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The occurrence and development of cardiovascular-related diseases are associated

with structural and functional changes in gut microbiota (GM). The accumulation of

beneficial gut commensals contributes to the improvement of cardiovascular-related

diseases. The cardiovascular-related diseases that can be relieved by Lactobacillus

supplementation, including hypercholesterolemia, atherosclerosis, myocardial infarction,

heart failure, type 2 diabetes mellitus, and obesity, have expanded. As probiotics,

lactobacilli occupy a substantial part of the GM and play important functional roles

through various GM-derived metabolites. Lactobacilli ultimately have a beneficial impact

on lipid metabolism, inflammatory factors, and oxidative stress to relieve the symptoms

of cardiovascular-related diseases. However, the axis and cellular process of gut

commensal Lactobacillus in improving cardiovascular-related diseases have not been

fully elucidated. Additionally, Lactobacillus strains produce diverse antimicrobial peptides,

which help maintain intestinal homeostasis and ameliorate cardiovascular-related

diseases. These strains are a field that needs to be further investigated immediately. Thus,

this review demonstrated the mechanisms and summarized the evidence of the benefit

of Lactobacillus strain supplementation from animal studies and human clinical trials. We

also highlighted a broad range of lactobacilli candidates with therapeutic capability by

mining their metabolites. Our study provides instruction in the development of lactobacilli

as a functional food to improve cardiovascular-related diseases.

Keywords: cardiovascular-related diseases, lactobacilli, gut microbiota, antimicrobials, therapeutic use

INTRODUCTION

Cardiovascular diseases and related diseases, such as hypercholesterolemia, hypertension,
atherosclerosis, obesity, and diabetes, are the leading causes of death worldwide and continue
to be an economic and health burden (1–3). Alterations in the composition and function of
the gut microbiota (GM), known as dysbiosis, are linked to the occurrence and development
of cardiovascular-related diseases. Tang et al. (4) summarized the GM composition of patients
suffering from atherosclerosis, hypertension, obesity, and type 2 diabetes mellitus (T2DM)
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with high Firmicutes/Bacteroides ratio, trimethylamine-N-
oxide (TMAO), short-chain fatty acids (SCFAs), and bile acids
(BAs), as well as lipopolysaccharide (LPS) alterations. Recent
research has demonstrated that the function of GM dysbiosis
on cardiovascular-related diseases includes the following
four aspects: inflammatory response due to the release of
intestinal bacterial endotoxin, lipid metabolism abnormality,
in vivo oxidative stress reaction, and tryptophan metabolism
abnormality (5, 6).

Probiotic supplementation could lead to a reduction in
cardiovascular risk (4, 7). Probiotics may act through different
mechanisms, including establishing intestinal balance, affecting
nutrient absorption and immune functions, and competing with
pathogens (8). Among gut probiotics, the genus Lactobacillus
is a Gram-positive probiotic classified as lactic acid bacteria
(9). Various Lactobacillus strains have been widely studied
for their interventions in cardiovascular-related diseases via
the modulation of lipid cholesterol metabolism, immune-
inflammatory response, oxidative stress response, and the
involvement of GM-derived metabolites, including TMAO,
SCFAs, LPS, and BAs (10–13). The metabolites produced by
Lactobacillus, especially antimicrobial substances, can inhibit the
growth of pathogens and regulate GM disorder (14, 15). They
act as the protectors of GM and are the major contribution
of lactobacilli in the improvement of cardiovascular-related
diseases. However, as an important therapy for the improvement
of cardiovascular-related diseases, a wide range of Lactobacillus
can also be mined and visualized with a clear function. The
discovery of antimicrobials by genome mining is feasible and
worthwhile because the subsequent identification and isolation
of known and putative molecules can attract pharmacological
interest (16). The specific alteration of Lactobacillus through
these mediators in the host physiology for the remedy of
cardiovascular-related diseases should also be analyzed for future
studies. Developing more Lactobacillus strains is beneficial for
clinical application.

China issued the list of bacteria, including 13 Lactobacillus
species, which are recognized as safe ingredients and widely used

Abbreviations: ACEI, Angiotensin-converting enzyme inhibitors; AM, Alveolar
macrophages; Apo A-I, Apolipoprotein A-I; Apo B, Apolipoprotein B; BAs,
Bile acids; BSH, Bile salt hydrolase; CHD, Coronary heart disease; Cpt1a,
Carnitine palmitoyl transferase 1a; Cyp7A1, Cytochrome P450 a1; DC, Diabetic
cardiomyopathy; DCA, Deoxycholic acid; DOCA, Deoxycorticosterone; EFSA,
European Food Safety Authority; FGF, Fibroblast growth factor; FXR, Farnesoid
X receptor; GM, Gut microbiota; GRAS, Generally recognized as safe; GSH,
Glutathione; HbA1c, Glycated hemoglobin; HDL-C, High density lipoprotein
cholesterol; HF, Heart failure; HFD, High-fat diet; HMG-CoA, 3-hydroxy-3-
methyl glutaryl coenzyme A; ICAM, Intercellular adhesionmolecule; Insig, Insulin
induced gene; LDL, Low density lipoprotein; LDL-C, Low density lipoprotein
cholesterol; LDL-R, Low density lipoprotein receptor; LPS, Lipopolysaccharide;
LVH, Left ventricular hypertrophy; LXR, Liver-X-receptors; MCP-1, Monocyte
chemotactic protein-1; MI, Myocardial infarction; NE, Norepinephrine; NO,
Nitric oxide; NPC1L1, Niemann-Pick C1-like 1; QPS, Qualified presumption
of safety; SCFAs, Short chain fatty acids; SOD, Superoxide dismutase; TAS,
Total antioxidant status; TBARS, Thiobarbituric acid reactive substances;
TC, Total cholesterol; T2DM, Type 2 diabetes; TG, Triacylglycerols; TLC,
Therapeutic lifestyle changes; TMAO, Trimethylamine N-oxide; TSST-1, Toxic
shock syndrome toxin-1; VaD, Vascular dementia; VCAM, Vascular cell adhesion
molecule; WAT, White adipose tissue; WHO, World Health Organization.

in the production of food products. The list was supplemented
in the form of an announcement by the National Health
Commission of the People’s Republic of China [http://www.
nhc.gov.cn, (2010) No. 65]. From 2005 to 2021, more than 20
strains among nine Lactobacillus species have been classified
as “generally recognized as safe” by the U.S. Food and Drug
Administration (https://www.accessdata.fda.gov). Besides, the
European Food Safety Authority provides the assessment for
probiotics, and 37 Lactobacillus species had been recommended
for the Qualified Presumption of Safety list until 2021 (17–
20). Among these species, L. acidophilus, L. casei, L. crispatus,
L. curvatus, L. delbrueckii, L. fermentum, L. gasseri, L.
helveticus, L. johnsonii, L. paracasei, L. plantarum, L. reuteri,
L. rhamnosus, and L. salivarius were certified by at least two
organizations (Supplementary Table 1). L. murinus has made
a remarkable contribution to the prevention and treatment
of hypertension (21). This review studied 38 Lactobacillus
species (Supplementary Figure 1), updated the findings of the
relationship between Lactobacillus and cardiovascular-related
diseases, and provided a rich candidate of Lactobacillus strains
that lessen cardiovascular risks.

