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The process of advanced glycation leads to the generation and accumulation of an

heterogeneous class of molecules called advanced glycation endproducts, or AGEs.

AGEs are produced to accelerated degrees in disorders such as diabetes, renal failure,

inflammation, neurodegeneration, and in aging. Further, AGEs are present in foods and

in tobacco products. Hence, through both endogenous production and exogenous

consumption, AGEs perturb vascular homeostasis by a number of means; in the first

case, AGEs can cause cross-linking of long-lived molecules in the basement membranes

such as collagens, thereby leading to “vascular stiffening” and processes that lead to

hyperpermeability and loss of structural integrity. Second, AGEs interaction with their

major cell surface signal transduction receptor for AGE or RAGE sets off a cascade

of events leading to modulation of gene expression and loss of vascular and tissue

homeostasis, processes that contribute to cardiovascular disease. In addition, it has been

shown that an enzyme, which plays key roles in the detoxification of pre-AGE species,

glyoxalase 1 (GLO1), is reduced in aged and diabetic tissues. In the diabetic kidney

devoid of Ager (gene encoding RAGE), higher levels ofGlo1mRNA andGLO1 protein and

activity were observed, suggesting that in conditions of high AGE accumulation, natural

defenses may be mitigated, at least in part through RAGE. AGEs are a marker of arterial

aging and may be detected by both biochemical means, as well as measurement of “skin

autofluorescence.” In this review, we will detail the pathobiology of the AGE-RAGE axis

and the consequences of its activation in the vasculature and conclude with potential

avenues for therapeutic interruption of the AGE-RAGE ligand-RAGE pathways as means

to forestall the deleterious consequences of AGE accumulation and signaling via RAGE.
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INTRODUCTION

Our population is aging and living longer. Although the average life expectancy of the population
is increasing in the United States, there remain significant consequences of the aging process. An
average 1 death every 40 s is due to cardiovascular disease (Mozaffarian et al., 2016). The prevalence
of heart failure is highest among the adult population 65 years or older (Lakatta and Levy, 2003). As
one in four, or 25% of individuals, will be over 65 years of age in the United States by the year 2035,
these statistics underscore the fact that significant increases in heart failure are to be expected over
this time frame (Lakatta and Sollott, 2002). Clinical and experimental evidence suggests that natural
aging imbues inherent risk for the development of cardiovascular complications, such as arterial
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stiffness, atherosclerosis, and hypertension, which eventually
may lead to myocardial infarction, stroke, and heart failure (Safar
et al., 2003; Izzo, 2004; Sethi et al., 2014). Hence, understanding
the underlying mechanisms may aid in the discovery of new
therapeutic approaches to deter pathological vascular aging.

Changes in the components of large arteries due to advancing
age have been described in humans and animals (Spinetti et al.,
2004; Pepe and Lakatta, 2005). Age-associated blood vessel
remodeling includes such features as dilation of the lumina,
intimal and medial thickening, changes in the extracellular
matrix (ECM), and augmented stiffness (Gaballa et al., 1998).
In addition to these structural changes, other mechanisms
contribute to the overall consequences of aging to the arterial
wall, including such phenomena as inflammation, endothelial
dysfunction, and oxidative stress (Xu et al., 2003). Fibroblasts
and smooth muscle cells (SMC) contribute to aging in the
vasculature, in part by increasing ECM; macrophages contribute
by increasing inflammatory factors that have a wide range of
possible consequences, such as vascular hyperpermeability and
an increase in the procoagulant state (Sprague and Khalil, 2009;
Strait and Lakatta, 2012). These pathobiological events adversely
affect the vessel wall and all of its components (Najjar et al., 2005;
Greenwald, 2007), potentially contributing to arterial aging.

It has been shown that the aged human arterial wall exhibits a
more proinflammatory signature, with increased expression and
activity of matrix metalloproteinases (MMPs) and chemokines
(Wang et al., 2007). Atop these considerations is the effect of
co-morbid conditions in aging, which may augment production
of inflammatory mediators and exacerbate the impact of arterial
aging, examples of which include diabetes mellitus (types 1 or 2
or the rarer forms of diabetes); chronic renal disease; and chronic
immune/inflammatory disorders.

