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Until about a decade ago, the non-coding part of the
genome was considered without function. The development of
high-throughput RNA sequencing techniques (next-generation
sequencing) revealed the existence of many transcripts that do not
code for proteins in addition to the RNA components needed for
mRNA translation: rRNAs and tRNAs. The aim of this issue was
to put together reports on the role of non-coding RNAs in the ner-
vous system, an emerging field not covered so far in a systematic
manner.

Non-coding transcripts can be divided into three broad classes:
(i) short RNAs (sRNAs), (ii) RNAs transcribed from the opposite
strand of a protein-coding locus that contain sequences anti-
sense with respect to the protein-coding transcript, (OS-RNAs)
and (iii) long intergenic non-coding RNAs (lincRNAs). Many of
these non-coding RNAs (nc-RNAs) can regulate the transcrip-
tion or the translation of protein-coding genes. Almost on weekly
basis, new findings reveal the regulatory role that nc-RNAs exert
in many biological processes. Overall, these studies are making
increasingly clear that, both in model organisms and in humans,
complexity is not a function of the number of protein-coding
genes, but results from the possibility of using combinations of
genetic programs and controlling their spatial and temporal reg-
ulation during development, senescence and in disease by regula-
tory RNAs. This has generated a novel picture of gene regulatory
networks where regulatory nc-RNAs represent novel layers of reg-
ulation. Publications reporting novel non-coding RNAs found
using sequencing appears almost monthly, therefore dedicated
bioinformatics techniques to analyze the result of this analysis are
under development (Guffanti et al., 2014).

Particularly well-characterized is the role of microRNAs (miR-
NAs) in the post-transcriptional regulation of gene expression.
MicroRNAs are short(∼21 nt) nc-RNAs that arise from process-
ing of a long primary transcript via a complex and well-described
biosynthetic process. MicroRNAs bind to mRNAs (usually in the
3’untranslated region) and regulate gene expression by repress-
ing mRNA translation and/or inducing degradation of the target
mRNA. Up to now, several thousands of miRNAs have been
predicted and identified in animals, plants and viruses (www.

mirbase.org) and some microRNAs are highly conserved, facili-
tating the analysis of microRNA in non-model species. A feature
of miRNAs is their combinatorial regulation: a given miRNA can
target a multitude of different mRNAs and a given target might

similarly be targeted by multiple miRNAs; for this reason, they
frequently represent the central nodes of several regulatory net-
works and may act as rheostat to provide stability and fine-tuning
to gene expression networks (Osella et al., 2011; Siciliano et al.,
2013). MicroRNAs are also relatively easy to study experimen-
tally and novel methods to study their function are continually
coming out (Chaudhuri et al., 2013; Knauss et al., 2013). They
can be transfected in cells, microinjected in embryos or deliv-
ered in vivo to neurons and their function can be blocked, in vitro
and in vivo, by modified antisense oligonucleotides (antagomiRs).
For all these reasons, the majority of contributions to this e-
book relate to miRNAs. In the nervous system, miRNAs have
been involved in the regulation of cellular pathways control-
ling fundamental functions during development (Benchoua and
Peschanski, 2013; Coolen et al., 2013; Cremisi, 2013; Hong et al.,
2013; Iyengar et al., 2014; Iyer et al., 2014; Terzibasi Tozzini et al.,
2014), synaptic plasticity (Tognini and Pizzorusso, 2012; Chiu
et al., 2014), and in neurodegenerative disease. Intriguingly, miR-
NAs show a double-sided relationship with neuronal activity:
electrical activity (Eacker et al., 2013; Pai et al., 2014) regulates
miRNAs at the level of transcription, biogenesis, stability and
specific targeting to dendrites and also axons and presynaptic ter-
minals (Kaplan et al., 2013) on one side, but miRNAs are also
able to regulate membrane conductances altering neuronal bio-
physical properties (Gavazzo et al., 2013). Synaptic localization is
particularly relevant in the context of local translational control
(Heise et al., 2014), thereby providing a molecular substrate for
synaptic plasticity. Deregulation of expression of miRNAs is pro-
posed not only as potential disease biomarker (Sheinerman and
Umansky, 2013; Maffioletti et al., 2014), but it has been impli-
cated directly in the pathogenesis of complex neurological and
neuropsychiatric disease (Dogini et al., 2013; Goodall et al., 2013;
Maciotta et al., 2013; Serafini et al., 2013; Barbato et al., 2014;
Della Ragione et al., 2014; Elramah et al., 2014; Fragkouli and
Doxakis, 2014; Kye and Goncalves Ido, 2014; Nieto-Diaz et al.,
2014). This so-called RNA revolution also lead to the exploita-
tion of RNA interference and the development of related tools
as potential treatment of a vast array of CNS disease that could
benefit from regulation of disease-associated genes.

A second class of small RNAs are the piwi-interacting RNAs
(piRNAs). These are slightly larger than miRNAs (24–32 nt) orig-
inate from intergenicrepetive sequences that are transcribed as a
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long RNA and processed and play an important role in gametoge-
nesis and transposon silencing. PiRNAs are expressed at low level
(if at all) in somatic tissues and their role in the nervous system is
still ill-characterized.

Long non-coding RNAs are a heterogeneous population and
are much less studied (see Ernst and Morton, 2013). They can
be associated to chromatin and either interfere with transcrip-
tion of the target gene(s) or induce epigenetic modifications.
Long ncRNAs can indeed interact with chromatin remodellers
such as Polycomb and target these to specific genomic regions.
Opposite-strand RNAs can hybridize with their protein-coding
complementary transcript and modulate splicing or induce RNA
degradation. Finally, long ncRNAs derived from pseudogenes
can act as competitive inhibitors for miRNAs thereby increas-
ing the expression of their protein-coding paralog. Examples of
these mechanisms relate to transcription of repetitive elements
(Pascarella et al., 2014) or fine tuning of developmental patterning
and positional information in the central nervous system medi-
ated by regulation of the spatial pattern of expression of Hox
genes in Drosophila (Gummalla et al., 2014).
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