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Simple Summary: Non-homeostatic cytokine expression during hepatocellular carcinogenesis, to-
gether with simple and inexpensive cytokine detection techniques, has opened up its use as potential
biomarkers, from cancer detection to prognosis. However, carcinogenic programs during cancer
progression are not linear. Therefore, cytokines with prognostic potential in one stage may not be
relevant in another. Here, we reviewed cytokines with clinical potential in different settings during
hepatocellular carcinoma progression.

Abstract: Hepatocellular carcinoma (HCC) is the primary form of liver cancer and a leading cause of
cancer-related death worldwide. Early detection remains the most effective strategy in HCC manage-
ment. However, the spectrum of underlying liver diseases preceding HCC, its genetic complexity,
and the lack of symptomatology in early stages challenge early detection. Regardless of underlying
etiology, unresolved chronic inflammation is a common denominator in HCC. Hence, many inflam-
matory molecules, including cytokines, have been investigated as potential biomarkers to predict
different stages of HCC. Soluble cytokines carry cell-signaling functions and are easy to detect in the
bloodstream. However, its biomarkers’ role remains limited due to the dysregulation of immune
parameters related to the primary liver process and their ability to differentiate carcinogenesis from
the underlying disease. In this review, we discuss and provide insight on cytokines with clinical
relevance for HCC differentiating those implicated in tumor formation, early detection, advanced
disease, and response to therapy.

Keywords: cytokines; hepatocellular carcinoma; prognosis; formation; advanced disease; response
to therapy

1. Introduction

Liver cancer is a leading cause of cancer-related death worldwide with approximately
800,000 deaths per year, with hepatocellular carcinoma (HCC) representing the great ma-
jority of primary liver cancers [1–3]. Epidemiological data have shown marked differences
in HCC incidence among different ethnic-racial groups, genders, and across geographic
regions of the globe, partially dictated by different risk factors. Among the main risk factors
are infection with the hepatitis B virus (HBV) or hepatitis C virus (HCV) and alcohol use [4].
Irrespective of the different etiologies, unresolved chronic inflammation is a common
denominator and a feature present in more than 90% of patients with HCC [5]. Local
activation of cell populations upon sensing pathogens and/or tissue damage in the liver
may trigger a tightly regulated and coordinated multi-step process, followed by immune
cell infiltration, and subsequent engagement in tissue repair as the ultimate goal [6]. It is in
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this fine orchestration of events that the release of a wide array of soluble factors, such as
cytokines, takes place [7].

In this regard, cytokines have been investigated as potential biomarkers to predict
different stages of HCC, and to further understand mechanisms of HCC formation. In the
presence of HCC-promoting risk factors, the initial inflammatory response in the liver is
unresolved, and as a result, the unbalanced expression of cytokines promotes a persistent
healing response. This response may lead to sequential development of fibrosis, cirrhosis,
and eventually HCC by enhancing hepatocyte proliferation and regeneration which can
lead to mutagenesis and set the stage for HCC development [8]. Once HCC is established,
cytokines released by the tumor, neighboring non-tumor cells, or immune cells can act
on the malignant lesion to promote tumor survival by multiple mechanisms [9,10]. In
addition, these cytokines can act on the tumor microenvironment to induce immune escape
and metastasis [11]. Interestingly, as the treatment of advanced HCC has evolved from
no reasonable therapy to tyrosine kinase inhibitors that significantly prolong survival
to immune therapy, cytokines can act as markers of response to therapy [12,13]. Since
cytokines are present throughout the different stages of HCC progression, their evaluation
may provide insightful information on HCC detection and management. The ability to
detect cytokines in sera and/or plasma could potentially serve as biomarkers to increase
early HCC detection rates which would improve disease outcome as well as be used as
prognostic factors in response to therapies [14,15]. It is important to highlight, however,
that certain cytokines—although involved in a common carcinogenic program, such as
angiogenesis—might more accurately depict a given stage in HCC progression than others,
and that cytokines with prognostic potential in one stage may not be relevant in another. In
this review, we focus on selected cytokines that are not only relevant to tumor formation, but
also to clinical progression and potential prognostic value in early HCC detection as well
as in response to therapy (Figure 1). To note, here we only included what those cytokines
we interpreted to be the most significant either based on 3 or more manuscripts showing
implication in the role or a highly significant manuscript. In addition, we chose cytokines
that are easily measurable in peripheral blood (which would exclude EGF, wnt-b-catenin).
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Figure 1. Cytokines of clinical relevance in the different stages of liver cancer. List of selected cytokines involved in tumor
formation, relevant in early HCC detection and with prognosis potential in advanced disease and response to systemic
(sorafenib) therapy.

