics 
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of an overdamped Brownian particle, in which the inertial term is neglected, and the forces generate speeds 
instead of accelerations27. With the advances of the research in this field, another phenomenology takes place 
in which thermal fluctuations became unnecessary to generate directional transport. Therefore, it is possible to 
obtain deterministic ratchet systems with the following indispensable requirements: the existence of an inertial 
term, dissipation, and a periodic potential capable of break the spatial symmetry of the system28,29. With the 
inertial term, the number of first-order differential equations necessary to describe the system increases, and it 
is possible to find a chaotic dynamic for the particle29.

While the literature regarding the transport of single ratchet particles systems is huge27,30–39, to mention a 
few, not much has been done concerning the transport in coupled ratchet systems where the collective dynam-
ics arise. We acknowledge the case of an elastically coupled lattice of particles in a periodically flashing ratchet 
potential40,41, where the transport efficiency improves when the coupling strength overcomes a threshold. The 
case of optimal transport of two elastically interacting particles was analyzed recently in the parameter space42, 
and also shown that hydrodynamic interactions between Brownian particles influences the performance of a 
fluctuating ratchet43. Completely absent, as far we know, are studies related to transient ratchet transport proper-
ties due to the mutual interaction of many particles.

In the present work, we describe the transient Ratchet Currents (RCs) of N = 64, 128, 256, 512 , and 1024 
elastically interacting particles, each subjected to a ratchet system. Using extensive numerical simulations, we 
show that the transient lifetime ( τ ) of the RC increases with N as a power-law. As expected, for a fixed N, the 
transient RC disappears for asymptotic times. However, in the limit N → ∞ , the RC’s transient time follows 
τ → ∞ , and the asymptotic current converges to the current from the uncoupled case. The observed transient 
RCs are a consequence of each particle’s current separately, which for asymptotic times disappear due to the 
coupling which induces the hyperchaotic dynamics. We also demonstrate one case having a coupling-induced 
transient RC through the asymmetric destruction of attractors. From the statistical point of view, as confirmed 
by the Lyapunov spectrum, the multiple attractors on the microscopic level generate the macroscopic transient 
RC. Furthermore, for larger couplings ( β ) between the ratchets, the transient RCs diminish, also as a power-law.

Results
The uncoupled case.  For later reference, Fig.  1 displays the RC (see color bar) in the parameter space 
( K , γ ) for the uncoupled case β = 0 from Eq.  (1). Black colors refer to close to zero RCs, green to white to 
increasing positive RCs, and red, yellow to orange to increasing negative RCs. It has been shown previously44 
that optimal and efficient RCs occur when parameters are chosen inside Isoperiodic Stable Structures (ISSs), 
which are the green, red and yellow structures in Fig. 1 having well-defined borders. In such cases, the particle 
dynamics is periodic and Lyapunov stable. The black background in Fig. 1, related to nearly zero RCs, belongs to 
those parameter’s combination for which the underline dynamics is chaotic. For more details, we refer the read-
ers to original work regarding RCs in parameter space44. The symbols • , � , � and � in Fig. 1 are related to pairs 
of parameters chosen in different regimes, with the respective values (K , γ ) = (2.3, 0.94) , (6.1,  0.80), (10,  0.65), 
and (10,  0.55). These are the parameter pairs for which the coupling between the ratchets is explored in the pre-
sent work. At point � we have a stable period-1 dynamics and the RC is J = 4π ∼ 12.564 . The pair indicated by 
� is at the borderline between chaotic motion with J ∼ 0 and the stable period-1 motion with J = 6π ∼ 18.723 . 
At � we have a stable period-2 dynamics with J = −4π ∼ −12.546 . Finally, the point • belongs to a chaotic 
region with J ∼ −1.521 , for which the underline dynamics contains special properties that lead to the tem-
perature enhanced RC, as demonstrated almost a decade ago45. Thus, the above points are representative of a 
diversity of dynamics observed in the uncoupled case.

