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Background
Mathematical modelling has allowed the development of highly detailed models describ-
ing phenomena in virtually all scientific fields. Such fidelity has been reached through 
the development of complex models such as fully non-linear ordinary or partial 

Abstract 

Background: The aim of the present paper is to construct an emulator of a complex 
biological system simulator using a machine learning approach. More specifically, the 
simulator is a patient-specific model that integrates metabolic, nutritional, and lifestyle 
data to predict the metabolic and inflammatory processes underlying the develop-
ment of type-2 diabetes in absence of familiarity. Given the very high incidence of 
type-2 diabetes, the implementation of this predictive model on mobile devices could 
provide a useful instrument to assess the risk of the disease for aware individuals. The 
high computational cost of the developed model, being a mixture of agent-based and 
ordinary differential equations and providing a dynamic multivariate output, makes the 
simulator executable only on powerful workstations but not on mobile devices. Hence 
the need to implement an emulator with a reduced computational cost that can be 
executed on mobile devices to provide real-time self-monitoring.

Results: Similarly to our previous work, we propose an emulator based on a machine 
learning algorithm but here we consider a different approach which turn out to have 
better performances, indeed in terms of root mean square error we have an improve-
ment of two order magnitude. We tested the proposed emulator on samples contain-
ing different number of simulated trajectories, and it turned out that the fitted trajecto-
ries are able to predict with high accuracy the entire dynamics of the simulator output 
variables. We apply the emulator to control the level of inflammation while leveraging 
on the nutritional input.

Conclusion: The proposed emulator can be implemented and executed on mobile 
health devices to perform quick-and-easy self-monitoring assessments.
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differential equations, multivariate latent factor models, agent-based models, often com-
bined. These models are used to numerically simulate phenomena that can not be easily 
observed through real-world experiments due to economical, practical, or even ethical 
reasons. It comes alone that such models need to be an accurate representation of the 
reality to derive meaningful conclusions. Such precision, however, is paid in terms of 
computational cost. With the purpose to overcome this limitation, emulators are statisti-
cal models whose aim is to reproduce the main aspects of the dynamics produced by a 
simulation tool. The literature related to emulators provides solutions mainly related to 
(i) extrapolation of model outputs with respect to generic inputs (e.g. [1, 2]), (ii) the opti-
misation of objective functions depending on the output (e.g. [3]), and (iii) the tuning of 
parameters to fit real data (e.g. [4]). In particular, Bayesian methods have shown success 
in predicting deterministic functions realising the input/output map of specified com-
puter simulations. In this framework, it is assumed that the output of the computer algo-
rithm y is the mean of a random process Y, hence the random process represents a kind 
of knowledge regarding y. Such knowledge is specified through priors on the parameters 
of Y, although, most of the time, one has zero knowledge and therefore such priors have 
to be chosen by means of a cross-validation procedure. One of the most used techniques 
in this regard is the so-called Gaussian process regression, also known as Kriging in the 
field of geostatistics [5]. The strength of the Bayesian approach is that posterior distribu-
tions of the parameters provide a measure of the prediction uncertainty, that is, given a 
vector of input values it is possible to predict the output variable and the corresponding 
confidence interval at a given confidence level; the size of the confidence interval is a 
measure of the prediction uncertainty that can help to reshap the experimental design 
of critical input values. This approach has been investigated in [6] where it has been 
proposed a posterior entropy criterion for finding optimal designs on multidimensional 
grids. Indeed, this criterion is based on the fact that the smaller the posterior entropy the 
better the prediction. The main issues with the Bayesian approach in the field of emula-
tion are that its computational cost depends on the dimension of the priors’ parameters, 
which in turn is related to the dimension of the input of the simulation model. Moreover, 
the estimation of the posterior distribution requires the inversion of a generally-large 
covariance matrix whose dimension is proportional to the dimension of the sample. 
An up to date review in this field is provided by [7], where a round up of the principal 
techniques is presented, namely, linear regression, support vector regression, Gaussian 
processes regression and mixtures of them. That article also provides an overview of sur-
rogate models performances, (i) when used for global and local optimisation, (ii) when 
they need to satisfy some constraints, (iii) when used for sampling strategies focusing on 
stationary and adaptive ones. Recently, other techniques from the field of machine learn-
ing have been considered for the emulation purpose. In [8] an artificial neural network 
has been used as an emulator, with two sampling methods, the first based on a pure 
adaptive strategy aiming at reducing the predicted variance, the second based on a mix 
of space-filling and adaptive strategies. Since the artificial neural network does not pro-
vide an estimated prediction variance, as Gaussian processes do, it has been computed 
using jackknife resampling technique, which consists in training repeatedly the model by 
resampling one observation each time. In [9] a random forest has been used to investi-
gate the behaviour of agent-based models and an adaptive sampling technique has been 
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proposed to improve the prediction ability of the algorithm. It has been pointed out that 
the main advantage of using a random forest as an emulator is the high interpretabil-
ity of its output, something that is instead lost when using, for instance, support vector 
regression. The proposed adaptive sampling is based on the idea of iteratively selecting 
data to add to a starting training set having more prediction uncertainty. In [10] we used 
a random forest to predict and analyse the impact of the input variables on the dynamics 
of a complex multi-scale simulation model, being a mixture of ordinary differential equa-
tions and agent-based modelling, able to predict the risk of type-2 diabetes (T2D). The 
mentioned computational model (herein referred to as M-T2D) has been implemented 
to take into account a set of user input data and to subsequently provide an estimation of 
the risk to develop a T2D clinical picture. In particular, given anthropometric parame-
ters such as age, sex, body weight, height, and providing nutritional habits, fitness status 
and physical activity patterns by the user, the M-T2D calculates the risk of progressing 
toward a T2D-related state in a predefined time horizon.

