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ABSTRACT
Desulfovibrio (DSV) is frequently found in the human intestine but limited knowledge
is available regarding the relationship between DSV and host health. In this study,
we analyzed large-scale cohort data from the Guangdong Gut Microbiome Project to
study the ecology of DSV and the associations of DSV and host health parameters.
Phylogenetic analysis showed that Desulfovibrio piger might be the most common
and abundant DSV species in the GGMP. Predominant sub-OTUs of DSV were
positively associated with bacterial community diversity. The relative abundance of
DSV was positively correlated with beneficial genera, including Oscillospira, Coprococ-
cus,Ruminococcus,Akkermansia, Roseburia,Faecalibacterium, andBacteroides, and was
negatively associated with harmful genera, such as Clostridium,Escherichia,Klebsiella,
and Ralstonia.Moreover, the relative abundance of DSV was negatively correlated with
body mass index, waist size, triglyceride levels, and uric acid levels. This suggests that
DSV is associated with healthy hosts in some human populations.
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INTRODUCTION
Desulfovibrio (DSV) species are Gram negative species characterized by the ability to reduce
sulphate to hydrogen sulfide in anaerobic respiration of organic matter (Gibson, Macfarlane
& Cummings, 1988;Liamleam & Annachhatre, 2007).DSV species arewidespread in natural
environments (Gibson, Macfarlane & Cummings, 1988). In humans, DSV species can
colonize the intestine, where high levels of organic nitrogen compounds support their
growth (Gibson, Macfarlane & Cummings, 1988). Willis et al. (1997) found that human
intestinal DSV could use alternative electron acceptors like sulfite, thiosulfate and nitrate,
suggesting that sulfite, thiosulfate and nitrate in the diet could also influence the abundance
of DSV.
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SomeDSV species are associatedwith disease. For example,Yachida et al. (2019) reported
that Desulfovibrio vietnamensis and D. longreachensis increased in stage III/IV and stage 0
colorectal cancers, respectively. Bellocchi et al. (2018) reported that the gut microbiota of
patients with systemic sclerosis was characterized by increased proinflammatory noxious
genera, especially DSV. Crusell et al. (2018) reported that DSV abounded in women with
gestational diabetes.Gobert et al. (2016) reported that DSVwas higher in the gutmicrobiota
of patients with constipated-predominant irritable bowel syndrome than in healthy people.
Karlsson et al. (2012) reported that DSV was significantly lower in obese and overweight
children than in normal-weight children. In contrast, Rowan et al. (2010) reported that
the relative DSV load was associated with acute ulcerative colitis. Conversely, Hirano et al.
(2018) reported fewer DSV at the inflammatory site of ulcerative colitis patients (n= 14)
compared with the corresponding site of non-inflammatory bowel disease control (n= 14).

These contradictions may reflect sample size, inappropriate study subjects and the lack
of subject health parameters. This suggests the need for large-scale cohort analysis.

In this study, we analyzed the gut microbiota data from the Guangdong GutMicrobiome
Project (GGMP). This extensive gut microbiota dataset (He et al., 2018) contains 7009
individuals from 14 districts within Guangdong Province, China. We studied the
prevalence and variation of DSV and the relationship between DSV and intestinal microbial
community profile and evaluated the links between DSV and host parameters. Our results
show that DSV was associated with healthy hosts in the GGMP dataset.

MATERIAL AND METHODS
Data acquisition and processing
Data acquisition and processing were applied as previously described for the GGMP (Chen
et al., 2020).He et al. (2018) previously detailed and introducedGGMP.DNAwas extracted
from stool samples, and PCR amplification of the 16S rRNA V4 region and sequencing
were conducted as described. Raw sequence data for the 16S rRNA gene are available
from the European Nucleotide Archive at accession number PRJEB18535. These short
reads were processed in the QIIME 2 framework using the Deblur denoising algorithm
as previously described (Chen et al., 2020). A total of 6376 samples were remaining in
the Deblur BIOM table for the follow-up analysis. Metadata for these samples can be
found at https://www.nature.com/articles/s41591-018-0164-x. Deblur denoised sequences
were assigned to bacterial features, which are almost equal to sub-OTUs (Wang et al.,
2019). Taxonomic profiling of bacterial sub-OTUs was accomplished using the Greengenes
reference database (version 13_8) as previously described (Chen et al., 2020).