AGEs: PRODUCTION AND FUNCTIONS IN
ARTERIAL AGING

Advanced glycation endproducts (AGEs) are a diverse group
of macromolecules and at least 20 different specific AGEs have
been described to date. Among the major groups of AGEs
are carboxymethyl lysine (CML), carboxyethyl lysine (CEL),
pentosidine, glucosepane, methylglyoxal lysine dimer, glyoxal
lysine dimer, and glycolic acid lysine amide (Henning and
Glomb, 2016). AGEs form throughout life via the process of
non-enzymatic glycation of proteins and lipids, and this process
is accelerated during hyperglycemia, oxidative stress, aging,

Abbreviations: AGEs, advanced glycation endproducts; ALT7-11, Alagebrium;
AR, aldose reductase; ARI, aldose reductase inhibitors; CML, carboxymethyl
lysine; CEL, carboxyethyl lysine; ctRAGE, cytoplasmic domain of RAGE;
DIAPH1, diaphanous-1; ELISA, enzyme-linked immunosorbent assay; esRAGE,
endogenous secretory RAGE; ECM, extracellular matrix; FH1, formin homology
1; Glo1, Glyoxalase 1; HMGB1, high mobility group Box-1; HPLC, high
performance liquid chromatography; LC-MS, liquid chromatography tandem
mass spectrometry; MG, methylglyoxal; ROS, reactive oxygen species; VCAM-
1, vascular cell adhesion molecule−1; VEGF, vascular endothelial growth factor;
RAGE, receptor for advanced glycation end products; SAF, Skin autofluorescence;
SMC, smooth muscle cells; sRAGE, soluble RAGE; SRFs, serum response factors;
Tg, transgenic.

advanced renal disease, and inflammation (Daffu et al., 2013;
Singh et al., 2014; Baig et al., 2017). Humans and animals are
also exposed to exogenous sources of AGEs ingested through
food-derived AGEs and tobacco products (Luevano-Contreras
and Chapman-Novakofski, 2010; Uribarri et al., 2015). It has
been shown that restriction in dietary AGE intake may increase
the lifespan in animals (Cai et al., 2002; Luevano-Contreras and
Chapman-Novakofski, 2010).

AGEs accumulate in aging tissues and on vulnerable plasma
proteins. Higher levels of circulating AGEs have been linked
to chronic diseases in aging subjects (Semba et al., 2015).
The accumulation of AGEs is increased and accelerated in
hypertensive subjects (McNulty et al., 2007) and is also associated
with diabetes (Soulis et al., 1997; Yan et al., 2003). In fact,
aged subjects, even though healthy, may have higher AGE
accumulation compared to younger subjects with diabetes and
its complications, thus underscoring that AGE production and
accumulation accompanies the normal aging process (Hadi and
Suwaidi, 2007). Therefore, multiple factors such as the rate of
accumulation of AGE ligand, the absolute concentration of the
ligand, and individual susceptibility to AGE formation may be
important in determining an individual’s AGE burden.

AGEs modify collagen and elastin in the vascular wall
(Meerwaldt et al., 2004); because of reduced turnover of such
proteins, they become more susceptible to glycation during
the aging process (Schleicher et al., 1997; Sell and Monnier,
2012). Elevated levels of plasma CML-AGEs are associated
with diastolic dysfunction in aging (Campbell et al., 2012). In
experiments in diabetic rats, higher AGE crosslinking of collagen
was associated with increased stiffness of the aorta (Reddy, 2004).
This may change the beneficial functions of several important
molecules of the ECM, which can mediate vascular dysfunction.
Numerous studies have confirmed the correlation between AGE
accumulation and increased artery stiffness (Goldin et al., 2006;
Campbell et al., 2011). Arterial stiffness is associated with greater
risk for aging-associated cardio- and cerebrovascular diseases
and mortality (Laurent et al., 2001; Mattace-Raso et al., 2006;
Kaess et al., 2012). AGE accumulation causes upregulation of
inflammation and destruction of collagen and elastin, along with
other proteins of the ECM (Sims et al., 1996; Greenwald, 2007;
Peppa and Raptis, 2008; Baulmann et al., 2010).

MEASURING AGES

AGEs can affect virtually every tissue in the body, either through
mediation of cellular damage via protein cross-linking and/or
through their binding to cell surface receptors. Since various
diseases have been linked to AGEs, it is plausible that AGEs can
be utilized as biomarkers, such as for predilection to disease, state
of disease activity, and/or response to therapeutic interventions.