That study, [10], was restricted to predic the final value of the dynamics in a long simu-
lation and to identify the most relevant features. In the present work, we aim at extend-
ing the prediction by “emulating” the whole dynamics. This work is worthwhile mainly 
for two reasons. While the first goal is related to the possibility of “enacting” a cheaper 
computation on mobile devices for real-time assessment of the risk of T2D, the second 
is to challenge a machine learning methodology by using it as an emulator of a highly 
complex multi-output computational model. In this regard, the present study can pro-
vide an example of emulating a complex biological model so to make feasible its imple-
mentation on mobile health devices. The value of having a pre-trained emulator which 
is executable on mobile devices is to be found in the arising interest toward precision 
medicine, indeed it could facilitate the development of personalised treatment of dia-
betes risk of each patient on an individual basis [11]. This work is thus better valued 
looking at the increasing development of self-monitoring systems nowadays embedded 
in portable communication devices which opens up to the application of predictive tools 
in health care [11]. The work described in [12] is a first attempt of this kind which uses 
the one step ahead approach for emulating a complex model. Here we consider another 
approach which shows better predicting capabilities. To summarise, together with [12], 
the present study provides an example of use of machine learning techniques to emulate 
complex simulations.

The simulation model
In this section, we briefly discuss the simulation tool (herein referred to as M-T2D) that 
we aim to emulate. We describe the output generated and underline the complexity of 
the simulation to reveal how challenging is attempting to emulate its dynamics.

M-T2D consists of a multi-level patient-specific model able to integrate metabolic, 
nutritional, and lifestyle data for the prediction of the metabolic and inflammatory pro-
cesses underlying the development of T2D in the absence of familiarity [13]. It can be 
shortly described as a whole-body model for fuel homeostasis including metabolic, hor-
monal and inflammatory changes due to physical exercise and food ingestion [14, 15] and 
consisting of a combination of ordinary differential equation and agent-based modelling. 
M-T2D includes several model compartments: (i) a model of energy balance and weight 
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gain/loss [16], based on the equations provided by [17] and [18]; (ii) the emergence of the 
inflammation is described as the result of adipose mass increase which, in turn, is a direct 
consequence of a prolonged excess of high-calorie intake [19]; (iii) a model for the anti-
inflammatory mechanisms promoted during exercise by the skeletal muscles [20]; (iv) a 
model describing the inflammatory status of the subject by means of a general-purpose 
simulator of the immune system [21] (a modelling framework used to study different 
human pathologies [22, 23], and also aspects of non-human immunity [24]).