HOW DO LACTOBACILLI AS GM
COMMENSAL ALLEVIATE
CARDIOVASCULAR-RELATED DISEASES?

In recent years, our perception of the microbiome has evolved
from a group of inert microorganisms into a true “endocrine
organ” (22). The GM-dependent mechanism of Lactobacillus
has also attracted widespread attention. A few reports revealed
the evidence of lactobacilli on modulating GM composition,
including only L. acidophilus, L. brevis, L. casei, L. fermentum,
L. johnsonii, L. mucosae, L. paracasei, L. plantarum, L.
reuteri, L. rhamnosus, L. sakei, L. salivarius. Nonetheless, the
primary beneficial effect of lactobacilli starts from restoring GM
abundance and species diversity. Lactobacillus colonization in
the intestinal tract directly affects intestinal homeostasis and
reduces gut permeability by inhibiting pathogens because of
their antimicrobial products. Lactobacillus can modulate gut-
derived metabolites and further decrease the level of serum
cholesterol and reduce inflammation and oxidant damage. Many
studies have revealed the relevant relationships between gut-
derived mechanisms and the development of cardiovascular-
related diseases (Figure 1).

LACTOBACILLUS CORRECTS
RISK-ASSOCIATED MICROFLORA AND
METABOLITES

Characteristic shifts in GM structure due to Lactobacillus
intervention are manifested by corrections of vital gut dysbiosis
parameters, such as decreased Firmicutes/Bacteroidetes ratio
and abundant Bacteroides, Lactobacillus, and Bifidobacterium
(Table 1). Lactobacillus further affects itself and other intestinal
microbes that metabolize the host digestive products into
various metabolites, such as trimethylamine (TMA), SCFAs,
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FIGURE 1 | Mechanisms of lactobacilli on prevention and treatment of cardiovascular-related diseases through the GM. Green↑, Increase/Promote; Red↓/×/⊥,

Decrease/Inhibit.

LPS, and BAs, which are involved in the progression of
cardiovascular-related diseases (48). Lactobacillus reduces the
putative cardiovascular risk mediator TMAO, which is produced
by TMA oxidation in the liver, to prevent atherosclerosis
and hypertension (11, 49). However, the possible mode of
action of lactobacilli on TMAO is still unclear because
a paucity of literature is available on the subject, and
supporting clinical data is limited. Genomic data of GM
showed that 37 bacterial species belonging to the phyla
Firmicutes, Proteobacteria, and Actinobacteria harbor genes
involved in TMA production (50). In consideration of the
role of GM in TMAO metabolism, lactobacilli might inhibit
gut microbes that produce key enzymes that catalyze TMA
production. Lactobacillus supplementation promotes the SCFAs-
producing bacteria Roseburia, Ruminococcus, and Eubacterium
to facilitate the dietary fiber-fermented byproducts SCFAs
(51, 52), which play critical roles in maintaining healthy
cardiovascular functions. As the major component of the outer

membrane of Gram-negative bacteria, LPS plays a key part in the
pathogenesis of hypertension, obesity, and T2DM. Lactobacillus
has the ability to reduce the LPS concentration in serum (53, 54).
The potential of lactobacilli to inhibit Gram-negative is discussed
in this paper. Disorders in BAs metabolism cause dyslipidemia,
cardiovascular diseases, and diabetes. Lactobacilli have a major
function in BAs biotransformation by promoting the activity of
microbial bile salt hydrolase (BSH), regenerating primary free
BAs, and facilitating the microbial formation of secondary BAs,
as well as a range of intermediates (55, 56).

LACTOBACILLUS INHIBITS PATHOGENIC
BACTERIA AND REDUCES GUT
PERMEABILITY

The destruction of the intestinal barrier function in patients
with cardiovascular-related diseases is the main reason for
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TABLE 1 | A variety of lactobacilli with therapeutic effects on cardiovascular-related diseases.

Lactobacillus Strain Via Cellular process Via Gut Microbiota (GM) Cardiovascular-related

diseases

Model Reference

Cholesterol-

lowering

Anti-

Inflammation

Anti-

oxidative

stress

Metabolite GM variety

L. acidophilus La5 • ◦ ◦ ◦ Dyslipidemia Type 2 diabetic adults (23)

L. amylovorus CP1563 • ◦ ◦ ◦ Roseburia and

Lachnospiraceae↑

Collinsella↓

Obesity Obese class I adults; pre-obese

healthy adults

(24, 25)

L. casei 01 ◦ ◦ ◦ ◦ Type 2 diabetes mellitus Type 2 diabetic adults (26)

Shirota • ◦ ◦ SCFAs↑ Bifidobacterium,

Bacteroides fragilis group,

Atopobium cluster,

Lactobacillus gasseri

group↑

Obesity Obese children (27)

L. fermentum ME-3 • • • ◦ Cardiovascular and diabetes risk Asymptomatic adults (13)

L. gasseri BNR17 ◦ ◦ ◦ ◦ Obesity Overweight and obese adults (28)

SBT2055(LG

2055)

◦ ◦ ◦ ◦ Obesity Healthy adults with large visceral

fat areas

(29, 30)

• ◦ ◦ ◦ Obesity and type 2 diabetes

mellitus

Hypertriacylglycerolemic adults (31)

L. helveticus LBK-16H ◦ ◦ ◦ ◦ Hypertension Hypertensive adults (32, 33)

CM4 ◦ ◦ ◦ ◦ Hypertension Hypertensive adults (34)

L. murinus ◦ ◦ ◦ ◦ Salt-sensitive hypertension In vitro trial (TH17 cells) healthy

men, HSD-fed FVB/N mice

(21)

L. plantarum Lp299v ◦ • • ◦ Coronary artery disease Men with stable coronary artery

disease

(35)

ECGC13110402 • • ◦ ◦ Hypercholesterolemia Hypercholesterolemic adults (36)

OLL2712 • • ◦ ◦ Obesity Overweight adults (37)

Dad-13 ◦ ◦ ◦ ◦ Bifidobacteria and

Lactobacilli↑

Enterobacteriaceae

and Staphylococcus↓

Obesity Overweight adults (38)