Phylogenetic analysis
Complete 16S rRNA gene sequences of six DSV type strains and two Desulfobacter type
strains were obtained from the National Center for Biotechnology Information (NCBI).
The V4 region of the 16S rRNA gene sequence was amplified with the barcoded V4
primers used for the GGMP (forward primer: 5′-GTGYCAGCMGCCGCGGTAA-3′,
reverse primer: 5′-GGACTACNVGGGTWTCTAAT-3′) (He et al., 2018; Walters et al.,
2016). We constructed a phylogenetic tree based on the V4 region gene sequences using
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MEGA 5, including eight predominant features of DSV (defined as a feature detected in
more than 1% of all samples), six DSV-type strains (D. piger ATCC29098, D. fairfieldensis
ATCC70045, D. desulfurians ATCC27774, D. legallii strain H1, D. vulgaris DSM644, and
D. intestinalis strain KMS2), and two Desulfobacter type strains (Desulfobacter postgatei
DSM2034 and Desulfobacter vibrioformis B54). GenBank accession numbers for each type
strain are available in Table S1. The phylogenetic tree was constructed using MEGA
(version 5.05) by neighbor-joining (ref). The test of phylogeny was performed using the
bootstrap method, and the number of bootstrap replications was 1000. The gaps/missing
data treatment was a complete deletion. Sequence alignment was calculated using the
BLAST search at NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

To further show the phylogenetic relationship of DSV features, we also constructed a
tree based on the gene sequences of eight predominant features of DSV, and their best
matches. This tree includes the V4 region gene sequences of eight predominant features
of DSV, and the sequences of twenty strains. The parameters and model for this tree were
same as above.

Biostatistics analysis
To reveal the associations of DSV and predominant genera (defined as a genus with mean
relative abundance above one percent) and the associations between predominant DSV
features, we conducted a co-occurrence network analysis in R, as previously described
(Chen et al., 2020). Spearman’s correlations were applied to each pair with FDR correction.
Only significant correlations (FDR-adjusted P < 0.05) are shown.

Mann-Whitney U-tests were applied to compare DSV relative abundances in men and
women, people with different BMI, normal waist and oversize waists, normal and elevated
triglyceride (TG) levels, and normal and elevated uric acid (UA) levels. BMI and waist
were classified on the basis of the Guidelines for Prevention and Control of Overweight
and Obesity in Chinese adults. We classified TG levels on the basis of the Guidelines for
the Prevention and Treatment of Dyslipidemia in Chinese adults. We classified UA levels
according to the Chinese Guidelines for Diagnosis and Treatment of Hyperuricemia and
Gout.

Kruskal-Wallis tests were performed to compute DSV relative abundance in seven
Bristol stool types and at 14 geographical locations.

Correlations between Log10 relative abundance of DSV and α-diversity indices and
correlations between the number of predominant DSV features and α-diversity indices
were calculated by Spearman’s rank correlation test by SigmaPlot 13.0. Correlation between
Log10 relative abundance ofDSV and Log10 relative abundance ofOscillospirawas calculated
by Spearman’s rank correlation test and visualized using ‘‘ggpointdensity’’ (version 0.1.0)
package. Correlations between DSV (at the genus and sub-OTU levels) and host metadata
were calculated by Spearman rank correlation test, and FDR correction was conducted to
adjust all p-values. A two-tailed p-value less than 0.05 was considered to have statistical
significance for all analyses.

RESULTS

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.12033 3/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.12033#supp-5
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://dx.doi.org/10.7717/peerj.12033


Detection of Desulfovibrio in the GGMP samples
In total, we detected DSV in 3731 of 6376 gut microbiota. The mean relative abundance of
the genus was 2h. Seq14263 was the most prevalent. This sub-OTU was detected in 32%
of all samples and accounted for 49% of the DSV-associated sequences (Table 1).