The generation of synthetic data

Simulated trajectories of the dynamical model M-T2D starting from different initial con-
ditions (i.e., consisting of anthropometric features, physical activity patterns and dietary 
habits) corresponding to different virtual subjects have been generated by varying the 
parameters reported in Table 1. There are K = 46170 possible combinations of the input 
variables defining the characteristic of the virtual individual that are shown in Table 1.

The complete patient specification of the initial condition of the simulation is given 
as a string vector. For instance, the initial condition specified by the string female 28 
obese tall 2 60/40 low/high/low corresponds to a 28 years old female sub-
ject, tall and obese, which exercises twice a week (sixty minutes each time with an intensity 
of 40%VO2max) and which follows a diet consisting in a low amount of carbohydrates and 
fats but rich in proteins. We indicate the vector corresponding to the initial condition as 
follows:

Simulations outputs were analysed based on the following variables which are deemed 
the most significant to calculate the risk of developing T2D: Glucose Base Level (GBL, 
namely the fasting glucose concentration indicated γ (t) ), Body Mass Index (BMI indi-
cated β(t) ), and Tumor Necrosis factor-α (TNF representing the level of systemic inflam-
mation, indicated τ (t) ) as measured in the adipose tissue compartment. The dynamic of 
M-T2D starting from the initial condition x generates a complete trajectory of the vari-
ables β(t), γ (t) and τ (t) with a time resolution corresponding to ten seconds. Since we 

(1)x =
[

S,A,W ,H , (NPA,DPA, IPA), (CME,PME, FME)
]

.

Table 1 The different virtual subjects have been generated by varying the parameters in this table 
and corresponding to 46170 different initial conditions

Anthropometric measures

• Sex S ∈ {female,male}

• Age A ∈ {28, 38, 48, 58, 68}

• Weight W ∈ {underweight , normal, overweight}

• Height H ∈ {short , average, tall}

Physical activity

• Number of sessions per week NPA ∈ {0, 1, 2, 3}

• Duration (mins) DPA ∈ {low = 30,medium = 60, high = 90}

• Intensity (% of  VO2max) IPA ∈ {low = 40, high = 60}

Food intake (3 meals per day, breakfast, lunch, dinner)

• Carbohydrates (grams) CME ∈ {low ,med, high}

• Proteins (grams) PME ∈ {low ,med, high}

• Fats (grams) FME ∈ {low ,med, high}
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are interested in analysing the condition of the virtual subject weekly, these measures are 
taken over a time horizon of twenty six weeks of routinely and uninterrupted physical 
activity and diet as specified in x . Formally,

where t = 1, . . . ,T  , and T = 26.
The set 

{(

xk , yk(1), . . . , yk(T )
)

: k = 1, . . . ,K
}

 is used as a training set for the devel-
opment of an emulator able to recapitulate, given x , the whole trajectory of the compu-
tational model and, finally, to predict the risk of developing T2D over the time horizon 
T. In other words, our goal is to find a statistical model able to emulate the dynamics of  
the dependent variables of M-T2D, namely y(t) for t = 1, . . . ,T  , given a set of regressors/
predictors x , that is, the initial conditions defining the virtual subject and its lifestyle.

Method
In the present work, we deal with a multi-output dynamic simulation model, which, 
given a set of input, it generates the dynamics of a multivariate vector over a given time 
horizon. The approaches proposed in the statistical literature to emulate such simulation 
models are mainly four.

The first method considers a multivariate output emulator in which the elements of 
the output vector are the values of the simulation variable at different time points [25, 
26]. Such an approach is computationally demanding because it requires the construc-
tion of a multivariate emulator whose dimension depends on the length of the time 
series. A pitfall of this method is that it does not exploit the dynamics of the simulated 
process while relying just on the initial condition. This approach does not fit well those 
cases in which the modelled process has a large variability as for instance in stochastic 
simulations.

The second approach is to combine statistical models to describe the time evolution 
and Gaussian processes to model innovation terms, namely the differences between the 
statistical model prediction and the observed values [27, 28]. Beyond the use of a few 
ordinary differential equations to simulate a process, this approach becomes practically 
unfeasible.