L. reuteri NCIMB30242 • • ◦ ◦ Hypercholesterolemia Hypercholesterolemic adults (7)

DSM17938 • ◦ ◦ BAs↑ Diversity↑ Insulin sensitivity Type 2 diabetic adults (39)

ADR-1 or ADR-3 • ◦ ◦ ◦ Lactobacillus and

Bifdobacterium↑

Type 2 diabetes mellitus Type 2 diabetic adults (40)

V3401 ◦ • ◦ ◦ Verrucomicrobia↑ Metabolic syndrome Adults with metabolic syndrome (41)

L. rhamnosus ◦ ◦ ◦ ◦ Myocardial infarction Post-myocardial infarction adults (42)

GG ◦ ◦ ◦ ◦ Type 2 diabetes mellitus Middle age and older adults (43)

GG ◦ • ◦ LPS↓ Coronary artery diseases Adults with coronary artery

diseases

(44)

(Continued)
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the excessive proliferation of related pathogens and the
increase in plasma endotoxin concentration. These conditions
further aggravate gut permeability, promote inflammation, and
increase cardiovascular risks (57). Lactobacillus exerts strong
antimicrobial activity against pathogens and reinforces the
intestinal barrier (58). Although antimicrobial production by
lactobacilli has been regarded as a beneficial trait for some
time, the full extent of the benefits of antimicrobials in the
gut is only beginning to be appreciated. A comparison of L.
salivarius UCC118 (with bacteriocin Abp118) with the non-
bacteriocin-producing strain, L. salivarius UCC118 (knock out
Abp118), showed that antimicrobial production resulted in an
increase in Bacteroidetes and a reduction in the proportions
of Actinobacteria in the GM of diet-induced obesity mice (59).
Further clinical research demonstrated that the favorable effects
of the UCC118 strain possibly rely on positive alterations in gut
permeability and microbiota (60). An animal study showed that
L. plantarum ZLP001 pretreatment alleviated the reduction in
junction proteins (claudin-1, occludin, and ZO-1) (61), which are
the key contributors to establishing an effective intestinal barrier
(62). Several in vitro experiments also showed that lactobacilli
positively affect gut permeability, as incubation of Caco-2 cells
with different Lactobacillus strains was found to restore impaired
intestinal barrier (63, 64).

Of note, LPS produced by Gram-negative bacteria in the
gut is the main component of endotoxin. Gassericin, enterocin
A, paracin 1.7, lactocin, bacteriocin TSU4, and bacteriocin
217 greatly inhibit Gram-negative bacteria (such as Escherichia
coli) (65–74). Therapeutic manipulation of microbiota using
different antimicrobial strategies may be a useful approach for the
management of cardiovascular-related diseases. Our extended
list of antimicrobial compounds demonstrates that lactobacilli
are excellent antimicrobial producers (Supplementary Table 2).
L. paracasei, L. sakei, L. plantarum, L. casei, L. gasseri, L.
alimentarius, L. coryniformis, L. panis, L. crispatus, L. johnsonii, L.
amylovorus, L. curvatus, L. rhamnosus, and L. helveticus can now
readily be tapped experimentally for improving cardiovascular-
related diseases.

LACTOBACILLUS PRESENTS
CHOLESTEROL-LOWERING,
ANTI-INFLAMMATION, AND
ANTI-OXIDATIVE STRESS EFFECTS

By expressing BSH, lactobacilli have certain advantages in the
intestine that result in the deconjugation of free bile salts,
which combine with cholesterol to form a precipitate and are
more easily excreted via feces (10, 75–77). Lactobacilli induce
the catabolism of cholesterol to BAs by cytochrome P450 a1
(Cyp7A1) by inhibiting farnesoid X receptor (FXR) (78, 79)
and inhibit the reabsorption of BAs into the enterohepatic
circulation (80). SCFAs are transported to the liver to modulate
the hepatic metabolism of lipids and cholesterol by elevating
the transcriptional activity of liver X receptor (LXR) alpha
and upregulating Cyp7A1 (81). By contrast, TMAO regulates
changes in BAs synthesis to accelerate aortic lesion formation by
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activating FXR and small heterodimer partner to suppress BAs
synthetic enzyme expression and decrease BAs transporters in the
liver but not in the gut (82).

Lactobacillus has anti-inflammatory activity and exerts
protective effects on damage by inhibiting PI3K/Akt, NF-κB
activation, and inflammatory cytokines, such as tumor necrosis
factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-8, and monocyte
chemotactic protein 1 (MCP-1). Lactobacillus promotes SCFAs
production that activates the G protein-coupled receptor 43
(GPR43) pathway (51, 83), and downregulates the expression
and activation of NF-κB, interferon-γ, Toll-like receptor 2, TNF-
α, and other cytokines/chemokines involved in inflammatory
responses (84). Lactobacillus presents an anti-oxidative effect by
blocking LPS-induced nitric oxide (NO) production; decreasing
the expression of cyclooxygenase (COX)-1, COX-2, inducible
nitric oxide synthase (iNOS), and TNF-α mRNA (85). In
addition, Lactobacillus promotes Nrf-2-induced antioxidative
activity in mice to reduce cardiovascular risk (86). Other
serum markers of oxidative stress, including thiobarbituric
acid-reactive substances (TBARS), superoxide dismutase (SOD),
malondialdehyde, catalase (CAT), glutathione peroxidase (GSH-
Px), norepinephrine (NE), and prostacyclin, were also altered
by Lactobacillus intervention. Butyrate promotes endothelial
nitric oxide synthase (eNOS) expression and NO bioavailability
in vascular smooth muscle cells (87). TMAO induces reactive
oxygen species (ROS) generation, particularly mitochondrial
ROS through the suppression of SOD2 activity and sirtuin-
3 in human umbilical vein endothelial cells and aortas from
apolipoprotein E (ApoE)-deficient mice.

Without a doubt, our review is limited by the available studies.
A few metabolites such as indole derivatives, polyamines, and
taurine are not deeply discussed in the function of lactobacilli
treatment. Furthermore, some new regulatory mechanisms of
vascular-related diseases should be concerned, such as activation
of aromatic hydrocarbon receptor, rather than classical pathways.

LACTOBACILLUS STRAINS WORTHY OF
ATTENTION AND THEIR THERAPEUTIC
USE

Various lactobacilli strains play roles in reducing cardiovascular
risk factors, balancing metabolic disorders, and altering health-
related microflora metabolite production. However, little is
known about the role of these supplements as important dietary
components in preventing or treating cardiovascular-related
disease. Still, some reports and clinical studies were conducted,
offering new ways of treatment. In addition, some lactobacilli
species, such as L. acidophilus, L. gasseri, and L. rhamnosus, have
been associated with a wide range of purported health benefits,
such as anti-infectious activity; immunomodulation; anti-
allergenic effects; and tumor suppression. Below are the selected
lactobacilli that improve cardiovascular-related diseases. Eleven
Lactobacillus species take effect on extensive cardiovascular risks,
10 species act on a single disease, and the effects of the other 17
species on cardiovascular-related diseases have not been reported
(Supplementary Figure 1). Due to the strain specificity and

individual physical differences, a personalized clinical evaluation
and intake recommendation should be developed.