Measurment of skin autofluorescence (SAF) estimates the
skin tissue AGE content and may predict cardiovascular
complications, at least in certain subjects (Lutgers et al., 2009;
Noordzij et al., 2012; Tanaka et al., 2012). Some AGEs are
fluorescent and can be non-invasively measured in skin by
autofluorescence, as a representative marker of the total AGE
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modifications of other long-lived tissues in association with
vascular disease. In a recent study, SAF was measured using
an autofluorescent spectrometer followed by measurement of
endothelial function and arterial stiffness. The results indicated
that SAF was associated with increased arterial stiffness in
the older individuals and that arterial function was blunted
by the advancing age of the subject (Sturmer et al., 2015). It
is important to note, however, that there are limitations to
the use of SAF; first, it only measures fluorescence and not
all AGEs are fluorescent; second, skin fluorophores exist that
are not related to AGEs, and therefore, such measurement is
not reflective of the AGE pool; third, in subjects with darker
skin pigmentation, SAF measurements have been found to be
less reliable, thereby possibly reducing the applicability of this
technique across diverse groups of subjects; and fourth, certain
skin creams, such as agents used to “tan” or “brown” the skin
may cause direct interference with SAF measurements. Hence,
although the technique does not require biopsies or invasive
approaches, there are notable limitations that must be considered
in its use (Da Moura Semedo et al., 2017).

Traditionally, the precise detection of AGE measurement
includes HPLC (High-Performance liquid chromatography)
(Ashraf et al., 2015) with fluorescence-based detection. Using
HPLC methods, high levels of serum AGE, such as CML-AGE
and pentosidine were shown to increase with age and in patients
with diabetes (Aso et al., 2000). The use of ELISA (Enzyme-
linked immunosorbent assay), an immunological technique for
the determination of AGEs, proved to be an alternative for
detection of AGEs in samples such as serum and plasma (Munch
et al., 1997; Takeuchi et al., 1999). Tissue AGE concentrations
using immunohistochemical methods can also be measured
using antibodies to detect CML-AGE (Soulis et al., 1997). Using
these methods, AGE have been identified in arterial disease
and have been localized to early atherosclerotic plaques and
cellular constituents, including macrophages and SMCs (Stitt
et al., 1997). LC-MS (liquid chromatography- mass spectroscopy)
is another technique for the detection of AGEs and the early
glycation products. LC-MS allows for AGEs such as pyrraline to
be detected in human skin and plasma in very low concentrations
(picomolar range) (Pitt, 2009). The possibility of using AGE
measurements to gauge the state of AGE-related disease activity
and the effectiveness of therapeutic intervention underscores
the importance of using reliable methods for the detection
of AGEs.

AGES AND THEIR PATHOBIOLOGICAL
ACTIONS: INTERACTIONS WITH
CELLULAR RECEPTOR RAGE

RAGE (Receptor for Advanced glycation end products) was
identified in 1992 from bovine lung as a protein that bound AGEs
in a dose-dependent manner (Wautier et al., 1994). RAGE has
many ligands that increase in aging, even beyond AGEs, and
it is a cell surface macromolecule. RAGE contains extracellular
domains composed of one V (variable)-type domain and two C
(constant)-type immunoglobulin—like domains (C1 And C2);

these are followed by a single transmembrane spanning helix
(Koch et al., 2010), and the cytoplasmic domain, which is
essential for signal transduction (Xue et al., 2014). RAGE binds
a diverse group of ligands, including AGEs, at least certain
members of the S100/calgranulins, high mobility group Box-
1 (HMGB1), Mac-1, and amyloid- β peptide, particularly its
oligomeric forms (Herold et al., 2007).

Mechanisms by which AGEs could alter the vasculature and
increase arterial stiffness include generation of inflammation
(Chavakis et al., 2004) and oxidative stress (Tan et al., 2007).
Further, AGEs binding to endothelial cell surface RAGE can
lead to stimulation of NADPH oxidase, thereby increasing
the production of reactive oxygen species (ROS) (Wautier
et al., 2001). Additional mechanisms such as mitochondrial
stress may further increase the production of ROS (Rubattu
et al., 2013; Li et al., 2014; Montezano and Touyz, 2014).
Previous studies proposed that one of the mechanisms by
which AGE/RAGE contributes to endothelial dysfunction
is through regulation of the production and expression
of tumor necrosis factor (TNF)-α. The transcription factor
nuclear factor-κB (NF-κB), triggered by inflammation and
by ROS, plays a key role in cytokine and inflammatory
mediator expression, thereby exacerbating microvasculopathy
and mediating pathological changes in gene expression, at least
in part through RAGE ligand-RAGE interactions and activation
of cellular signal transduction (Gao et al., 2008; Kay et al.,
2016).