The third method is the one step ahead emulator that is based on the assumption that 
the dynamics of the output variable only depends on the previous time point (Marko-
vian property) and on the input variables [29–31]. This approach is considered the most 
reliable when dealing with models based on differential equations because it embeds the 
dynamics of the process. However, the performance of this method is poor if the simu-
lated process has a large degree of stochasticity.

The fourth method considers time as an additional input variable. Also, this approach 
generally leads to a high computational cost of the emulator, particularly if Bayesian 
Gaussian processes are used, since it depends on the length of the time series [25, 32]. 
However, this approach turns out to be the most suitable for us because it allows con-
structing a multivariate emulator which accounts for the time dependency of the output 
and its stochasticity.

Considering the model, adding the time to the set of input variables translates into a 
very long dataset needed to train the model. More in details, the length of the dataset 

(2)y(t) = [β(t), γ (t), τ (t)]
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becomes N = K · T  , where K is the number of simulated trajectories and T = 26 is 
the length of the output dynamics. In this case the number of input variables is eleven, 
namely, ten variables of Eq.  (1) plus the time. One of the most successful models for 
these kinds of dataset, namely datasets which have a moderate number of features and a 
huge number of items, is the random forest [33]), which has already shown great fitting 
performance in [10]. Therefore we construct our emulator using a random forest algo-
rithm in the last of the four methodologies briefly described above [25].

In detail, the proposed emulator can be mathematically described by the following 
formula

where y(·) is the output vector defined in equation (2), Tm(·) is the m-th tree of the forest 
built on input (x, t) , x is the vector of regressors defined in Eq. (1), t is a scalar that iden-
tify the time and ǫ ∼ N (0,�) represents the Gaussian error component.

The choice of random forest as learning algorithm, is a trade-off among interpretabil-
ity of the results, fitting performance, reliability and computational efficiency handling 
large dimensional training set.

Other suitable machine learning algorithms are Support Vector Regression and Arti-
ficial Neural Network but they do not provide easily interpretable outcomes. Moreo-
ver, the former usually involves the choice of many parameters that strongly influence 
its performance. Gaussian Processes is another candidate but has a poor computational 
performance on large datasets.

The performances of the emulator have been analysed by considering different sizes 
for the training sets, namely 5× 103 , 10× 103 , 15× 103 , and 20× 103 . The training sets 
are subsets of the synthetic dataset containing 46170 trajectories and they have been 
selected using a Latin hypercube sample schemes [34]. Such sample scheme is the most 
efficient sampling scheme, indeed, given a sample size it allows to select the most rep-
resentative sample of that size. Each dataset considered has been divided in training 
and test set using the common proportion 70–30%. We considered m = 50 trees which 
turned out to be a good choice while looking at the Out-Of-Bag error. For each trajec-
tory we provide the predicted trajectory and a measure of uncertainty through the con-
struction of bootstrap confidence bands, [35]. More in details, bootstrap confidence 
intervals are constructed through a modified version of the bootstrap samples, namely 
bootstrapping residuals, since we deals with regression models in which the regressors 
matrix is fixed. Bootstrapping consists of several iterations of resampling with replace-
ment. Given the model prediction of the i-th trajectory, obtained as

the residuals are defined as

(3)y(x, t) =
1

M

M
∑

m=1

Tm(x, t)+ ǫt

ŷ(xi, t) =
1

M

M
∑

m=1

T̂m(xi, t)

(4)e(xi, t) = y(xi, t)− ŷ(xi, t).
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We consider B = 50 bootstrap samples of the residuals, then the bootstrap samples 
{

xi, y
⋆
b(xi, 1), . . . , y

⋆
b(xi,T )

}n

i=1
 for b = 1, . . . ,B are obtained as

where e⋆b(xi, t) is the i-th residual at time t of the b-th bootstrap sample. The bootstrap 
samples provide B predictions, one for each trajectory from which it is possible to com-
pute statistics such as variance, confidence intervals, quantiles, etc. Further details on 
the bootstrap technique can be found in [35].