Lactobacillus acidophilus
L. acidophilus, which is one of the most important resident
microorganisms in the small intestine, has a cholesterol-
lowering function for the improvement of hyperlipidemia,
hypercholesterolemia, atherosclerosis, coronary heart disease
(CHD), T2DM, and obesity (75, 88–92). Strain ATCC 43121
can reduce cholesterol metabolism by increasing insoluble BAs
(lithocholic acid) in hypercholesterolemia rats (75). L. acidophilus
ATCC 4356 reduced the expression of the Niemann-Pick C1-
Like 1 and glucose transporter 2 gene and inhibited the
cellular uptake of micelle cholesterol and glucose in Caco-2
cells (89, 93). Further animal studies (90, 94) found that the
administration of strain ATCC 4356 can prevent atherosclerosis
by inhibiting the absorption of intestinal cholesterol and
enhancing the abundance of Lactobacillus and Bifidobacterium
in the gut. In addition to reducing total cholesterol (TC), L.
acidophilus SJLH001 isolated from fermented food can also
reduce blood glucose in high-fat diet (HFD)-induced obese mice
by regulating the key genes involved in the glucose transport,
ion channels, and immune response of the bacterium (95)
and affect the structure of intestinal microbiota. Strain LA5
improved saturated fat-induced obesity mouse model through
the enhanced intestinal Akkermansia muciniphila (96). Besides,
L. acidophilus KLDS1.0901 administration showed antidiabetic
and antioxidant activity in T2DM mice induced by HFD
and intraperitoneal injection of streptozotocin (STZ) (97). L.
acidophilus is known for the mixed-use with Bifidobacteria in
probiotic dairy foods and effectively used in clinical practice (23).
Since L. acidophilus is safe in humans, it is likely a potential drug
for improving cardiovascular health. Therefore, clinical studies
are warranted to explore the beneficial effects of this bacterium.

Lactobacillus brevis
L. brevis is a microaerophilic, obligately heterofermentative
lactic acid bacterium isolated from various natural environments
with relieving effects on hypercholesterolemia, atherosclerosis,
obesity, and hypertension. The potential mechanism of the
cholesterol-lowering effect of L. brevis 119-2 was the inhibition of
3-hydroxy-3-methylglutaryl-CoA reductase activity by insulin-
induced gene (Insig) protein and the induction of the catabolism
of cholesterol to BAs by Cyp7A1 (78). L. brevisOK56 ameliorated
HFD-induced obesity in mice by inhibiting NF-κB activation
and gut microbial LPS production (98). L. brevis OPK-3
inhibited the induction of inflammation in adipose tissue along
with preventing weight gain (99). L. brevis presented an anti-
hypertensive effect by blocking LPS-induced NO production and
decreasing the expression of COX-1, COX-2, iNOS, and TNF-
α mRNA (85). Gamma-aminobutyric acid-producing strains, L.
brevis DPC6108, and L. brevis DSM32386, had the potential to
improve metabolic profiles in mice with metabolic dysfunction
(100). There are few studies on the clinical practicability and
suggestions for L. brevis, and extensive studies are expected.
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Lactobacillus casei
L. casei is a transient bacterium in the human body and can
relieve hypocholesterolemia, atherosclerosis, and hypertension in
mice/rats through a cholesterol-lowering mechanism attributed
to the improvement of BAs, SCFAs, and TMAO (10, 101–103).
L. casei 01 supplementation significantly decreased dietary intake
and body weight through improving serum fetuin-A and sirtuin1
levels and glycemic response in T2DM patients (26). L. casei can
also effectively treat T2DM and hyperglycemia by suppressing
GM-mediated inflammation (104–106). L. casei prevented
T2DM possibly via a microbiota-based BA-chloride exchange
mechanism by upregulating chloride ion-dependent genes (ClC1-
7, GlyRα1, SLC26A3, SLC26A6, GABAAα1, Bestrophin-3, and
CFTR) (104). L. casei CCFM419 had a potential ability to
ameliorate insulin resistance and hyperglycemia in T2DM mice
through underlying PI3K/Akt signaling pathway and gut flora-
SCFAs-inflammation/GLP-1 mechanism (105, 106). L. casei
strain Shirota as a dietary intervention not only played a role in
controlling childhood obesity and improving lipid metabolism
through an apparent increase in acetic acid concentration
(27). The common points of these lactobacilli in modulating
GM were the increase of Lactobacillus and Bifidobacterium. L.
casei C1 supplementation in hypertensive rats increased serum
glutathione (GSH) and NO levels; thus, the strain worked
through antioxidant function and increased NO levels (induced
vasodilation) for attenuating hypertension (107). Besides, L. casei
has a significant effect on the treatment of liver injury (108),
indicating that this bacterium is suitable for patients with the
above risks.

Lactobacillus delbrueckii
L. delbrueckii subsp. bulgaricus (L. bulgaricus) is widely used in
the dairy industry and can treat hypercholesterolemia, ischemic
heart disease, and diabetes. L. bulgaricus NS12 can reduce serum
TC, low-density lipoprotein (LDL), apolipoprotein B, and free
fatty acid levels and increase apolipoprotein A-I levels in rats
with high cholesterol diet. Simultaneously, this strain remarkably
reduced liver damage and liver lipid deposition by regulating the
mRNA expression levels of liver enzymes related to cholesterol
metabolism (109). Besides, L. bulgaricus had a certain protective
effect on the heart. L. bulgaricus 51 remarkably reduced rapid
arrhythmia after reperfusion in ischemic rats, reduced the release
of NE and prostacyclin in the first minute of reperfusion, and
improved the heart function of ischemic rats. The protective
effect is related to the activation of CAT and the expression
of heat shock protein 70 (110, 111). L. delbrueckii subsp. lactis
PTCC1057 treatment decreased the fasting blood glucose and
fetuin-A level and increased the serum sestrin 3 level in the STZ-
induced diabetic mice (112). However, whether L. delbrueckii
is an effective supplement or not in clinical cohorts is still
being debated. Nonetheless, this bacterium has shown promising
results in clinical trials for patients with respiratory or vaginal
infections (113, 114).