The mean relative abundance of eight predominant features ranged from 0.01h to
1.02h (Table 1 and Fig. 1A). Among the total samples, 2831 samples carried only one
predominant DSV feature, and 814 samples carried two or more predominant features.
The maximum number of predominant DSV features detected in a sample was four, and
only two samples carried four predominant DSV features. Co-occurrence analysis at the
sub-OTU level showed that Seq14263 was positively associated with Seq15128. Seq7611 was
positively associated with Seq295. Seq12972 was not associated with other predominant
DSV sub-OTUs (Fig. 1B).

Phylogenetic analysis showed that D. piger might be the most common and abundant
DSV species in the GGMP. The V4 regions of Seq295, Seq5554, Seq1686, and Seq10119
were 100% identical to that of D. fairfieldensis ATCC70045, D. piger ATCC29098,
D. desulfuricans ATCC27774, and D. intestinalis strain KMS2, respectively. The V4 region
of Seq12972 was not very similar (<93%, Table S3) to that of the six DSV type strains
(Fig. 2). All the predominant sub-OTUs of DSV showed low similarity (<94%) to D.
vulgaris DSM644 (Table S3), suggesting that it may be an uncommon strain in the GGMP.

A phylogenetic tree that includes the eight predominant features of DSV and twenty
strains of DSV also showed that Seq14263, Seq15128 and Seq5554 clustered with D. piger
strains with good (80%) bootstrap support (Fig. S1), suggesting that D. piger might be the
most common and abundant DSV species. D. fairfieldensis, D. desulfuricans, D. legallii, D.
vulgaris, and D. intestinalis were less prevalent in the GGMP.

Microbial community profile link with Desulfovibrio
The relative abundance of the genus of DSV was positively correlated with the microbiota
α-diversity indices. As the Log10 relative abundance of the DSV genus increased, α-diversity
also increased. The correlation between ascending α-diversity and DSV detection was
positive when we examined α-diversity with Shannon, PD_whole_tree, and Observed
sub-OTUs (Figs. 3A–3C). Spearman rank correlation analysis showed positive correlations
between the number of predominant DSV features and Shannon, PD_whole_tree, and
Observed sub-OTUs (Figs. 3D–3F).

The relative abundance of DSV was positively correlated with beneficial genera, and
was negatively correlated with harmful genera. The relative abundance of DSV was
positively associated with Oscillospira, Phascolarctobacterium, Prevotella, Coprococcus,
Dialister, Ruminococcus, Akkermansia, Roseburia, Faecalibacterium, and Bacteroides and
negatively associated with Streptococcus, Ralstonia, Sediminibacterium, Clostridium, SMB53,
Escherichia, and Klebsiella (Fig. 4, Fig. S2). Correlation between DSV and Oscillospira was
the strongest among all the correlations (Fig. 4, Table S4). Log10 relative abundance of
DSV was positively correlated with Log10 relative abundance of Oscillospira in the GGMP
in samples that DSV and Oscillospira can both be detected (Fig. S3A).
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Table 1 Prevalence, percentage, andmean relative abundance of predominant DSV features.

Feature ID Prevalence of
predominant DSV
features

Percentage of
DSV-associated
sequences

Mean relative abundance
of predominant DSV
features

Seq14263 31.59% 48.50% 1.02×10−3

Seq12972 12.14% 24.45% 0.51×10−3

Seq5554 7.17% 9.64% 0.20×10−3

Seq295 7.64% 5.39% 0.11×10−3

Seq7611 3.98% 4.96% 0.10×10−3

Seq15128 5.46% 4.01% 0.08×10−3

Seq1686 1.71% 0.51% 0.01×10−3

Seq10119 1.41% 0.51% 0.01×10−3

Host parameters linked to the detection of Desulfovibrio
DSV relative abundance did not vary significantly with gender (P = 0.1559, Fig. S4A). The
mean relative abundance of DSV was similar across samples with different Bristol stool
types (P = 0.4879), ranging from 1.3h (type 7) to 2.4h (type 5) (Fig. S4B). There was a
clear difference in the relative abundance of DSV among different geographical locations
(P < 0.0001, Fig. S4C). DSV were most abundant in subjects from the Nanshan, Shenzhen
(G440305), and least abundant in samples from subjects in the Wuchuan, Zhanjiang
(G440883). The mean relative abundance of DSV ranged from 1.2h to 3.1h (Fig. S4C).