Results
The emulation method has been implemented in R language. Its performance has been 
evaluated by considering the Root Mean Square Error, E defined for each output variable 
at time t as

where h ∈ {β , γ , τ } is the index which refers to one of the output variable, yh(xi, t) 
refers to the i-th trajectory of the dependent variable defined by h at time t = 1, . . . , 26 , 
ŷh(xi, t) is the corresponding fitted observation. By definition, E is the standard devia-
tion of the residuals defined in Eq. (4), therefore it measures the accuracy of the model. 
Since the value of E depends on the variables scale, we rescale the output variables codo-
main to the unit interval [0, 1] ; this allows immediate comparison of the performance of 
the model among the output variables: the closer E to zero the better the model accu-
racy. The computational time the emulator requires to be trained depends on the size of 
the training set. To give an idea, the emulator requires less than 5 min to be trained with 
a dataset of 17.500 observations on a common single processor computer.

In Fig. 1 the dynamics of the Es for samples of different sizes have been shown. The 
glucose base level γ (t) is the variable that shows better fitting performance since Eγ is 
always smaller than Eβ and Eτ for each sample considered.

Looking at the behaviour of the Es it turns out that the emulator has more difficulties in 
predicting the first and the last periods, while in between it shows better performances.

In [12] we considered the one-step-ahead emulator method, whose performances are 
lower than those presented here. Indeed, the values of Es for the one step ahead emula-
tor are between 10−2 and 2× 10−1 for each output variable while for the methodology 
considered in this paper the values of Es are between 5× 10−5 and 7× 10−3 . In other 
words there is an improvement in terms of Es of two orders of magnitude. Moreover, the 
dynamics of the Es are very different between the two approaches, indeed in the one-
step-ahead emulator the dynamics of Es are always increasing for β(t) and γ (t) while it is 
almost stationary for the τ (t) . This behaviour suggests a structural bias in the emulator. 
Instead, the dynamics of the Es reported here have U-shape and, as already pointed out, 
much lower values which do not reflect any structural bias.

The Root Mean Square Error provides an overall measure of the performance of the 
emulator for each time point, but it does not help in identifying the area of the domain 
that is more difficult to emulate. For this reason, the performance of the emulator has 

y⋆b(xi, t) = ŷ(xi, t)+ e⋆b(xi, t)

(5)Eh(t) =

√

√

√

√

1

n

n
∑

i=1

(

yh(xi, t)− ŷh(xi, t)
)2
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been tested on each trajectory by using the bootstrap confidence bands method. Specifi-
cally, for each trajectory we got 50 bootstrap predictions and the confidence bands have 
been constructed by selecting the quantiles qα and q1−α for α = 0.05 for each time point 
t = 1, . . . ,T  . In Fig. 2 we show an example of the bootstrap confidence band constructed 
for a given trajectory. Each panel refers to an output variable. The results for the vari-
ables β(t) (Fig. 2 top panel) and γ (t) (Fig. 2 middle panel) are satisfactory because the 
simulation trajectory always falls inside it.

The confidence band of the τ (t) follows the dynamics of the variable but some-
times the reference trajectory falls outside it. This is due to the fact that the 

Table 2 Coverage probability of 95% bootstrap confidence bands

Sample 1 Sample 2 Sample 3 Sample 4

β 0.70 0.78 0.80 0.81

γ 0.89 0.89 0.90 0.90

τ 0.64 0.66 0.67 0.68

Fig. 1 Root mean square error (E) for the β (top panel), γ (middle panel) and τ (bottom panel). The x-axis 
represents the time of the trajectories in weeks. Values of E closer to zero mean better predictions. Each plot 
contains the performance related to each sample considered. Sample 1 contains 5000 observation, Sample 2 
contains 10000 observations, Sample 3 contains 15000 observation and Sample 4 contains 20000
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emulator reproduces the average behaviour of the output variable providing there-
fore a smoother trajectory. The higher variability of τ (t) compared to γ (t) and β(t) 
is mainly due to the considerably shorter life span of cytokines (such as the Tumor 
Necrosis Factor) when compared to the coarse grain of the time observations.

To have a general idea of the performance of the bootstrap confidence bands, the 
fraction of time in which the reference trajectory falls inside the confidence band 
(what is called the coverage probability) has been reported in Table 2. As expected, 
the coverage probability increases with the dimension of the sample size and, accord-
ing to what already observed in Fig.  2, β(t) and γ (t) have a satisfactory coverage 
probability while τ (t) has worse coverage probability due to its intrinsic variability.