Lactobacillus fermentum
L. fermentum colonizes the gut and plays an important role in
intestinal health. Clinical and animal experiments have proven

its preventive and therapeutic effects on hypercholesterolemia,
hyperlipidemia, hyperglycemia, atherosclerosis, obesity, and
hypertension. L. fermentum has diverse regulatory mechanisms
in addition to cholesterol-lowering metabolism together through
SCFAs and BAs regulation (76, 115–120). Adverse physiological
alterations, including considerably higher levels of serum TC,
low-density lipoprotein cholesterol (LDL-C), triacylglycerols
(TG), atherogenic index, coronary artery risk index, hepatic
lipids, lipid peroxidation, mRNA expression of inflammatory
cytokines (TNF-α and IL-6) in the liver, and anti-oxidative
enzyme activities (CAT, SOD, and GSH-Px) in the liver and
kidney, improved after the supplementation of L. fermentum
MTCC: 5898-fermented buffalo milk (2.5% fat) in rats fed with
cholesterol-enriched diet (118). L. fermentum can also play a role
in fat metabolism. Fecal cholesterol and BAs levels considerably
increased after L. fermentum 9-41-A administration (121).
Intestinal Lactobacillus and Bifidobacterium colonies increased
whereas Escherichia coli colonies decreased. L. fermentum strains
can effectively inhibit HFD-induced obesity through modulation
of the PPAR-α signaling pathway, oxidative phosphorylation in
adipose tissue, and gut microbiome (122–124). L. fermentum
CECT5716 can also restore vascular redox status and improve
eNOS coupling to prevent hypertension and endothelial
dysfunction caused by tacrolimus (125). In clinical trials, the
use of L. fermentum ME-3 positively affected blood lipoprotein,
oxidative stress, and inflammatory profile (13). However, L.
fermentum may destroy the intestinal barrier, so further safety
evaluation should be carried out (126).

Lactobacillus gasseri
Obesity is one of the common cardiovascular-related diseases,
and research on new probiotic therapy has good application
prospects. As a type of Lactobacillus found in the gastrointestinal
tract, L. gasseri presents an anti-obesity effect by inhibiting lipid
absorption. The effect of L. gasseri SBT2055 (LG2055) on fat
hydrolysis was measured by measuring the activity of pancreatic
lipase and the in vitro properties of the fat emulsion. The
results showed that LG2055 increased the size of fat emulsion
droplets and therefore inhibited lipase-mediated fat hydrolysis
and promoted human fecal fat excretion (127). Similarly,
skimmedmilk fermented by LG2055 remarkably reduced average
adipocyte size and reduced leptin and cholesterol in rats (128).
LG2055 also has an anti-inflammatory function. A 24-week study
found that the supplemental feeding of strain LG2055 to mice
fed with a 10% fat diet could reduce the expression of pro-
inflammatory genes, such asCCL2 andCCR2, and prevent weight
gain and fat accumulation (129). Consumption of probiotic
LG2055 can reduce serum non-esterified fatty acid levels after
meals and on an empty stomach, indicating that it may help
reduce the risk of obesity and T2DM (29–31, 130). LG2055 and L.
gasseri BNR17 also have a good anti-obesity effect on overweight
and obese adults, and healthy adults with large visceral fat
areas (28, 30, 130, 131). The cholesterol-lowering effect of L.
gasseri SBT0270 in hypercholesterolemia rats is attributed to the
inhibition of BA reabsorption into the enterohepatic circulation
and the enhancement of the excretion capacity of acidic steroids
in the feces, which can effectively reduce heart vascular risk (80).
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These findings warrant a subsequent longer-term prospective
clinical investigation with a larger obese population.

Lactobacillus helveticus
L. helveticus commonly used for dairy fermentation has long-
term hypotensive effects in patients with hypertension (32).
Two tripeptides (Val-Pro-Pro and Ile-Pro-Pro) that inhibit the
activity of angiotensin I converting enzyme are produced in
fermented milk and do not cause adverse effects while lowering
blood pressure (34). Long-term intervention can reduce arterial
stiffness in patients with hypertension (33). L. helveticus KII 13
isolated from fermented milk can produce hypotensive peptides,
reduce serum cholesterol and, increase the expression of LDL
receptor and SREBF2 genes related to cholesterol metabolism in
the liver in mice in the HFD group (132). Moreover, L. helveticus
can absorb a certain degree of cholesterol for biotransformation
in vitro (133). Also, the effectiveness study of L. helveticus
on patients with hypertension and major depressive disorder
requires further study (134).

Lactobacillus paracasei
L. paracasei, a gastrointestinal tract bacterium, plays multiple
roles in the improvement of cardiovascular-related diseases,
including hypercholesterolemia, hyperlipidemia, atherosclerosis,
T2DM, obesity, and hypertension. The cholesterol-lowering
effect of L. paracasei NTU101 resulted in the increased
abundance of Allobaculum and Clostridium XIVa (135).
Supplementation with L. paracasei NTU101 considerably
reduced the ratio of LDL-C to high-density lipoprotein
cholesterol (HDL-C), SOD activity, and total antioxidant status
of the blood and relieve the degree of TBARS; hence, this strain
can effectively prevent hyperlipidemia-induced oxidative stress
and atherosclerosis (136). L. paracasei NTU101 can also act in
hypertension treatment through substances, such as angiotensin-
converting enzyme inhibitors (ACEI) and aminobutyric acid
(γ-aminobutyric acid) (137), and exert neuroprotection in the
brain (138). L. paracasei can regulate cholesterol metabolism,
BAs homeostasis, as well as the LXR/inflammatory axis of
LPS-stimulated alveolar macrophages, in animals fed with HFD
(139–142). L. paracasei also protects the cardiovascular system by
regulating blood glucose, insulin sensitivity, and fat metabolism
(143). Researchers evaluated the α-glucosidase inhibitory activity
of eight L. paracasei strains in vitro, and L. paracasei TD062,
which has a high α-glucosidase inhibitory activity (31.9%),
showed excellent antidiabetic ability. Further in vivo study
showed that L. paracasei TD062 had a positive effect on the
antioxidant capacity and the expression levels of genes that were
related to glucose metabolism and the PI3K/Akt pathway in
diabetic mice (144). Similarly, the studies are in animal models,
and extrapolation in humans needs further studies, especially
patients associated with allergic disease (145).