Evidence of RAGE-mediated perturbation in vivo has also
been demonstrated. Diabetic apolipoprotein E (ApoE) deficient
mice that are also devoid of Ager (gene encoding RAGE) display
reduced atherosclerosis and lower expression of vascular cell
adhesion molecule (VCAM)-1 and tissue factor (Kislinger et al.,
2001). AGEs also induce vascular endothelial growth factor
(VEGF) expression in microvascular endothelial cells (Yamagishi
et al., 1997), which may have implications for the diabetic retina,
as an example. In addition to the chronic conditions of AGE
formation discussed above, such as aging, diabetes, and chronic
inflammatory conditions, research has illustrated that AGEs may
form rapidly in settings of acute stress as well. For example,
endothelial cells subjected to in vitro-applied hypoxia release
AGEs within minutes of exposure to reduced levels of oxygen
(Chang et al., 2008). These considerations indicate that it was
important to identify means to block AGE-RAGE interactions in
the vasculature.

In animal studies, treatment with soluble RAGE
(sRAGE), the soluble extracellular domains of RAGE, which
sequester AGEs and RAGE ligands, thereby blocking their
interaction with RAGE demonstrated significant reductions
in atherosclerotic lesion area (Park et al., 1998), in a
manner independent of changes in lipid or glucose levels.
In other studies, sRAGE treatment in rodents significantly
mitigated diabetic vascular hyperpermeability (Schmidt et al.,
1999).

Hallam and colleagues demonstrated that aged 24 month-old
Fischer 344 rats displayed higher vascular RAGE expression in
the aorta, and higher expression of the polyol pathway enzyme,
aldose reductase (AR), which stimulates metabolic pathways
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that increase AGE formation. Aging-related vascular dysfunction
was evident in these rats on account of impaired endothelial
relaxation in response to acetylcholine (Hallam et al., 2010).
Treatment of aged Fischer 344 rats with sRAGE improved
endothelial dependent relaxation in response to acetylcholine
(Hallam et al., 2010). Taken together, these studies illustrate that
increased AGE burden and RAGE expression mediate vascular
dysfunction and that these perturbations may be suppressed
by administration of antagonists of ligand-RAGE interactions
in vivo.

GLYOXALASE 1 (GLO1) AND
AMPLIFICATION OF AGE ACCUMULATION

In addition to increased direct mediators of damage in aging,
defense mechanisms may also be attenuated in aging. (GLO1)
contributes to the regulation of the levels of the pre-AGE
methylglyoxal (MG) andMG-derived AGEs (Giacco et al., 2014).
MG, formed mainly inside cells, is a potent glycating agent
(Rabbani and Thornalley, 2014).

Published work has suggested a link between RAGE and
Glo1. Exposure of cultured endothelial cells to high glucose
increases expression of RAGE and various RAGE ligands, such as
S100B, AGEs, andHMGB1; this was prevented by overexpression
of Glo1 (Brouwers et al., 2011, 2014). Reiniger and colleagues
showed that renal accumulation of AGEs promotes kidney
dysfunction and that when Ager is deleted in OVE26 diabetic
mice, reduced pathological, and functional derangements in the
kidney ensued, in parallel with reduced MG levels and higher
levels of GLO1 in the kidney (Reiniger et al., 2010). These authors
showed that in Ager null diabetic OVE26 kidney, levels of MG
were lower than those of wild-type diabetic OVE26 controls,
despite equal levels of high glucose. Reiniger and colleagues
traced the mechanism to RAGE-dependent downregulation of
Glo1 mRNA and activity in diabetes (Reiniger et al., 2010).
Thus, RAGE activation may perpetuate AGE accumulation and
deletion of Ager may exert its protection, at least in part by
downregulation of Glo1.