2. Cytokines Related to HCC Formation

Due to its physiologic role and anatomic location the liver is exposed to chronic
infections and environmental insults resulting in an unresolved inflammation state that
may lead to HCC. It is in this setting that the presence of pro-inflammatory cytokines
in peritumoral tissues contributes to tumor formation as well as progression. Most of
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these cytokines participate in carcinogenesis by inducing cell survival and proliferation,
epithelial mesenchymal transition (EMT), and angiogenesis (Figure 2).
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cytokines in the tumor microenvironment contributing to HCC formation by promoting cancer cell survival (TGF-β),
proliferation (IL-6, FGF-2), epithelial mesenchymal transformation (MCP-1), and angiogenesis (VEGF, FGF-2).

2.1. Interleukin-6 (IL-6)

One of the cytokines most frequently examined in both mouse and human studies
with respect to the early stages of cancer formation is IL-6. This pro-inflammatory cytokine
has a critical role in host defense and in the orchestration of inflammation leading to
cancer [16–18]. In HCC, the constant exposure to triggering insults in the liver (i.e., during
chronic viral hepatitis infection, or alcohol use) leads to a chronic inflammatory state that
eventually promotes cancer formation [19]. In human studies, increased levels of serum
IL-6 in HCC patients -compared to chronic hepatitis and cirrhosis patients- have been
consistently shown [20]. Furthermore, among HCC patients, IL-6 levels have been found
to be increased in advanced vs. early stages of HCC supporting the conception of IL-6
as an important cytokine in hepatocarcinogenesis [21,22]. Moreover, it has been shown
that elevated serum IL-6 levels in HCC patients who undergo hepatectomy (n = 144) are
associated with lower overall survival and experience early HCC recurrence [23].

In vivo experiments performed in a diethylnitrosamine (DEN) HCC mouse model
with hepatocyte-specific knockout of the IL-6 receptor gp130 have demonstrated a reduced
number of liver tumor nodules and macrophages compared to their control counter-
parts, supporting a role for IL-6 in HCC formation [24]. Moreover, Kupffer cells, the
macrophages of the liver, can act as source of IL-6 upon stimulation with the microbial
product lipopolysaccharide, which supports pre-malignant hepatocyte proliferation under
DEN-induced carcinogenesis [25]. Of note, increased serum IL-6 levels have been found
in cirrhotic patients without HCC compared to healthy controls which may be the conse-
quence of increased microbial translocation, commonly observed in cirrhotic patients [26].
Interestingly, estrogen-mediated inhibition of IL-6 production by activated Kupffer cells
reduced chemical hepatocarcinogenesis in DEN-HCC mice and has been proposed as a
mechanism behind sex disparities in HCC [27]. Similarly, IL-6 blockade in multidrug
resistance 2 knockout mice showed decreased liver carcinogenesis [28]. This effect likely
occurred due to a decrease in hepatocytes harboring genomic instability, instated by a geno-
toxic environment, which reinforces a role of IL-6 in promoting survival of pre-malignant
hepatocytes [28]. Furthermore, mice models have shown the immune-suppression role of



Cancers 2021, 13, 4876 4 of 17

IL-6 by inducing PD-L1 expression on tumor-associated macrophages, which are associated
with immune-evasion [29]. Lastly, studies in mouse HCC models have demonstrated that
isolated HCC progenitor cells can give rise to cancer when there is ongoing liver dam-
age, and that these cells promote their own growth and progress towards malignancy via
autocrine IL-6 signaling [30].