Lactobacillus plantarum
L. plantarum is a widespread member of the genus Lactobacillus
and is commonly found in fermented food products
and anaerobic plant matter. L. plantarum has important
effects in preventing hypercholesterolemia, hyperlipidemia,

atherosclerosis, T2DM, obesity, and hypertension. L. plantarum
can absorb cholesterol directly from the culture medium
and was thus selected as a probiotic that potentially reduced
cholesterol levels in mice/rats (86, 146–154). L. plantarum
HT121 improved serum lipid profiles, restored beneficial gut
microbes, and regulated BAs metabolism (155). L. plantarum
DR7 reduced cholesterol via the phosphorylation of AMPK,
which downregulated the mRNA expression of 3-hydroxy-3-
methyl glutaryl coenzyme A reductase in hepatic (HepG2)
and intestinal (HT-29) cells (146). In vivo experiments
confirmed that L. plantarum CAI6 and SC4 can regulate
lipid metabolism and Nrf-2-induced oxidative defense in
hyperlipidemic mice to reduce cardiovascular risk (86). L.
plantarum ZDY04 remarkably reduced serum TMAO levels
and TMAO-induced atherosclerosis by modulating the relative
abundance of the families Lachnospiraceae, Erysipelotrichaceae,
and Bacteroidaceae and the genus Mucispirillum in mice
(11). L. plantarum strains can also exert anti-obesity effect
by ameliorating lipid accumulation, oxidative damage,
inflammation, and gut dysbiosis (156–158). In vitro, the cell-free
supernatant of L. plantarum X1 can inhibit α-glucosidase
activity and show potential antidiabetic ability. L. plantarum
X1 can partially enhance antioxidant capacity and improve
the secretion of cytokines and pancreatic damage in T2DM
mice. In addition, this strain remarkably restored the acetic
acid level and increased the butyric acid level in the feces of
diabetic mice; thus, the ability of L. plantarum to lower blood
sugar was closely related to exercise and fatty acid and intestinal
flora composition changes (159). L. plantarum can also regulate
blood pressure by inhibiting ACEI activity and promoting NO
production and therefore improved learning and memory in
rats with hypertension-induced vascular dementia induced by
deoxycorticosterone salt (160). The expression of TNF-α, IL-6,
MCP-1, vascular cell adhesion molecule, intercellular adhesion
molecule, and E-selectin were remarkably downregulated in
L. plantarum Lp91-fed LPS-induced mice compared with
the control group; hence, its anti-inflammation effect might
be involved in cardiovascular-related diseases (161). Besides,
beneficial effects of L. plantarum, inulin, or their combination
on GM, cardiac apoptosis, and diabetes have been studied
(162–164). In the clinic, strain Lp299v improved vascular
endothelial function and decreased systemic inflammation, and
ECGC 13110402 exerted lipids reduction function (35, 36).
Heat-treated L. plantarum OLL2712 reduced abdominal
fat accumulation and chronic inflammation in overweight
adults (37). GM analysis indicated that L. plantarum Dad-13
intervention in obese adults decreased the Firmicutes population
and increased the Bacteroidetes population (38). Circulating
gut-derived metabolites TMAO and SCFAs likely contribute to
these improvements by L. plantarum and merit further study.

Lactobacillus reuteri
L. reuteri has been reported to exist naturally in the intestines
of all vertebrates and mammals and is associated with
most cardiovascular-related diseases. L. reuteri has cholesterol-
lowering effects in the body and can effectively reduce TC,
TG, and LDL values (165–169). Similar to L. plantarum DR7,
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L. reuteri NCIMB30242 exerted cholesterol-lowering properties
along the AMPK pathway (146). In clinical trials, L. reuteri
NCIMB30242 can best meet the dietary requirements for
therapeutic lifestyle changes (TLC), which remarkably reduced
LDL-C and TC and improved other CHD risk factors, such
as inflammatory biomarkers (7). A high-calorie diet led to
heart damage and promoted heart failure, whereas oral L.
reuteri GMNL-263 treatment can regulate plasma lipids and
reduce high-calorie-induced cardiac inflammation, hypertrophy,
and fibrosis (170, 171). In addition, L. reuteri GMNL-263
can treat obesity in high-energy diet-induced obese rats
by improving serum levels of pro-inflammatory factors and
antioxidant enzymes and remodeling white adipose tissue
(WAT) energy metabolism (172). L. reuteri strain ATCC PTA
4659 may partially prevent diet-induced obesity through a
previously unknown mechanism that induced the expression
of carnitine palmitoyltransferase 1a in the liver (173). L.
reuteri GMN-32 treatment can reduce the impact of diabetes
on the heart, decrease blood glucose levels, inhibit caspase
8-mediated apoptosis, promote heart function, and prevent
diabetic cardiomyopathy (174). L. reuteri strains ADR-1 and
ADR-3 ameliorated symptoms of T2DM patients, and increased
intestinal level of L. reuteri to further up-regulate Lactobacillus
and Bifidobacterium, and decrease Bacteroidetes (40). Oral
L. reuteri DSM17938 supplementation for 12 weeks did not
affect glycated hemoglobin but improved insulin sensitivity
and increased serum secondary BA deoxycholic acid levels
in patients with insulin-treated T2DM (39). Furthermore, L.
reuteri V3401 can reduce inflammatory markers in patients
with metabolic syndrome, including obesity, and improve
microbial intestinal composition, especially Verrucomicrobia, for
improving metabolic syndrome and reducing cardiovascular risk
mechanism (41). L. reuteri has achieved remarkable results in the
treatment of osteoporosis (175), suggesting that it might improve
bone and cardiovascular health by modulating the GM.

Lactobacillus rhamnosus
L. rhamnosus is one of the most studied beneficial bacteria in the
gut and has a beneficial effect on hyperlipidemia, obesity, T2DM,
and damage after myocardial infarction (MI). Studies have
highlighted the potential of L. rhamnosus to reduce HFD-related
metabolic disorders by cholesterol-lowering mechanism (176–
179). Notably, L. rhamnosus GR-1 reduced the development
of oxidative stress and chronic inflammation through the NF-
κB signaling pathway and therefore reduced the formation of
atherosclerotic plaque in ApoE-deficient mice fed with HFD
(176). L. rhamnosus effectively regulated the abundance and
diversity of intestinal flora in rats and zebrafish HFD models by
increasing the abundance of Bacteriodetes. L. rhamnosus GG, a
well-established probiotic strain, has a direct anti-obesity effect
through the regulation of intestinal microbiota, particularly by
decreasing the Firmicutes/Bacteroidetes ratio (180). In addition,
L. rhamnosus GG can protect dyslipidemia and improve insulin
sensitivity by inhibiting FXR and fibroblast growth factor 15
signaling and upregulating hepatic Cyp7A1 (79, 177, 181–183). L.
rhamnosus GG supplementation was also found to be associated
with stable HbA1c levels in healthy individuals (43). The