Coupled ratchet currents.  Figure 2 displays the curves for the RC J as a function of the iteration time 
n and for different values of N, the number of coupled maps. The coupling strength increases from the left to 
the right columns, namely β = 10−6, 10−4 , and 10−2 , respectively. Figures on the same line correspond to the 
dynamics of the specific parameters from Fig. 1, denoted by � (Fig. 2a–c), � (Fig. 2d–f), � (Fig. 2g–i), and • 
(Fig. 2j–l) (see Figure caption). The black curves in Fig. 2 are the RCs from the uncoupled case, whose asymp-

Figure 1.   Ratchet current J in the parameter space of the uncoupled case ( β = 0 ) for the coupled ratchets 
model (1). The parameters are in the intervals γ ∈ [0.0, 0.95] and K ∈ [0.0, 15.0] and the iteration time is 106 
for 128 initial conditions.
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Figure 2.   Curves for the RC J as function of iteration time n and for a distinct number N of coupled systems. 
The pair of parameters are K = 10.0, γ = 0.55 for (a–c), K = 6.1, γ = 0.80 for (d–f), K = 10.0, γ = 0.65 for 
(g–i), and K = 2.3, γ = 0.94 for (j–l). The black continuous curves are the J for the corresponding parameters 
in the uncoupled cases, for 1024 initial condition. The arrow in (a) exemplifies how the lifetime τ is determined 
numerically.
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totic values are plotted in Fig. 1 for the specific points mentioned above. When the coupling is turned on, RCs 
are generated in all cases with β ≤ 10−4 as a consequence of the existence of a collective behavior. These RCs are 
transient since they disappear for n → ∞.

Figure 2a–c display the RC for the period-1 dynamics found at the � point from Fig. 1. The curves obtained 
by using N = 64 k (for k = 1, 2, 4, 8, 16 ) coupled maps are distinguished by different colors (see labels). Note that 
in Fig. 2a, for β = 10−6 , all curves start with the RC close to zero until they reach a maximum J ∼ 4π around 
times n ∼ 105 . These maxima are very close to the asymptotic limit of the uncoupled case. Furthermore, they are 
transient and for larger times converge to zero. For increasing values on N, the times to converge to zero increase. 
Essentially, the same behavior is observed in Fig. 2b for β = 10−4 , but the transient maxima occur for smaller 
times, namely n ∼ 104 . For larger couplings ( β = 10−2 ), we see in Fig. 2c that the above transient property of 
the RC disappears and remains around zero for all times.

Figure 2d–f display the RC for the period-2 dynamics found at the � point from Fig. 1 for the same values 
of β used in Fig. 2a–c. After an initial short time interval presenting J ∼ 0 , the RCs in Fig. 2d reach a transient 
minimum close to J ∼ −4π at times n ∼ 105 . These minima are again close to the asymptotic limit of the 
uncoupled case. After this time, the RCs reach a transient maximum close to J ∼ 1 and finally converge to zero. 
As seen above, for increasing values on N, the times to converge to zero increase. For coupling β = 10−4 the 
transient minima at J ∼ −2 are smeared out and converge to zero after that (see Fig. 2e). Increasing the coupling 
to β = 10−2 the relevant transient RCs disappeared. Basically, the same behavior is observed in Fig. 2g–i for 
the parameters relative to the � in Fig. 1. Here the transient maxima come close to J ∼ 6π for β = 10−6 and for 
times n ∼ 106 . However, for increasing couplings, the times for the transient maxima decrease.

Finally, we present the point • from Fig. 1. The corresponding RCs are observed in Fig. 2j–l. The main dif-
ference from the other cases is that the RC from the uncoupled case is close to zero, and we do not expect any 
larger transient RC for intermediate times. However, as seen in Fig. 2j, k, relevant RCs −14 � J � −8 occur for 
times 106 � n � 108 , depending on N. As N increases, the transient minima decrease, approaching significant 
negative values of the RCs. Thus, a coupling-induced transient RC is generated. For larger values of the coupling, 
these effects tend to vanish, as seen in Fig. 2l.