It is possible that increasing GLO1 expression and/or activity
may slow down age-related damage, as acceleration in glycation
in aged rats was attenuated by transgenic (Tg) expression of
Glo1 in these animals (Jo-Watanabe et al., 2014). Interestingly,
exercise training in aged rats resulted in activation of GLO1,
with consequent reduction in the formation of MG and
CML, along with lower RAGE expression in the aorta (Gu
et al., 2014). Overall, agents that augment GLO1 to block
formation of AGEs may serve as therapeutic strategies for
averting complications in vascular disorders in which AGEs
accumulate.

RAGE/DIAPH1 SIGNAL TRANSDUCTION
AXIS: LINK TO VASCULAR DYSFUNCTION

RAGE requires its cytoplasmic domain for signal transduction.
Hudson and colleagues demonstrated the interaction of the
cytoplasmic domain of RAGE tail with mammalian diaphanous

1 or DIAPH1 (Hudson et al., 2008). The cytoplasmic domain or
tail of RAGE (ctRAGE) binds specifically to the formin homology
1 (FH1) domain of DIAPH1 (Hudson et al., 2008). Formins are
actin-binding molecules that contribute to Rho GTPase down-
stream signals (Hudson et al., 2008) in cells such as vascular
cells, monocytes/macrophages, and transformed cells. DIAPH1
has also been shown to be an effector of serum response factors
(SRFs), which are linked to gene regulation mechanisms, and
cellular signaling mechanisms such as AKT and GSK-3beta
(Toure et al., 2012).

In SMCs, DIAPH1 was required for RAGE ligand (S100B)-
induced c-Src translocation to the plasma membrane, RAC1
activation, generation of ROS and cellular migration. RAC1
modulates the actin cytoskeleton, the arrangement of which
governs cell motility and regulates signal transduction pathways
(Toure et al., 2012). To verify the RAGE-DIAPH1 interaction,
Shekhtman and colleagues used NMR spectroscopy to identify
the four key amino acids in the RAGE cytoplasmic domain
(Q3, R4, R5, and Q6 corresponding to Q364, R365, R366,
and Q367 of the full-length RAGE) that are essential for the
interaction of ctRAGE with the FH1 domain of DIAPH1.
When R5/Q6 were mutated to alanine residues and expressed
in murine SMCs, AKT signaling and cellular migration and
proliferation in response to RAGE ligand S100B, but not
to non-RAGE ligands, were significantly reduced (Rai et al.,
2012).

A role for DIAPH1 in RAGE signaling in macrophages has
also been demonstrated. In macrophages devoid of Diaph1,
hypoxia-mediated upregulation of the transcription factor Egr1,
which upregulates inflammatory and prothrombotic mediators,
was prevented (Xu et al., 2010). To test these points in vivo
and the role of DIAPH1 in mediating the effects of RAGE
ligands, studies are underway in animals of diabetes, aging, and
vascular perturbation to probe the potential impact of DIAPH1
in vascular dysfunction.

Taken together, extensive evidence is building to implicate
AGEs and RAGE in the pathogenesis of vascular perturbation,
which stimulate processes that lead to the development of
arterial stiffness, an established harbinger of cardiovascular
disease and aging. AGEs, via RAGE stimulate endothelial cells
to generate ROS and to activate cellular signaling pathways,
at least in part through the cytoplasmic domain of RAGE
binding to DIAPH1; processes which lead to activation of seminal
transcription factors such as NF-κB (Figure 1). In addition to
AGE-RAGE activation of endothelial cells and mediation of
endothelial dysfunction, AGEs, via RAGE, may also stimulate
macrophages and other immune cells, to induce migration
and recruitment of inflammatory cells into AGE-laden foci in
the tissues. Further, research has shown that a natural anti-
AGE mechanism, the enzyme GLO1, which detoxifies pre-AGE
species, is downregulated by the actions of RAGE, such as in the
diabetic kidney. Hence, AGE-RAGE activation stimulates a feed
forward loop, in which AGE-RAGE interaction causes vascular
perturbation and, in parallel, a mechanism to perpetuate AGE
production and accumulation.

In the section to follow, we consider therapeutic opportunities
in halting the detrimental actions of this AGE-RAGE pathway.
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FIGURE 1 | Formation of AGEs and mechanisms of their accumulation and pathobiological actions via the signal transduction receptor RAGE.