2.2. Transforming Growth Factor Beta (TGF-β)

The cytokine TGF-β regulates many inflammatory processes, which generally lead
to inhibition of cellular processes, such as proliferation, differentiation, and survival [31].
Since the TGF-β receptors (TGF-βR) are broadly expressed, TGF-β can act on virtually
all cells. The TGF-βR heterodimer consists of 2 chains which upon triggering, activates
SMAD-dependent signal transduction cascades to induce gene expression of the target
genes [31]. During carcinogenesis, malignant cells can often blunt their suppressive TGF-β
signaling by altering the expression of its receptors, but also hijack the signaling cascade
to inactivate growth-inhibitory functions [31]. In HCC, mutations have been described
in the TGFBRII poly(A) region of the gene, which were found to encode for non-active
receptors [32]. Moreover, HCC cell lines with metastatic potential have been described to
downregulate TGF-βR2. Interestingly, reduced TGF-βR2 expression in HCC tissues was
found to correlate with larger tumor size and various metastatic features, such as poor
differentiation, portal vein invasion and intrahepatic metastasis [32]. Moreover, mutations
in SMAD2 and SMAD4 genes have been observed in HCC which can result in cell cycle
progression via disruption of cyclin inhibitors, such as p15INK4b and p21CIP1 [33–36].
Furthermore, methylation of the cyclin inhibitors p16INK4a and p15INK4b is an event
found in early stages of HCC as well as in cirrhotic patients, although at a smaller rate,
suggesting that these epigenetic modifications play a role in certain aspects of hepatocar-
cinogenesis [37–39]. Interestingly, non-canonical SMAD-independent signal transduction
via TAK1—also known as mitogen-activated protein kinase 7—can activate p38 and JNK
kinases, which are known to participate in HCC [40,41]. Upon JNK activation, a non-
canonical SMAD3 isoform (pSmad3L) becomes active, resulting in silencing of signals of
cell cycle arrest and augmented cell proliferation [42]. In contrast, JNK inhibition has been
shown to reduce HCC tumors in a DEN-HCC rat model [43]. Interestingly, immunostain-
ing of oncogenic JNK signaling molecules in livers of chronic HBV patients was found to
be increased during progression from cirrhosis to HCC [44]. Similar results were found
in HCV-induced HCC livers as fibrotic and necro-inflammatory grades progressed [45].
Moreover, TGF-β signaling has been shown to induced surface tumor associated markers
(i.e., CD133 and CD90) in liver progenitor cells which coffered them tumor intrinsic cell
properties such as, increased self-renewal potential and greater chemoresistance poten-
tial [46]. A proposed mechanism for the increased chemoresistance potential was recently
proposed where TGF-β induced the expression drug-efflux transporters via the induction
of the xenobiotic nuclear receptor, PXR [47].

2.3. Monocyte Chemoattractant Protein 1 (MCP-1)

Produced by parenchymal and non-parenchymal liver cells upon tissue injury, MCP-1
acts as a potent chemoattractant of immune cells by interacting with the CC chemokine
receptor 2 (CCR2) [48]. In HCC mouse models increase in MCP-1 expression plays a
pivotal role in the recruitment of monocyte-derived macrophages [49,50]. In the tumor
microenvironment, these cells can support dysplastic lesions by promoting angiogenesis
and cancer cell proliferation by the release of metalloproteinases (MMPs) and cytokines
such as IL-6 and TGF-ß. In addition, these macrophages also suppress effective anti-
tumor immune responses by limiting antigen presentation and inducing immunotolerance
in favor of the tumor [51,52]. Further illustrating the relevance of MCP-1 in relation to
macrophages, it was shown that CCR2 antagonists inhibit HCC growth in an orthotopic
mice model where murine hepatoma cells were implanted in the liver [53]. This outcome
was accompanied by a reduction of recruited pro-tumorigenic monocytes and an increase of
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anti-tumor cytotoxic CD8 T cells. In line with this, human HCC livers with increased MCP-1
expression show a higher numbers of macrophages and reduced CD8 T cell numbers in the
tumor [53]. On the other hand, laboratory assays have shown MCP-1 to promote migration
and invasion in hepatoma-lines (i.e., Huh7 and Hep3B) by downstream activation of
activating protein-1 (AP-1) which in turn induces the onco-microRNA miR-21 promoting
cancer cell migration and invasion [54].

MCP-1-stimulated HCC cell lines also showed an EMT phenotype which encom-
passed morphological changes with increased expression of stem markers (i.e., N-cadherin,
vimentin) and enhanced metastatic potential when transplanted into nude mice [54]. In-
terestingly, human data on MCP-1 have shown an increase in the number of MCP-1—
expressing endothelial progenitor cells—associated with advanced HCC stages and have
been hypothesized to promote neo-vascularization by promoting angiogenesis via release
of pro-angiogenic cytokines [54].

2.4. Vascular Endothelial Growth Factor (VEGF)

The role of VEGF as an angiogenic and tumorigenesis factor has been known for almost
three decades and has been extensively reviewed elsewhere [55,56]. Under normal liver
homeostasis, VEGF is predominantly expressed by hepatic stellate cells and myofibroblast
at low levels [56,57]. In contrast, during HCC formation and progression, VEGF expression
by these cells in human livers is increased [58]. Oxidative stress, hypoxia, and nutrient
deprivation are hallmarks of tumor formation and have been shown to stimulate VEGF
expression [59–62]. Interestingly, malignant hepatocytes in human HCC tumors have been
shown to expressed higher cytoplasmatic VEGF levels than non-malignant hepatocytes
located in cirrhotic areas [62].

As an angiogenic factor, VEGF induces new vessel formation, which can act as new
ports for the recruitment of inflammatory cells, inducing further inflammation. In addition,
new vessels may act as exit windows for tumor cells to gain access to the circulation
to metastasize46. Interestingly, the lack of well-defined vessel architecture can offer sub-
optimal oxygen and nutrient supply, which may select for more aggressive forms of tumors,
while increasing hepatocyte damage and hypoxia46. All of these factors play a critical role
in hepatocarcinogenesis. As a liver nodule transitions to a tumor, the so-called “portal
triad” becomes less frequent and “unpaired arteries” become the norm. It is in this setting
that VEGF promotes HCC neovascularization [63].