cardioprotective effect of L. rhamnosusGG against high-fat high-
fructose diet-induced obesity was associated with up-regulation
of Nrf2-mediated antioxidant pathways (184). This strain also
mitigated the development of obstructive sleep apnea-induced
hypertension caused by a high-salt diet by regulating TMAO level
and CD4+ T cell induced-type I inflammation (49). Compared
with L. rhamnosus GG, L. rhamnosus NCDC17 can improve oral
glucose tolerance and biochemical parameters; oxidative stress
(TBARS); and CAT, SOD, and GSH-Px activities in the blood
and liver and decrease the proportion of propionic acid in the
cecum (185). Tissue weight assessment and atrial natriuretic
peptide gene expression in MI rats given L. rhamnosus showed
a substantial attenuation of left ventricular hypertrophy (LVH),
and various ultrasound indicators reflected the improvement
of left ventricular function (186). A clinical study also proved
the effectiveness and safety of Lactobacillus supplementation in
preventing cardiac remodeling after MI (42). Supplementation
of L. rhamnosus in patients with coronary artery disease had
beneficial effects on depression, anxiety, and inflammatory
biomarkers (44, 45). In addition to the bacteria itself, the p75
protein isolated from L. rhamnosus GG (187) considerably
reduced infarcts in rat cardiac tissues in a dose-dependent
manner (188). Thus, the protein produced by lactobacilli also
had a direct cardioprotective effect on ischemic damage and was
no longer restricted to improving cardiovascular-related diseases
through dietary intake. L. rhamnosus seems to be suitable for
various people, we should dig out more strains like L. rhamnosus
GG through clinical research.

Other Lactobacilli
Eating habits are related to human health. For example, a high-
salt diet can cause hypertension and other cardiovascular-related
diseases. The intestinal flora perspective proved that a high-salt
diet reduced the abundance of Lactobacillus in the gut, especially
the consumption of L. murinus. Treatment with L. murinus
prevented the salt-induced aggravation of actively induced
experimental autoimmune encephalomyelitis and salt-sensitive
hypertension in mice by modulating TH17 cells. In line with
these findings, a moderate high-salt challenge in a pilot study in
humans reduced the intestinal survival of Lactobacillus spp. and
increased TH17 cells and blood pressure (21). High-salt intake is
linked to the intestinal immune axis, and the intestinal microflora
is an important condition against potential therapeutic targets for
salt sensitivity that helps reduce the incidence of hypertension
and reduces the risk of cardiovascular-related diseases. In
vitro studies showed the cholesterol-lowering effect of strains
with BSH activity, including L. alimentarius, L. paraplantarum,
and L. pentosus (189–191). Lactobacillus supplementation with
L. buchneri, L. johnsonii, and L. mucosae decreased serum
cholesterol levels to prevent hypercholesterolemia (77, 192–
195). Specifically, L. johnsonii BS15 markedly enhanced the
population of Bacteroidetes and Lactobacillus spp. Moreover,
the probiotic reduced the population of Enterobacteriaceae
and the Firmicutes/Bacteroidetes ratio (192). The anti-obesity
effect has been observed in L. amylovorus, L. sakei, and
L. salivarius. The supplementation of L. amylovorus CP1563
had improved the anthropometric measurements and markers
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related to lipid and glucose metabolism and reduced the
body fat of overweight and mildly obese individuals (24).
Continuous ingestion of the fragmented CP1563 containing 10-
hydroxyoctadecanoic acid also modulated the GM in pre-obese
healthy subjects (25). L. amylovorus LKU4 exerted an anti-
obesity effect on mice through facilitating browning of white
adipocytes and increasing lactate levels (196). L. sakei CJLS03
treatment caused weight loss in people with obesity (46). L. sakei
OK67 ameliorated HFD-induced blood glucose intolerance and
obesity in mice by reducing inflammation and increasing the
expression of colon tight junction proteins in mice (12, 197).
Various obesity-associated biomarkers in the GM were also
beneficially influenced by L. sakei administration (198, 199).
L. salivarius Ls-33 modified fecal microbiota by increasing the
Bacteroides–Prevotella–Porphyromonas group/Firmicutes ratio
in obese adolescents (47). Viable probiotics (Lactobacillus and
Bifidobacterium) had a cardioprotective effect on infarct-like
myocardial injury by suppressing TNF-α and oxidative stress
damage in a rat model; this effect had not been reported in the
single treatment of L. casei, L. bulgaricus, and L. acidophilus (200).
The co-supplementation of viable probiotics may be used as a
new option for patients at risk of heart disease in the future.
Despite evidence on the beneficial effects of Lactobacillus on
the cardiovascular system has emerged, the impact of the other
17 Lactobacillus species on the management of cardiovascular-
related diseases has not been elucidated.

CANDIDATE LACTOBACILLUS SPECIES
FOR RELIEVING THE SYMPTOMS OF
CARDIOVASCULAR-RELATED DISEASES

From the perspective of disease prevention, L. casei, L.
plantarum, L. fermentum, L. rhamnosus, L. reuteri, and L.
paracasei can treat the most cardiovascular-related diseases, and
their corresponding mechanisms are the most extensive among
the Lactobacillus species. This review provides guidance for the
refinement of lactobacilli to treat several diseases effectively.
Most lactobacilli prevent hyperlipidemia, hypercholesterolemia,
and atherosclerosis through cholesterol-lowering mechanism via
changes in BAs and TMAO. L. acidophilus, L. amylovorus, L.
brevis, L. casei, L. fermentum, L. paracasei, L. plantarum, L.
reuteri, L. rhamnosus, and L. sakei are examples of special bacteria
for obesity that regulate lipid metabolism; inflammation; glucose
metabolism; WAT energy metabolism; signaling pathways,
including NF-κB and PPAR-α; and metabolites, including BAs
and LPS. L. casei, L. fermentum, L. paracasei, L. plantarum,
L. reuteri, L. rhamnosus, and L. sakei are special bacteria for
T2DM and hyperglycemia that regulate glucose metabolism;
inflammation; insulin sensitivity; pathways, including GPR43
and PI3K/Akt; and metabolites, including LPS, BAs, and SCFAs.
L. brevis, L. casei, L. fermentum, L. helveticus, L. murinus, L.
paracasei, L. plantarum, and L. rhamnosus are special bacteria
for hypertension that regulate NO levels, ACEI activity, and
LPS production.

As a primary and important factor in maintaining GM
balance, the anti-pathogenic activity of lactobacilli has

received a lot of attention. The massive numbers of bacteria
with whole-genome sequence data have made possible the
identification of an informative set of putative metabolite
genes/gene clusters that encode antimicrobials across the
genomes (Supplementary Figure 1). L. paracasei, L. sakei, L.
plantarum, L. casei, L. gasseri, L. alimentarius, L. coryniformis
L. panis, L. crispatus, L. johnsonii, L. amylovorus, L. curvatus,
L. rhamnosus, and L. helveticus have been identified by genome
mining as the most capable species for antimicrobial peptide
production (Supplementary Table 2). Lactobacilli have the
ability to produce different kinds of exopolysaccharides (EPSs)
with a wide diversity of structures. EPS biosynthesis genes
have been identified in most species within the Lactobacillus
genus, such as L. fermentum, L. reuteri, L. sakei, and L.
plantarum (201, 202). These species also have the potential to
prevent and treat cardiovascular-related diseases by decreasing
serum cholesterol, reducing the inflammatory response,
and modulating GM composition (203–205). The predicted
therapeutic candidates for cardiovascular-related diseases extend
the existing reports of the Lactobacillus genus and are ready
for experimental verification. Although numerous bacteria
that lower cardiovascular risk are found in the literature, most
bacteria have not been sequenced. Thus, genome mining cannot
be performed. The possible disease treatment mechanism, target,
and related products, which provide additional possibilities for
the current research, can be speculated.