In order to unveil the reasons responsible for the activation of the transient RCs, we plot in Fig. 3a, using 
β = 10−4 and N = 64 , the quantity pi × n for the parametric combination indicated by • in Fig. 1. Initial condi-
tions are equally distributed between −2π and 2π for the pairs ( xi , pi ). The RC J as function of time n is plotted 
in pink color. For times n � 103 , pi remains symmetrically distributed around zero, leading to J ≈ 0 . For times 
103 � n � 106 , pi values diffuse asymmetrically having a larger density of points for pi < 0 , inducing J < 0 . 
After that, all maps have pi ≈ 0 . In Fig. 3b, we plot the basin of attraction indicating in colors the RC for each 

Figure 3.   (a) and (c) We plot pi × n for the parametric combinations indicated by • and � in Fig. 1, 
respectively. (d) Displays pi × β with ntrans = 2× 106 and n = 106 for the point • . The pink curves plotted in 
these diagrams represent the respective RC. (b) It is plotted the basin of attraction for only one ratchet map, for 
K = 2.3 , γ = 0.94 , and n = 105.
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of the 103 × 103 initial conditions (x0, p0) considering only one ratchet map. Note that, in this case, the attractor 
around p = 2π is smaller than the attractor around p = −2π , which induces negative RCs for the uncoupled 
case and the negative transient RCs for the coupled case. These attractors exist also for p values multiple of 2π . 
For the coupled case, the ICs may approach these attractors, but only after 103 iterations the asymmetry becomes 
relevant, leading to the transient negative J, as seen in Fig. 3a. In Fig. 3c we consider the same quantity but for 
the parametric combination indicated by � in Fig. 1. Interesting to observe in this case is that, already for the 
first iterations, the pi values assume large values which exceed the range of initial conditions of −2π to 2π . In 
other words, the coupling between the ratchets allows particles to visit temporarily attractors with higher values 
of p. The asymmetry of the attractors becomes relevant for n � 104 , leading to the transient J ≈ 6π , which for 
n � 108 tend to vanish. Figure 3d displays the values of pi as a function of β for K = 2.3 and γ = 0.94 . We see 
that for 10−7 � β � 10−5 many transient attractors are reached through diffusion in phase space generating a 
strong negative RC. Therefore, we obtain a coupling-induced transient RC.

Ratchet current’s lifetime.  The properties of the collective transient RCs from Fig. 2 can be analyzed 
for different values of N and β . Let τ be the RC’s lifetime, defined as the time for which |J| remains equal or 
greater than 80% of the maximal absolute value of RC found along the iteration time for a specific value of N 
(In fact, for small couplings, the decay exponents for the lifetime, presented next, are similar using thresholds 
between ∼ 30% and ∼ 90% ). See the arrow in Fig. 2a for one example. Figure 4a,b show the log–log plot of τ 
as a function of N for β = 10−6 and β = 10−4 , respectively. Parameter pairs ( K , γ ) are the same as before. The 
increasing of the current’s lifetime for all cases obeys the power-law τ(N) ≈ α Nχ with the same exponents for 
a fixed β , namely χ = 1.96178(±0.03888) in Fig. 4a and χ = 1.51159(±0.1006) in Fig. 4b. Figure 4c displays 
the log–log plot of τ as a function of β for N = 128 and distinct values of ( K , γ ), according the symbols from 
Fig. 1. The black line is the power-law regression fit of the brown averaged curve which decays with exponent 
µ = 1.02609± 0.00068.

For real applications, the collective RC transient effect is essential. For some tiny coupling strengths and a huge 
number of particles, finite RC’s lifetimes τ could be too large to be observed in experiments, and the transient 
features turn out to be interpreted as the asymptotic behavior. The values of τ change depending on the underline 
dynamics. To give a more general view of this, Fig. 5 displays the RC’s lifetime τ (see color bar) for β = 10−4 and 
N = 128 for the same parametric interval from Fig. 1. We see a rich alternation of colors and, when compared to 
Fig. 1, allows us to make the following statement: the general behavior is that most of the large values of τ (orange 
and yellow regions) occur for parameters relative to a periodic and Lyapunov stable motion. Some exceptions 
occur around to the largest green ISS from Fig. 1.

Figure 4.   RC’s lifetime τ as a function of N for (a) β = 10−6 and (b) β = 10−4 . The black lines are power-law 
functions τ(N) ≈ αNχ that adjust the brown curves obtained through the average computed over all studied 
cases (excluding the case of (K , γ ) = (6.1, 0.80) in (b) ). (c) The RC’s lifetime is plotted as a function of β for 
N = 128 . The black line decays with τ(β) ≈ νβ−µ , function which adjusts the brown average curve.