THERAPEUTIC STRATEGIES: TARGETING
AGE AND RAGE

Propelled by the epidemiological and experimental evidence
linking AGE and RAGE to the pathogenesis of arterial stiffness
and vascular perturbation, AGEs and RAGE have been identified
as targets for therapeutic intervention in these settings. In
the sections to follow, we detail examples of some of the
strategies to block AGEs and RAGEs for their possible benefits
in cardiovascular diseases (Figure 2).

Anti-AGE Strategies
Alagebrium, or ALT7-11, is an AGE cross-link breaker. In
animals and humans, this agent improved ventricular function
and arterial compliance (Kass et al., 2001; Vaitkevicius et al.,
2001); reduced expression of RAGE and collagen accumulation
in vascular tissues; and in patients with systolic hypertension, it
improved endothelial function (Zieman et al., 2007). Although
Alagebrium is no longer available, its use served as an important
test of the AGE hypothesis in vascular stiffness and function.

Other anti-AGE strategies, such as aminoguanidine, which
blocks AGE production, also had beneficial effects in increasing
vascular elasticity and in augmenting left ventricular arterial
coupling, as well as decreasing vascular permeability in diabetic

rats (Wu et al., 2008). Atherosclerosis was attenuated in
streptozotocin-induced diabetic Apoe-deficient mice treated with
aminoguanidine (Forbes et al., 2004). Aminoguanidine also
reduced AGE accumulation from food sources (He et al., 1999).
Finally, other strategies to reduce AGEs are being investigated,
such as aldose reductase inhibitors (ARI). ARI have been
shown to suppress AGE accumulation in the atherosclerotic
plaques and, in parallel, to reduce atherosclerotic plaque lesions
(Vikramadithyan et al., 2005).

In summary, it is noteworthy that despite testing of multiple
classes of anti-AGE agents, none have obtained, at least to date,
approval for anti-AGE indications. Although there are many
possible reasons for this, we propose that one reason is that
solely targeting AGEs fails to capture the pathobiological effects
of distinct RAGE ligands. Therefore, it is not surprising that
attempts are underway to directly target RAGE as a therapeutic
strategy.

Anti-RAGE Strategies
Approaches to limit RAGE ligand AGEs have been accompanied
by efforts to block RAGE itself and these have been tested in vitro
and in vivo; in addition, human clinical trial testing is also
underway. In vitro, pre-treatment of AGE-stimulated endothelial
cells with anti-RAGE antibodies or anti-oxidants blocked cellular
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FIGURE 2 | Targeting AGEs and RAGE: examples of putative therapeutic strategies.

perturbation (Yan et al., 1994). Another RAGE blocking agent
currently in Phase III clinical trials in Alzheimer’s disease is
the small molecule Azeliragon, which inhibits the receptor for
advanced glycation endproducts through its first extracellular
V-type domain, which prevents RAGE ligands from interacting
with RAGE. It is orally bioavailable (Sabbagh et al., 2011).

The AGER gene may be alternatively spliced to result in
the generation of several RAGE isoforms (Yonekura et al.,
2003; Kalea et al., 2009). The C- terminally truncated RAGE
(known as endogenous secretory RAGE (esRAGE) or RAGEv1,
does not contain the transmembrane domain, and is secreted.
Other forms of soluble RAGE also exist, as the cell surface
RAGE can be proteolytically cleaved by MMPs or ADAM10,
thereby resulting in the release of soluble RAGE (sRAGE)
(Hanford et al., 2004).

In mouse models, sRAGE treatment suppressed acceleration
and blocked the progression of established atherosclerosis in
diabetic Apoe null mice (Park et al., 1998; Bucciarelli et al., 2002).
Various studies in human subjects have sought to determine
whether the plasma sRAGE or esRAGE level is associated with
cardiometabolic diseases (Choi et al., 2009). Generally, plasma
sRAGE/esRAGE levels are lower in subjects with these disorders
vs. healthy controls. Thus, recombinant sRAGE might be of
benefit in arterial aging and metabolic diseases.