2.5. Fibroblast Growth Factor 2 (FGF-2)

FGF-2 has been shown to be expressed in human tumors since the late 80s and early
in vitro work on hepatoma cell lines demonstrated that almost all cells express FGF-2 at the
mRNA level [64]. Importantly, exogenous FGF-2 can induce cell proliferation rendering this
cytokine an attractive target in HCC therapy [65]. FGF-2 neutralization with monoclonal
antibodies in HCC xenograft mouse models has demonstrated reduced tumor growth [66].
FGF-2’s mode of action is not limited to cell proliferation, but has also been indirectly linked
to tumor angiogenesis. This was demonstrated using a double-chamber in vitro assay in
which FGF-2 secreted by hepatoma cells induced T-cadherin, an adiponectin related to
neovascularization, on liver sinusoidal endothelial cells [67]. Interestingly, T-cadherin
expression is often observed in intra-tumoral capillary endothelial cells in HCC tissues,
but not in liver control tissues [68]. Moreover, serum FGF-2 levels are increased during
progression of chronic liver disease and correlate with large tumors (>5 cm), with the
presence of venous invasion and with advanced TNM stage, suggesting a role for FGF-2 in
HCC angiogenesis progression [69,70].

3. Cytokines Linked to Early Detection

Early detection of HCC remains the best tool in HCC management as curative treat-
ment at this stage achieves the highest survival rates of patients. However, ultrasound
surveillance for HCC detection—the standard approach for patients at risk—estimates a
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pooled 45% sensitivity for early HCC detection by a recent meta-analysis [71]. An attractive
option to replace ultrasound, is the use of blood biomarkers as they are easily quantifiable
and interpretable through standardized assays. In this section, we aim at describing serum
or plasma cytokines with potential clinical use.

3.1. Osteopontin (OPN)

OPN has been examined as an early HCC marker by many research groups. OPN
is highly expressed at sites of inflammation and tissue remodeling and can be produced
by Kupffer cells, hepatic stellate cells, and hepatocytes [72–74]. This cytokine mediates
a wide array of biological functions in the immune and vascular system and has been
studied extensively in numerous cancers [75]. Increased serum and plasma levels of
OPN in individuals with HCC compared to those with liver cirrhosis or chronic liver
disease controls have been reported in several studies [76–82]. Most of these studies were
dominated by Asian cohorts albeit these findings were also true in a West African and
European cohort [79,82]. Moreover, the diagnostic performance of OPN discriminating
HCC from non-HCC, reported as area under the curve (AUC), was 0.75 or higher in most
studies with one exception which may be explained by the inclusion of non-viral etiologies
(i.e., NASH and alcohol) [79]. Despite promising results for HCC vs. non-HCC, the specific
diagnostic efficacy of OPN in detecting early stage HCC from non-HCC patients varies
considerably depending on the study. Evaluation of OPN levels in patients with early
stage HCC (Barcelona Clinic Liver Classification, BCLC, stage 0-A) resulted in an AUC
value for OPN of 0.57 and 0.78, and another study reported an AUC of 0.73 in BCLC stage
A HCC patients [76,78,79]. Furthermore, Zhu et al. reported an impressive AUC of 0.86
discriminating small HCC (<2 cm) vs. non-HCC [80]. Interestingly, a prospective evaluation
in an Asian cohort of 115 chronic liver disease patients (mainly viral) at risk of HCC showed
increased plasma OPN levels 24 months prior to HCC diagnosis in 21 subjects [82]. These
findings were later reproduced in the European Prospective Investigation into Cancer and
Nutrition (EPIC) cohorts. In a similar fashion as the Asian study, EPIC found that OPN
levels within 2 years of diagnosis had a reasonable HCC predictive value with an AUC of
0.82 [83].

3.2. CC Chemokine Ligand 5 (CCL5)

CCL5 is a chemoattractant of memory T cells and other immune cell types, which has
been shown to be critical in controlling chronic viral infections [84]. CCL5 has also been
shown to be associated with liver inflammation in the setting of chronic HCV and HBV
as well [85,86]. To date, only one study, in a European setting, has evaluated serum CCL5
levels in the context of HCC detection. This study examined 61 HCC cases compared to
78 controls and found increased serum CCL5 levels in HCC patients [87]. A multivariate
forward stepwise regression analysis associated CCL5 levels higher than 0.86 ng/mL to
occurrence of HCC (Odds ratio = 3.63) [87]. Moreover, CCL5 performance in HCC detection
had an AUC of 0.72 with a sensitivity (71%) and specificity (68%) [87]. To our knowledge,
no other study has yet reproduced these findings in a different cohort of patients.