CHALLENGES AND FUTURE DIRECTIONS
OF LACTOBACILLUS SPECIES IN
THERAPEUTIC RESEARCH

The Effectiveness and Safety of the Strains
Is Still a Critical Issue
A proper evaluation of the products is essential before bringing
Lactobacillus into routine usage. Animal and human studies have
attempted to correct intestinal disorders by using probiotics,
such as L. rhamnosus (180, 206) and L. reuteri (207), which
were administered to animals under clinical and obesity
factors, to target intestinal flora. Animal studies are consistent
but occasionally fail to verify the results of human clinical
studies. Animal experiments showed that L. gasseri BNR17
supplementation reduced body weight and white fat weight
(208). By contrast, clinical trials showed that supplementation
with L. gasseri BNR17 did not remarkably reduce body weight
and waist and hip circumferences (209). L. paracasei had
been used in animal experiments to reduce body weight and
fat accumulation but did not affect metabolism in clinical
studies (210). This discrepancy in outcome maybe because
the current work is still in its early stages. Thus, apart from
simple correlations, additional meaningful conclusions can be
drawn from the data and lead to the transformation of animal
experiments into human experiments. Animal experiment results
that are consistent with clinical ones are reported. Moreover,
most of the above studies are performed in strictly controlled
animal models, which limits their potential applications in
human subjects. Researchers must also need to consider lifestyle,
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age, genetic factors, different dietary conditions, and changes
in the environment that affect the microbial composition.
Therefore, clinical research is crucial. Some strains, such as L.
acidophilus La5, L. amylovorus CP1563, L. casei Shirota, 01, L.
fermentumME-3, L. gasseri BNR17, SBT2055, L. helveticus LBK-
16H, CM4, L. plantarum Lp299v, ECGC 13110402, OLL2712,
Dad-13, L. reuteri NCIMB30242, DSM17938, ADR-1, ADR-3,
V3401, L. rhamnosusGG, L. sakei CJLS03, and L. salivarius Ls-33
have been proven by clinical trials to be functional in improving
cardiovascular-related diseases (Table 1). The scope of the topics
covering legal edible bacteria can promote the study of clinical
bacteria therapy.

Mining Into the Bacteria to Explore Their
Mechanism
Studies have shown that certain strains in a clearly balanced
state are related to cardiovascular-related diseases. However,
possible microbial communities that may be causally related to
these diseases remain unknown. Various kinds of bacteria exist
in the intestinal flora, and any intervention may lead to flora
fluctuation. Therefore, finding the target bacteria is difficult, and
the technology of knocking out some bacteria in vivo research
must be developed (59, 211). However, gene-editing technology
invalidates the hypothetical target metabolites to verify its effect.
Researchers can also attempt to separate the metabolites directly
for animal clinical trials with the development of the isolation
and purification of bacterial metabolites. The identification
of the normal metabolic pathway given in this review or
screening the target protein or pathway by high-throughput
screening technologies, such as microarray, transcriptomic, and
metabonomic technology, and then verifying the results by
laboratory experiments for further mechanism research will
be popular.

Therapeutic Potential of Natural Products
by Targeting Lactobacilli
Polysaccharides, saponins, and flavonoids, as the main active
components in daily food, are difficult to be directly digested
and absorbed by the human body. They play remarkable
pharmacological roles depending on the transformation
by intestinal microorganisms. Lactobacilli produce various
substances, such as β-glucosidase and β-galactosidase, making
them useful as fermentation tools and influence the function
and activity of natural products. The metabolic pathway
of ginsenoside bioconversion using enzymes and microbial
fermentation has been reviewed, and L. rhamnosus GG, L.
delbrueckii, L. acidophilus, L. plantarum, and L. brevis play a
major role (212). For instance, compound K (C-K; 20-O-D-
glucopyranosyl-20(S)-protopanaxadiol) is a novel ginsenoside
metabolite, with anti-inflammatory, anti-atherosclerosis, and
anti-diabetic activity, formed by intestinal lactobacilli β-
glucosidase and does not occur naturally in ginseng (213). L.
rhamnosus C6 strain showed higher β-glucosidase activity as well
as biotransformation of isoflavones from glycones (daidzin and
genistin) to aglycones (daidzein and genistein), which indicated
an inverse relationship between the incidence of cardiovascular
diseases (214). A series of novel phenolic galactosides with high

antioxidant capacity was achieved by β-galactosidase from L.
bulgaricus L3 (215). Lactobacilli participate in producing SCFAs
by the fermentation of polysaccharide, which is generated during
the glycolytic pathway (216). Thus, the activity of lactobacilli in
the intestines has a significant effect on the digestion of food
and medicine, and prevents the occurrence and development of
cardiovascular-related diseases.

CONCLUSIONS

The World Health Organization reports that 30% of deaths
worldwide are caused by cardiovascular-related diseases and
predicts that these diseases will remain the leading cause of death
in the next 20 years. These diseases will introduce considerable
physical and economic burden on humans (https://www.who.int/
health-topics/cardiovascular-diseases); thus, additional attention
has been provided to cardiovascular-related diseases. Studies
have shown that the development of cardiovascular-related
diseases is closely related to the structure and function of GM
(4). The concept that probiotics could improve cardiovascular-
related diseases is emerging. In recent years, changes in
intestinal microbial community, metabolites, and their link to
cardiovascular-related diseases have made GM a potential new
target for treatment. Therapeutic approaches with Lactobacillus
could directly maintain GM homeostasis and regulate functional
metabolites, including TMAO, SCFAs, BAs, and LPS, which
further help to reduce the risks of high lipid cholesterol, immune
inflammation, and oxidative stress.

The category of beneficial Lactobacillus strains referred to
in this review provides experimental data for clinical use.
Lactobacilli have promising metabolites; thus, a wide range of
Lactobacillus candidates for future research on the improvement
of cardiovascular-related diseases have been figured out. In
addition to current therapeutic interventions, including fecal
microbial transplantation, dietary interventions, and prebiotic
and antibiotic interventions (81, 217–219), Lactobacillus therapy
still represents an exciting frontier in the prevention and
treatment of cardiovascular-related diseases.
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