Beyond targeting RAGE and the extracellular domains,
distinct therapeutic opportunities have arisen regarding
RAGE signaling via blockade of RAGE-DIAPH1 interaction.
Manigrasso and colleagues developed a high throughput RAGE
tail-DIAPH1 binding assay and screened a library of >58,000
small molecule compounds to identify molecules that blocked
this interaction. A series of 13 compounds was identified that
exhibited high affinity binding to ctRAGE domain. In vitro
and in vivo studies illustrated that these compounds displayed
inhibitory effects on RAGE signal transduction in SMCs in vitro,
and in vivo, on RAGE ligand-stimulated inflammatory gene
expression in liver and kidney tissue (Manigrasso et al., 2016).
Therefore, the discovery that the cytoplasmic domain of RAGE
bound DIAPH1 may aid in the identification of a distinct class of
RAGE signaling intracellular antagonists.

CONCLUSIONS AND PERSPECTIVES

Evidence is accruing that exposure to AGEs contributes to
detrimental aging-related outcomes and to reduced health and
life span. In vitro and in vivo animal model studies have shown
that AGEs affect and disrupt cellular and tissue homeostasis.
AGEs can cause alteration of ECM architecture, thereby affecting
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TABLE 1 | Key anti-AGE and anti-RAGE therapeutic approaches.

Examples of anti-AGE and anti-RAGE

therapeutic strategies

Biochemical target/Mechanisms

of action

Alagebrium (ALT7-11) AGE cross-link breaker

Aldose reductase inhibitors (ARI) Blockade of Aldose Reductase on

glucose metabolism that

contributes to AGE formation

Aminoguanidine Blockade of AGE production

Azeliragon Small molecule inhibitor of RAGE

ligand binding to the RAGE

extracellular V-domain

Anti-RAGE antibodies Blockade of ligand binding to RAGE

Inhibitors of RAGE tail-DIAPH1 binding Blockade of RAGE signal

transduction

Upregulation/Activation of glyoxalase-1 Augmentation of detoxification of

AGE precursors

Soluble RAGE (sRAGE) or Endogenous

secretory RAGE (esRAGE)

RAGE ligand binding species that

sequester RAGE ligands and block

their biological effects

Vitamin C, Vitamin E Anti-oxidants, possible effects on

reduction of AGE formation and

AGE effects

cellular permeability and signaling; mediate ECM and circulating
protein cross-linking; and they can activate cellular signaling
and modulate transcription factor activities and subsequent gene
expression via receptors such as RAGE. AGE accumulation may
result in the increased expression of RAGE in a ligand-enriched
environment and exacerbate proinflammatory mechanisms,
thereby accelerating aging-associated arterial diseases.

RAGE is expressed on a number of important cell types
implicated in arterial aging and vascular pathology. Once AGEs
are formed, albeit by diverse intrinsic and environmentally-
triggered mechanisms, their interaction with RAGE on
endothelial cells, SMCs, and immune cells such as macrophages,
results in upregulation of inflammatory and oxidative stress-
provoking factors, thereby providing a mechanism to link
AGE-RAGE to arterial aging and its consequences, such as
stroke, hypertension, atherosclerosis, myocardial infarction,
and heart failure. Of note, as hyperglycemia accelerates AGE
formation, these AGE-RAGE processes are amplified in diabetes.
Epidemiological studies assuredly support the exacerbation of
cardiovascular disease in subjects with diabetes.

Certainly, more research is required to understand the
entire scope of RAGE signaling and the extent to which
blocking AGEs/RAGE/DIAPH1 interaction may intercept the
full pathobiology of RAGE activation. Key remaining questions
include whether interventions to reduce AGEs and/or to block
RAGE extracellular and/or intracellular domains, might provide
the greatest protection in attenuation of arterial aging and
vascular dysfunction (See Table 1 for a summary of some of the
key anti-AGE and anti-RAGE therapeutic approaches). Clinical
studies to address these concepts are required to optimize
strategies to protect the vasculature from the adverse effects of
AGEing.

MATERIALS AND METHODS

Search Strategies
Arterial Aging:
11,140 refs
https://www.ncbi.nlm.nih.gov/pubmed/?term=arterial+aging
Arterial aging and glycation:
116 refs:
https://www.ncbi.nlm.nih.gov/pubmed/?term=arterial+
aging+and+glycation
Arterial aging and advanced glycation end product:
95 refs:
https://www.ncbi.nlm.nih.gov/pubmed/?term=arterial+
aging+and+advanced+glycation+end+product
Arterial aging and receptor for advanced glycation end
products
22 refs:
https://www.ncbi.nlm.nih.gov/pubmed/?term=arterial+
aging+and+receptor+for+advanced+glycation+end+
products.
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