3.3. Growth Differentiation Factor 15 (GDF15)

A divergent member of the TGF-β superfamily, GDF15, is rarely detected under
homeostatic conditions, except in human placenta where it is abundant [88]. Increased
levels of this marker are observed in pathological conditions such as inflammation, is-
chemia, and some forms of cancer [88]. In the context of HCC, comparison of serum
GDF15 levels in a Chinese cohort of 223 HCC cases, predominantly due to viral hepatitis,
showed elevated levels in sera of HCC patients as compared to HBV/HCV controls [89].
Importantly, although serum GDF15 levels were increased in HCC patients compared to
chronic HBV and HCV, no statistical differences were found between HCC and cirrhotic
patients. Nonetheless, its performance power demonstrated its discriminatory potential in
detecting HCC with an AUROC of 0.84, 86% sensitivity, and 72% specificity [89]. To date,
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no prospective studies have assessed the predictive value of GDF15 in HCC detection or
its role in non-viral hepatitis related HCC.

3.4. Vascular Endothelial Growth Factor (VEGF)

Besides its role as a potent angiogenic factor for vascular endothelial cells during HCC
formation, as described above, VEGF has also been studied as a potential biomarker for
HCC detection [90]. A retrospective Japanese study showed increased serum VEGF levels
in 59 HCV-related HCCs compared to 28 cirrhotic and 37 non-cirrhotic HCV controls. The
diagnostic performance of VEGF was better than other commonly used biomarkers, such
as alpha-fetoprotein (AFP). This study showed an AUC for VEGF of 0.98 and 0.71 for AFP
(sensitivity: 0.86 and 0.75 for VEGF and AFP, respectively) [91]. In contrast, a comparable
study from Egypt on HCV-related HCC patients did not detect serum VEGF differences
with the HCV control group [92]. These conflicting findings may be explained by ethnic
background differences and HCV genotypes. However, both studies were relatively small
and larger cohorts to further clarify these ambivalent results are needed. Interestingly,
a more recent longitudinal study from our group identified serum VEGF as 1 out of
12 immune mediators to be increased in a group of 13 European chronic HCV patients who
developed de novo HCC within 18 months of HCV therapy compared to matching controls.
In our study, the performance has an AUROC value of 0.8 [93]. However, these findings
were obtained in a small cohort, and in co-measurement with other immune analytes.

4. Cytokines Related to Advanced HCC

The definition of advanced disease in HCC could be evaluated by a variety of factors.
Of these, the BCLC staging is endorsed by the major liver disease societies and has been
well validated [94,95].The BCLC staging system denotes stage C as advanced stage and
stage D as terminal stage [96]. Multiple cytokines and stimulatory molecules are associated
with the risk for advanced disease in patients with HCC.

4.1. Interleukin-10 (IL-10)

IL-10 is a potent anti-inflammatory cytokine [97]. Produced by most activated immune
cells, including monocytes and macrophages, IL-10 acts by reducing the production of
inflammatory mediators, inhibiting antigen presentation, and suppressing numerous other
immune parameters [98,99]. Its role in viral infections is well documented, but its role
in HCC is less clearly understood. A recent meta-analysis showed that IL-10 levels in
HCC patients are increased compared to cirrhotic patients and healthy controls, but not to
patients with viral hepatitis, thereby adding complexity to the interpretation of IL-10 data
for HCC [20]. One study of 67 individuals with resectable HCC provided evidence of worse
post-operative outcomes in patients who had IL-10 level >12 pg/mL [100]. The role of IL-10
in unresectable HCC has also been researched. One retrospective study of 74 patients with
unresectable HCC demonstrated that serum IL-10 levels acted as a negative prognostic
factor with a significantly shorter median survival (3 months compared to 12 months;
p < 0.02) [101]. In a larger series of 222 subjects with unresectable HCC (predominantly
HBV related), the overall survival of patients with high serum IL-10 levels was significantly
worse than that of the low IL-10 group (hazard ratio [HR] 2.2) [102]. Among those with
advanced disease (BCLC stage C), individuals with high IL-10 levels had an overall survival
of 3.5 months, much shorter than those with lower IL-10 levels at 10.2 months [102].