DSV relative abundances in people with normal weight (18.5≤ BMI < 24) and low BMI
(BMI < 18.5) were significantly more abundant than those in overweight (24 ≤ BMI < 28)
and obese (BMI ≥ 28) (Fig. 5A). Women and men with normal waist sizes had higher
levels of DSV than those with oversized waists (P = 0.0197 and P = 0.0015, respectively;
Fig. 5B). The mean relative abundance of DSV was 2.2h vs. 2.0h in women and 2.1h vs
1.9h in men with normal and oversized waists, respectively (Fig. 5B). People with normal
TG had higher levels of DSV than those with elevated TG (2.2h vs. 2.0h, P = 0.0031,
Fig. 5C). People with normal UA had higher levels of DSV than those with excessive UA
(2.2hvs 1.8h, P = 0.0074, Fig. 5D).

At the genus level, DSV correlated negatively with host BMI, waist, TG, and UA.
The mean relative abundances of DSV were 2.2h (low weight), 2.2h (normal weight),
2.0h (overweight), and 1.8h (obese). DSV genus and sleep time correlated positively
(Fig. 5E). At the sub-OTU level, Seq14263 was negatively linked with BMI, waist size,
TG, and UA and positively linked with systolic pressure (SBP), high-density lipoprotein
(HDL), total cholesterol (TCHO), and sleep time; Seq12972 was positively linked with
SBP; Seq7611 was negatively linked with diastolic pressure (DBP), SBP, HDL, and TCHO;
Seq15128 was positively linked with HDL and sleep time; and Seq10119 was negatively
linked with SBP (Fig. 5E, Table S5). Seq5554, Seq295, and Seq1686 were not correlated
with these parameters. Low-density lipoprotein (LDL) was not correlated with DSV and
these eight sub-OTUs (Table S5).
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Figure 1 Relative abundances and internal associations of eight predominant DSV features. (A) Rela-
tive abundances of predominant DSV features across all samples, plotted by GraphPad Prism 5; (B) inter-
nal associations of the predominant DSV features. Red lines represent positive associations; blue lines rep-
resent negative associations.

Full-size DOI: 10.7717/peerj.12033/fig-1

DISCUSSION
In this study, we revealed that DSV are generally associated with healthy hosts, which is
in contrast to several previous studies. Petersen et al. reported the outgrowth of DSV was
associated with obesity in mice. Increased DSV upregulated the expression of CD36, a
receptor that mediates the binding to and uptake of long-chain fatty acids, thus promoting
lipid absorption. These mouse model results correspond to reports that DSV are involved
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Figure 2 Phylogenetic tree of the eight predominant DSV features (marked in red), six typestrains
of DSV (marked in blue) and two type strains ofDesulfobacter (marked in black). The tree was con-
structed based on 16S V4 region sequences.

Full-size DOI: 10.7717/peerj.12033/fig-2

Figure 3 Microbial community α-diversity indices linked with DSV. (A–C) Spearman rank correla-
tions between Log10 relative abundance of DSV and Shannon index,PD_whole_tree index, and Observed
sub-OTUs. (D–E) Spearman rank correlations between the number of predominant DSV features and
Shannon index, PD_whole_tree index, and Observed sub-OTUs.

Full-size DOI: 10.7717/peerj.12033/fig-3
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Figure 4 Major genera correlated with DSV. Red represents positive correlations; blue represents nega-
tive correlations.

Full-size DOI: 10.7717/peerj.12033/fig-4

in diseases and adverse health effects (Vinke, El & Van Dijk, 2017; Kushkevych et al., 2019;
Petersen et al., 2019; Rowan et al., 2010).