Figure 5.   RC’s lifetime τ in colors according to the color bar (in logarithm scale) in the parameter space for 
β = 10−4 and N = 128 elastically interacting particles in system (Eq. 1).
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Lyapunov spectrum.  Figure  6 shows the spectrum of finite-time Lyapunov exponents (FTLEs) �i for 
β = 10−4 , N = 64 , and three distinct times: for short times (magenta) for which the RC is close to zero, for 
intermediate times (green) with the large transient RC, and for considerable times (dark blue) for which the RC 
disappears. The red dashed-dotted lines indicated the corresponding FTLE from the uncoupled case. For short 
times, the spectrum is separated between positive and negative FTLEs. For intermediate times, for which the 
large transient RC are observed, most FTLEs are symmetrically located around the FTLE from the uncoupled 
case. Some larger positive/negative FTLEs are seen for sites closer to i = 1 and i = 128 . The number of such 
larger positive/negative LEs varies for the distinct parametric combinations. Finally, for considerable times for 
which the RC disappears, we observe distinct behaviors. For the period-1 case related to the point � in Fig. 1, 
none site i assumes the value of the FTLE from the uncoupled case and they are strongly separated, as shown 
in Fig. 6a by the dark blue triangles. Cases with period-1 and period-2 related respectively to the points � and 
� in Fig. 1, have a similar FTLE spectrum. FTLEs between i = 32 and i = 96 are very close to the FTLE from 
the uncoupled case. For other values of i, the FTLEs get apart. In the case of Fig. 6d, all FTLEs are negative and 
equal to the FTLE from the uncoupled case. This is the only case that is not chaotic after coupling the maps. 
Furthermore, in all cases the magnitude of the largest negative FTLEs is greater than the magnitude of the largest 
positive LEs.

Discussion
Results from Fig. 2a–k demonstrate that collective transient RCs are observed for N = 64, 128, 256, 512 , and 
1024 elastically interacting particles. We also demonstrate one case having a coupling-induced collective tran-
sient RC through the asymmetric destruction of attractors in Fig. 2j,k. Except for these cases (Fig. 2j,k), the 
transient RCs approach the RCs from the uncoupled case, plotted by the black curves. In all cases, the transient 
times and the magnitude of the collective transient RCs increase as N increases. For larger couplings strengths, 
all RCs tend to zero. The large collective transient RCs observed for small couplings are generated when the pi ’s 
values access, for finite times, identical copies of the attractors from the uncoupled case which can be found out 
of the range [−2π , 2π ] . However, due to the coupling, these attractors become transient. For example, Fig. 6a 
demonstrates that for times for which the large transient RCs occur, almost all FTLEs are close to the FTLE from 
the uncoupled case. The same is observed for all other cases. For the parametric combination indicated by • in 

Figure 6.   The spectrum of FTLEs for N = 64 and β = 10−4 by using the same parametric combinations from 
Figs. 2 and 4 and different values for the iteration time n. The symbols used correspond to the symbols from 
Fig. 1. The red dashed-dotted lines indicate the value of the FTLE � obtained for the uncoupled map.
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Fig. 1, in distinction to all other cases, increasing the coupling strength from β = 10−6 → 10−4 the generated 
RCs increase in magnitude, as seen by comparing Fig. 2j,k.

The increasing of the collective RC’s transient times, or RC’s lifetime, obeys a power-law ∝ Nχ , as shown in 
Fig. 4a (for β = 10−6 ) and 4b (for β = 10−4 ). The exponents found are χ = 1.96 and χ = 1.51 , respectively. Thus, 
we expect to observe τ → ∞ as N → ∞ , and that this limit is reached faster for smaller couplings. Interesting 
to mention is that increasing N, the magnitude of the time of the collective transient RCs increases. However, the 
magnitude of the collective transient RCs is more or less affected by β , depending on the underline dynamics. For 
example, compare Fig. 2b,e. The same coupling strength β = 10−4 has a stronger effect on the magnitude of the 
collective transient RC from Fig. 2e. This is explained using the corresponding FTLE spectrum from Fig. 6a,c. 
The latter has many positive FTLEs in the transient regime (see the dark-green points) and the LE from the 
uncoupled case is lesser negative. Thus, the case from Fig. 2e tends to be more unstable, and consequently, the 
magnitude of the RC is more affected by the coupling when compared to Fig. 2b. This completely agrees with the 
demonstration that the RC for this parametric combination is easily affected by external noise when compared 
to the other parameters considered here45. Furthermore, this is also the only case for which a collective transient 
RC’s reversal is observed, from J ∼ −4π → 2 for times 106 → 108 . Last but not least, the lifetime decreases with 
a power-law as a function of β , as seen in Fig. 4c.