4.2. Interleukin-37b (IL-37b)

IL-37b is the largest of the five different isoforms of IL-37 (designated IL-37a-e) [103,104].
This cytokine is secreted by monocytes, macrophages and epithelial cells, and suppresses
proinflammatory cytokine production and block EMT via downregulation of IL-6/STAT3
signaling [105,106]. Moreover, in vivo experiments with recombinant IL-37b in mice
showed lower tumor volume than in untreated controls [107]. In a study conducted
in HBV-related HCC patients, IL-37b serum levels had an inverse correlation to the progno-
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sis of advanced HCC. Subjects in the high IL-37b group had better overall survival (38.3
vs. 28.9 months) and disease-free survival (33.5 vs. 23.6 months, DFS) [106]. Similarly,
multivariate analysis showed high IL-37b expression in HCC tissues to be associated with
greater overall survival and DFS in a largely HBV-HCC cohort [107]. These findings in
HCC as well as the attenuated production and expression of IL-37b in metastatic cancers
suggest an involvement for IL-37b in the signaling pathways that modulate metastasis,
suggesting a potential role in histopathologic prognostication [108].

4.3. CC Chemokine Ligand 20 (CCL20)

CCL20 (also known macrophage inflammatory protein-3 alpha) interacts with CC
chemokine receptor 6 (CCR6), resulting in chemoattraction of immune cells to inflammation
sites. CCL20 has been shown to display a variety of roles in overall inflammation, rheuma-
toid arthritis and several cancers [109,110]. In vitro and in vivo assays have highlighted a
role for the CCL20-CCR6 axis in inducing HCC proliferation, growth and invasion [111].
Moreover, in a study analyzing 33 specimens from 22 subjects, overexpression of CCL20
was found in tumors supporting a role in hepatocarcinogenesis [112]. Other studies have
demonstrated a high-level expression of CCL20 and its receptor CCR6 in HCC and col-
orectal cancer liver metastasis, therefore indicating its involvement in tumor invasion,
angiogenesis and progression of hepatic malignancies105. However, only one small study
with 11 HCC patients reports a significant association between CCL20 expression and
tumor grading (TNM stage 3 vs. 2) [113]. A study with 293 subjects with HCC, found that
tumor-infiltrating regulatory T cells could be selectively recruited to the tumor through
the CCR6-CCL20 axis. This study showed that the expression of CCL20 in the tumor was
positively correlated with the number of tumor-infiltrating regulatory T cells. Importantly,
the increased numbers of tumor-infiltrating regulatory T cells predicted poorer prognosis
in HCC patients [114].

5. Cytokines Related to HCC Systemic Therapy Response

Most patients present at advanced HCC stages where treatment options are restricted
to recently approved immune-checkpoint inhibitors or kinase inhibitors, such as sorafenib,
regorafenib, and lenvatinib among others, all which block tumor growth and angiogenesis
pathways [115]. Thus, evaluation of cytokines associated with these carcinogenic processes
may help identify prognostic factors in response to therapy. In recent years, immune ther-
apy has become a key player in the systematic treatment of HCC with several combinations
approved for first- and second-line treatment. Moreover, the success of bevacizumab, a
VEGF antibody, in combination with atezolizumab, a PD-L1 inhibitor, for the treatment
of advanced HCC highlights the potential role of these immune players in the treatment
of HCC [116]. Thus far, most studies addressing biomarkers for response to immune
therapy have focused on immune checkpoint markers (i.e., PD-1, CTLA-4), mutational
burden, and circulating DNA [117,118]. Due to the lack of studies involving cytokines in
response to immune therapy we do not focus on that aspect in this review, but provide a
general overview. Indeed, we mainly discuss cytokines with potential clinical utility under
sorafenib as there is an extended body of work available, although new data are becoming
rapidly available for other forms of systemic therapy (Table 1) [119,120].

5.1. Interleukin-6 (IL-6)

In the context of advanced HCC, a study on 128 sorafenib-treated HCC patients (93%
Child–Pugh class A) divided over a discovery and validation cohort evaluated the progno-
sis value of pretreatment serum IL-6 levels. In both cohorts, a high pretreatment serum IL-6
level (cut-off: 4.28 pg/mL) was an independent predictor of poor overall survival [121].
However, there was no association with sorafenib effectiveness as progression-free survival
and time to progression was similar irrespective of pretreatment IL-6 levels. Moreover,
IL-6 pretreatment levels did not associate with macrovascular invasion or extrahepatic
spread [121]. Although promising, further studies, which are currently being conducted,
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are needed to solidify the role of IL-6 in response to therapy in HCC. Interestingly, recent
studies in cellular models have described decreased resistance to sorafenib by inhibiting
IL-6-related pathways [126].

Table 1. Evaluation of serum biomarkers with potential prognostic value in systemic HCC therapy.