Fig. 2 Dynamics of the true output variable versus the fitted one together with the 95% bootstrap 
confidence interval. On the x-axis there is the time of the trajectories in weeks while on the y-axis the output 
variable normalised to 0–1. The first panel from the top that refers to β(t) shows a good fitting precision as 
the true trajectory always falls inside the confidence band. The second panel refers to γ (t) and it shows that 
again the emulator shows good fitting performance The third panel refers to τ(t) and shows that while the 
emulator is able to catch the overall trajectory, due to the high variability of the true trajectory, the smoother 
confidence band does not embed it completely
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Controlling the inflammation level
The excess of calories has a direct influence on the state of inflammation [19], which, 
in turn, can be monitored through the Tumor Necrosis Factor cytokine. The aim of 
this section is to describe how the emulator can be used to solve the optimisation 
problem arising in controlling the inflammation (i.e., the Tumor Necrosis Factor) 
through the diet. Specifically, given the initial condition representing a virtual indi-
vidual (S,A,W ,H ,NPA,DPA, IPA,CME,PME, FME) , the goal is to keep Tumor Necrosis 
Factor (i.e., τ (t) ) under control by tuning the calorie intake in terms of carbs, proteins 
and fats.

The translation of this optimisation problem into a mathematical framework 
requires the knowledge of the variables domain, in other words, we need to know if 
the variable to be optimised has some constraint.

The quantities of carbohydrates, proteins, and fats are computed in the in M-T2D 
taking into account the balance of calories between the meal and the total daily 
energy expenditure (TDEE) [16]. In details, the TDEE is the result of the sum of Rest-
ing Energy Expenditure (REE), Activity Energy Expenditure (AEE) [36] and Ther-
mic Effect of Food (TEF) [37]. The REE has been computed considering S, A, W and 
H [17]; the computation of AEE is based on NPA,DPA and IPA , [16]; the TEF is the 
amount of energy spent to digest the food and amounts to about 10% of the calories 
ingested [37]. The resulting TDEE represents the number of calories that have to be 
ingested to have a balance among energy intake and expenditure. The simulation tra-
jectories have been constructed by dividing the TDEE into three meals and the caloric 
content of each meal has been divided into calories from carbohydrates, proteins, and 
fats according to the kind of standard proportions 50%, 20%, and 30%, respectively. 
Simple multiplications to the constants 0.8 and 1.5 are used to fix low and high quan-
tities of the food intake description given in Table 1.

The optimisation problem we want to solve can be detailed as follows. Given an ini-
tial vector x as described in Eq. (1) we minimise τ (t) by modifying CME , PME , and FME 
subject to some constraint, that is,

where lC , lP , lF and uC ,uP ,uF represent respectively the lower and upper bounds for 
the amount of carbs, proteins and fats for meal related to the individual and obtained 
according to the previous description while lT and uT represent the lower and upper 
total amount of food, that is CME + PME + FME.

Given the computational complexity of the simulation M-T2D, solving this math-
ematical optimisation problem (whatever the algorithm used) would require M-T2D 
to run for each optimisation step and therefore would take considerable time to con-
verge. By using the emulator instead, the problem becomes much easier computation-
ally since the emulator is much quicker to run.

min
CME,PME,FME

∑

t

τ (t)2

s.t. lC ≤ CME ≤ uC

lP ≤ PME ≤ uP

lF ≤ FME ≤ uF

lT ≤ CME + PME + FME ≤ uT
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In Fig.  3 we show an example of the optimisation obtained for an individual hav-
ing the following features: S = man , A = 38 , H = average , W = overweight , NPA = 1 , 
DPA = 30 , IPA = 60 , CME = Medium , PME = High and FME = High . The black line in 
Fig. 3 shows τ (t) according to these initial conditions. We run the optimisation to sug-
gest a suitable (and patient-specific) diet, whose aim is to keep the τ (t) at the lowest level 
possible. In Fig. 3 the red line shows τ (t) corresponding to the optimal protein rich diet 
(i.e., low in carbs and fats).