Our analysis of the GGMP suggest that DSV is not always associated with adverse
health effects. First, DSV was negatively correlated with host BMI, waist, TG, and UA,
which are all indications of obesity or metabolic disturbance (Osborne et al., 2020;He et al.,
2018; Zeng et al., 2019; Tito et al., 2019). This is consistent with several previous studies.
Karlsson et al. (2012) found that DSV were less abundant in obese/overweight children
in Sweden. Andoh found that DSV were more abundant in lean people (range 31–58
years) than that in obese people (range 33–55 years) in Japan (Andoh et al., 2016). Second,
DSV relative abundance was positively associated with microbial community diversity,
which is conducive to microbiome stability and host health (Le Chatelier et al., 2013;
Vieira-Silva et al., 2016). The number of predominant DSV features was also positively
associated with microbial community diversity. Third, DSV was positively associated
with Oscillospira, Phascolarctobacterium, Prevotella, Coprococcus, Dialister, Ruminococcus,
Akkermansia, Roseburia, Faecalibacterium, and Bacteroides and negatively associated with
Streptococcus, Clostridium, Escherichia, Klebsiella, and Ralstonia. Oscillospira is positively
associated with lower BMI and lower levels of inflammatory diseases (Konikoff & Gophna,
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Figure 5 Relationships of DSV relative abundance and host metadata. Relative abundance of DSV in
people with different BMIs (A), waist size (B), TG levels (C), and UA levels (D). (E) Heatmap of Spearman
rank correlation coefficients gathering correlations between host parameters and DSV (at the genus and
sub-OTU levels). An asterisk (*) indicates FDR adjusted P values smaller than 0.05; Two asterisks (**) in-
dicate FDR-adjusted P-values smaller than 0.01; and three asterisks (***) indicate FDR-adjusted P-values
smaller than 0.001.

Full-size DOI: 10.7717/peerj.12033/fig-5

2016). Phascolarctobacterium can generate short-chain fatty acids (Zhang et al., 2015) and
is positively associated with positive mood in humans (Li et al., 2016). Dialister can be
depleted in people with depression (Valles-Colomer et al., 2019). Prevotella is a beneficial
genus because of its abundance in healthy human gut microbiota, although a few strains
may have pathogenic potential (Precup & Vodnar, 2019). Coprococcus, Ruminococcus,
Akkermansia, Roseburia, and Faecalibacterium produce short-chain fatty acid, which
have health benefits (Duncan et al., 2002; Hiippala et al., 2018; Li et al., 2019; Plovier et al.,
2017; Hou et al., 2020). Bacteroides species have health-promoting effects (Hiippala et al.,
2018), while Streptococcus, Clostridium, Escherichia, and Klebsiella are generally considered
harmful gut bacteria. Intestinal Ralstonia is more abundant in obese humans with T2DM
and worsened glucose tolerance in diet-induced obese mice (Udayappan et al., 2017).
Fourth, DSV relative abundance was weakly correlated with longer sleep time. Sleep
depravation could disturb human microbiota and glycometabolism (Benedict et al., 2016).

An important factor in this dataset that could explain the positive associations between
health effects and DSV is geographical location. He et al. (2018) showed that geography
could affect human gut microbiota. Diet could also influence the host gut microbes. Gut
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microbes utilize components from food, and their metabolites may have beneficial or
harmful effects on host physiology (Gentile & Weir, 2018). Ethnicity of the subjects in the
GGMP study could be a factor. The ethnicity of subjects in this study was different from
previous studies. Ethnicity relates to the gut microbiota (Gaulke & Sharpton, 2018). A study
of 314 healthy volunteers from seven ethnic groups in China showed that gut microbiota
composition at species level could be discriminated by the ethnicity (Zhang et al., 2015).
Another study of 1673 volunteers in the United States showed that ethnicity could shape
gut microbiota (Brooks et al., 2018).

In conclusion, based on an analysis of the GGMP dataset, we linked DSV with positive
health parameters. This suggests DSV is beneficial for this specific population. We
recommend more research to elucidate the relationship between DSV and host health
in this population.
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