THERAPY N PATIENTS TYPE OF STUDY EVALUATED
CYTOKINE/S—BIOMARKERS OUTCOMES REFERENCES

SORAFENIB 128 Retrospective IL-6 OS, PFS and TTP Shao et al., 2017 [121]

SORAFENIB 299 Randomized–
controlled

ANG-2, EGF, bFGF, VEGF, sVEGFR-2,
sVEGFR-3, HGF, and s-c-KIT, IGF-2 OS, TTP Llovet et al.,

2012 [122]

SORAFENIB 120 Retrospective ANG-2, FST, G-CSF, HGF, Leptin,
PDGF-BB, PECAM-1, and VEGF OS, PFS Miyahara et al.,

2013 [123]
SORAFENIB 91 Retrospective TGF-β OS, PFS Lin et al., 2015 [124]

SORAFENIB 80 Prospective FST, G-CSF, HGF, Leptin, PDGF-BB,
PECAM-1, ANG-2, VEGF OS, PFS T. Adachi et al.,

2019 [125]

LENVATINIB 41 Retrospective

aFGF, bFGF, FGF-23, VEGF-R3,
VEGF-C, VEGF-D, EGF, Fas, FasL,
IL-1R2, PDGF-BB, TSP-2, Ang-1,

ANG-2, Tie-2, CXCL8, HGF,
Neuropilin-1, c-MET, HGF, IFN-β

OS, PFS, PD Ono et al., 2020 [120]

REGORAFENIB 332 Randomized–
controlled 294 biomarkers (DiscoveryMAP) OS, TTP Teufel et al.,

2019 [119]

Abbreviations: IL-6, interleukin-6; ANG-1/2, angiopoietin-1/2; EGF, epidermal growth factor; VEGF, vascular endothelial growth factor;
sVEGFR, soluble VEGF receptor; IFN-β, interferon beta; HGF, hepatocyte growth factor; s-c-KIT, soluble c-KIT, IGF-2, insulin-like growth
factor -2; FST, follistatin; G-CSF, granulocyte colony stimulating factor; PDGF-BB, platelet-derived growth factor BB; PECAM-1, platelet
endothelial cell adhesion molecule; aFGF, acidic fibroblast growth factor; bFGF, basic fibroblast growth factor; FGF, fibroblast growth factor;
IL-1R2, interleukin-1 receptor 2; TSP-2, thrombospondin-2; Tie-2, tyrosine-protein kinase receptor Tie-2; CXCL8, chemokine (C-X-C motif)
ligand 8. OS, overall survival; PFS, progression-free survival; TTP, time to progression; PD, (early) progression disease.

5.2. Angiopoietin-2 (ANG-2)

ANG-2 is almost exclusively produced by epithelial cells and acts as a key regulator in
vessel maturation supporting the activities of other endothelial-acting cytokines [6,127–129].
In the SHARP study—the first randomized placebo-control trial to evaluate the role of
sorafenib in advanced HCC, as well as the prognostic value of several cytokines—higher
pretreatment ANG-2 levels were associated with lower overall survival, both in the overall
cohort (n = 602) as well as in the sorafenib arm (n = 299). However, treatment interaction
analysis found no correlation with sorafenib-associated survival. Nonetheless, patients
who experienced an increase in plasma ANG-2 levels at week 12 were found to have
shorter overall survival and time to progression compared to those patients with no in-
crease in plasma levels [122]. One year later, the Okayama Liver Group (Japan) conducted
a retrospective study followed by a longitudinal study on serum cytokines in two dis-
tinct sorafenib-treated advanced HCC cohorts (predominantly Child Pugh A) [123,125].
Similar to the SHARP study, increased pretreatment ANG-2 levels were associated with
shorter overall survival [123,125]. Furthermore, patients with progressive disease showed
increased ANG-2 levels at the start of therapy, compared to those with non-progressive
disease, although the difference was not significant when the authors evaluated ANG-2 in
a prospective cohort, possibly due to a reduced number of patients [123,125]. ANG-2 levels,
however, only increased in patients with progressive disease during follow-up [125].

5.3. Hepatocyte Growth Factor (HGF)

In vitro studies and animal models have shown the HGF can have either promoting
or a suppressive role in the development of HCC [130]. In the SHARP study, higher
pretreatment plasma HGF levels were an independent prognostic factor for lower overall
survival in the overall cohort and sorafenib arm [122]. Interestingly, lower HGF levels at
the start of therapy tended to yield greater benefit from sorafenib in overall survival and
time to progression. Furthermore, a decrease in median HGF plasma levels at 12 weeks,
seen only in the sorafenib group, was associated with longer time to progression but
not overall survival in the treatment arm [122]. Likewise, the Okayama Liver Group
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showed pretreatment levels of serum HGF to be a potential independent predictor of
overall survival in prospective cohort albeit upon multivariate testing significance was
lost [123]. Moreover, HGF pretreatment levels were increased in patients with progressive
disease compared to non-progressive disease, albeit only significant in the retrospective
cohort [123].