Discussions
Although Gaussian Process is the most used statistical model for emulation purpose, 
its computational cost become unfeasible when dealing with dynamic and multi-out-
put simulators which require thousands of trajectories to be trained. In such situations 
machine learning algorithms are satisfactory alternatives. Indeed, the use of machine 
learning algorithms with bootstrap methods provides a set of information which is quite 
complete, namely statistics which provide information regarding estimates uncertainty, 
even if it is not detailed as the one provided by Gaussian processes, which instead pro-
vide the entire distribution of the parameters and therefore full information regarding 
estimates uncertainty.

This work shows that random forest has high performances as emulator of a complex 
biological simulator. This is due to the fact that random forest is particularly suited for 
agent-based models and for long data sets, namely data sets which have a moderate 
number of features and a huge number of instances, which is the type of data set we 
are dealing with in this work. Of course, a comparison with several machine learning 
algorithms would be very interesting, although out of scope of this work, but it will be 
addressed in future works.

The choice to add the time variable within the regressors, although increases the 
number of instances, allows to jointly estimates the three output variable using all the 
information available in the data set. This is worthwhile because the three variables 

Fig. 3 The plot shows τ related to a 38 years old overweight male of average height, who exercises once a 
week for 30 minutes with an intensity of 60%VO2max. The black line shows τ with the actual medium carb and 
prot-fat rich diet while the red line is the result of an optimised diet consisting of low carb and fat while rich 
in protein
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have different time of reaction as observed in Fig. 2 which shows the kind-of inertia the 
immune inflammation has, namely the memory effects of the adaptive immune response. 
In other words there is lag between a decrease of β and γ and a decrease of τ just because 
the resolution of the inflammation takes more time with respect to a reduction in glu-
cose base level (which has a faster dynamics) and a reduction of the BMI. Moreover, 
worth to note, the peak of the curve τ is due to the sudden peak of γ while the pretty 
slow decline follows the decline of β combined with the inertia of the overall immune 
response.

The high accuracy of the proposed emulator allows to perform an optimisation prob-
lem aimed at controlling the inflammation while leveraging on the variables related to 
individual patient diet. In other words, it is possible to perform quick-and-easy self-
monitoring assessments and also to provide personalised suggestions regarding dietary 
habits which help in keeping the inflammation at low level. The optimisation can be 
designed in order to consider other variables to be optimised, for instance it is possible 
to minimise the Tumor Necrosis Factor-α while leveraging on the variables related to 
physical activity or to diet and physical activity, in order to provide suggestions regard-
ing dietary habits and/or physical activity.

The possibility to emulate complex biological model so to be executed in real-time and 
on devices having limited computational power is worthwhile in the context of personal-
ised medicine. Indeed, the output of the emulator and its applications can support medi-
cal staff in decision and interventions since it provides information which are tailored on 
individual patients. Moreover, its value is also related to the development of self-moni-
toring systems nowadays embedded in portable communication devices which opens up 
to the application of predictive tools in health care.

Conclusions
Computer simulation is a fundamental instrument in virtually all scientific research 
fields including medicine and biology where in-vitro or in-vivo experiments are often 
unfeasible for economic and ethical reasons. Computer models offer a valid alternative 
to realistic experiments but might nevertheless be computationally expensive, espe-
cially when the details and the precision required is high. The computational cost of 
these models makes real-time execution of the simulations on mobile devices unfeasible 
in practice. In this regards the development of emulators in place of heavy simulations 
constitutes a viable alternative for the implementation of self-monitoring devices due to 
their reduced computational needs.

This paper deals with the construction of an emulator of a validated multi-level 
patient-specific simulation model based on machine learning techniques, which turn 
out to have good performances although the complexity of the simulation model being a 
mixture of agent-based models and systems of differential equations. This emulator can 
be used to solve optimisation problem required to perform quick-and-easy self-moni-
toring assessments. For instance, in this work it has been used to compute personalised 
diets able to reduce or to keep inflammation at low levels.

To summarise, the implementation of this predictive model on self-monitoring devices 
is worthwhile given the incidence of type-2 diabetes, which account for 85–90% of all 
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cases of diabetes in the World [38], and it justifies the importance of having an emulator 
with optimal fitting performance.
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