Above results explain what has been widely observed in coupled maps systems, that a “long array of coupled 
systems may be thought of as a concatenation of small-size sub-systems that evolve almost independently from each 
other”46,47. However, the implication of such amazing property has never been analysed in the context of collec-
tive transient ratchet transport, as done here. The microscopic access to multiple attractors directly affects the 
macroscopic variable, the RC. The uncoupled case behaves like the thermodynamic limit, at least from the RC 
point of view. Comparing the exponents χ and µ obtained in Fig. 4 with the results above, we can say that the 
RC reaches faster the values of the uncoupled case when N increases than when β decreases.

The physical implications of the efficient collective transient ratchet transport for technological applications 
is noticeable. We mention classical and quantum possibilities for which the collective transport could be of 
major relevance, like organic electronic ratchets48, separating leukocytes from whole blood using the microflu-
idic ratchet mechanism49, tunneling in two-dimensional semiconductors50, mesoscopic electronic transport51 
and polystyrene microspheres immersed in water52, to mention a few. Furthermore, the diffusive-like coupling 
considered here is widespread and can be implemented in some realistic applications, for example, in the coher-
ent transfer in nanoelectromechanical networks53, in experiments with coupled electrochemical reactions54, in 
biomolecular motors as in muscles composed of linear structures, which consist of many parts55 and in proteins 
of the kinesin superfamily, where the kinesin direction of motion of the two-headed molecules along microtu-
bules could be reversed by adjusting the architecture of a small domain of the protein named the neck region56,57.

Methods
The time evolution of the relevant physical quantities is obtained by considering N elastically coupled Ratchet 
Maps (RMs)44,58 in the form 

where the first neighbor coupling between the ratchets follows59,60

with K being the nonlinearity parameter and β the effective coupling strength between the ratchets. Usually, we 
write β = ǫ/N , where ǫ is the coupling strength between the ratchets and the limit of infinite size is obtained 
using N → ∞ , which implies that β → 0 . The variables pi is the conjugate momentum of xi with i = 1, . . .N . 
The one step discrete time evolution of these variables is represented by the prime. In the present work, we used 
the parameters a = 0.5 and φ = π/244,61, and change β and N. The above model describes the dynamics of N 
coupled particles moving in an asymmetric potential along the xi direction with xi ∈ (−∞,+∞) , while γi ∈ [0, 1] 
represents the dissipation of particle i. With the recent technological advances, ratchet systems following the 
above model can be implemented48–52.

The Ratchet Current (RC) J is defined as the double average of the momentum pi , namely

where n is the total iteration time and N the number of RMs. Each one of the N maps assumes a dif-
ferent initial condition (IC), and the set of ICs is chosen to be equally distributed inside the intervals 
(x min

i , x max
i ) = (pmin

i , pmax
i ) = (−2π , 2π) , so that no preferred direction for the entire coupled system is 

given in the beginning. The effect of the variation of the asymmetry parameter a on the RC was studied recently 
for a single ratchet62. While for a = 0 the RC vanishes, changes of a → −a lead to a current reversal, creating 
the possibility of properly choosing the direction of the RC.

The FTLE spectrum is obtained numerically using the Gram-Schmidt reortonormalization procedure63,64. The 
ICs are equally distributed in the interval (x min

i , x max
i ) = (pmin

i , pmax
i ) = (−2π , 2π) , with each RM assuming 

a different IC. The values for the iteration time n used in each simulation are displayed in the panels of Fig. 6.

(1)RM :=

{

p′i = γ pi + K[sin(xi)+ a sin(2xi + φ)] + Fcoup(xi−1, xi , xi+1),
x′i = xi + p′i ,

(2)Fcoup = β(xi+1 − 2xi + xi−1),

(3)J =
1

N

N
�

i=1


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n
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