5.4. Vascular Endothelial Growth Factor (VEGF)

As a key cytokine driving angiogenesis, multityrosine kinase inhibitors such as So-
rafenib target VEGF signaling. In addition to ANG-2 and HGF, the SHARP study also
evaluated VEGF as a prognostic marker. Similar to the ANG-2, higher VEGF pretreat-
ment levels were associated with lower survival. However, its prognostic value was not
translated in the Sorafenib arm [122]. Interestingly, mean plasma VEGF were significantly
increased in the Sorafenib vs. placebo group [122]. Moreover, a retrospective study con-
ducted by the Okayama Liver group on HCC patients treated with Sorafenib found that
VEGF levels were increased in patients who later experienced disease progression vs.
non-disease progression [123]. In addition, and in concordance with data revealed by the
SHARP study, elevated VEGF levels at baseline correlated with reduced overall survival
and progression free-survival. However, multivariate analysis failed to identify VEGF
as a prognostic factor for overall survival [123]. This observation was later confirmed by
the same study group in a prospective cohort of Sorafenib-treated HCC patients [125].
Interestingly, Tsukiya et al. showed that a 5% decrease in plasma VEGF levels at 8 weeks
from baseline was an independent prognostic factor associated with 1-year survival after
Sorafenib treatment in a small cohort of HCC patients (n = 63) [131].

6. Cytokines Associated with Response to Immune Checkpoint Inhibitor Therapy

In recent years, immune checkpoint inhibitors (ICI) have expanded the treatment
options for HCC. These agents target the co-inhibitory cell signals via the programmed
death ligand/receptor (PD-L1/PD-1) and/or cytotoxic T-lymphocyte associated antigen-4
(CTLA-4) [132]. Despite the promise shown by these agents in clinical trials, the response
rates in clinical practice may be less than 40%, hence the need for predictors of response to
ICI treatment [133]. Most of the studies and data regarding biomarkers for ICI response
are very limited and recent. We therefore highlight below some of the studies in the
field. Nonetheless, further research and confirmation is needed for those markers to be
considered in clinical practice. Pretreatment levels of PD-1/PD-L1 are well observed to
predict response to ICI therapy, as well as the risk of acute cellular rejection when used
in liver transplant recipients [134,135]. Beyond PD-1/PD-L1, the use of other peripheral
biomarkers in the prediction of response to ICI is somewhat limited, but there have been a
few biomarkers of interest with early assessment, including OPN, T-cell immunoglobulin
and mucin domain-containing-3 (TIM-3), V-domain immunoglobulin suppressor of T-
cell activation (VISTA), and C-C motif chemokine 5 (CCL5/RANTES) [136–138]. In a
study on the effect of OPN and the colony-stimulating factor-1/receptor (CSF1/CSF1R)
pathway in HCC-bearing mice, Zhu et al. noted that anti-PD-L1 and CSF1R inhibition
in mice with high OPN elicited potent anti-tumor activity and prolonged survival [136].
Furthermore, in a trial using a discovery cohort of 21 patients and a validation cohort of
61 patients with multiple cancer types (31% HCC), the combined expression of soluble
PD-L1 as well as CCL5/RANTES was helpful in predicting improved disease control (AUC
0.722, p 0.003) [138]. Finally, smaller studies of patients with HCC on ICI therapy have
suggested a potentially predictive role of baseline levels of inflammatory cytokines, such
as transforming growth factor-beta (TGF-β) [139]. The above-mentioned studies are either
in animal models, in very small cohorts, or retrospective assessment of public databases,
and larger studies should be performed to better understand the roles of these markers in
ICI for HCC.
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7. Conclusions

Cytokines are complex immune molecules active in a variety of diseases, including
cancer. In HCC, cytokines have been found to have a role in different aspects of tumor
formation and detection. This review intended to present cytokines of clinical relevance and
their interconnection with different aspects of HCC, highlight their contribution in tumor
promotion as well as in detection and response to therapy. As the need for soluble HCC
biomarkers that are simple to measure continues, cytokines represent an attractive solution
since their measurement only requires basic laboratory equipment. However, the immune
dysregulation underlying the different liver diseases that give rise to HCC (i.e., chronic
viral infections, NAFLD) challenges the implementation of these cytokines as reliable
biomarkers. Recent studies have aimed to evaluate a combination of different cytokines in
a signature fashion in HCC of specific underling etiologies, improving their potential as
important players in HCC surveillance. Advances in measurement techniques, stratification
of cohorts, understanding of specific roles by cytokines in HCC, and possibly biomarker
combination/s with tumor specific markers will further the path to their potential use in
clinical practice.
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