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ABSTRACT: The identification of promising lead compounds
showing pharmacological activities toward a biological target is
essential in early stage drug discovery. With the recent increase in
available small-molecule databases, virtual high-throughput screen-
ing using physics-based molecular docking has emerged as an
essential tool in assisting fast and cost-efficient lead discovery and
optimization. However, the best scored docking poses are often
suboptimal, resulting in incorrect screening and chemical property
calculation. We address the pose classification problem by
leveraging data-driven machine learning approaches to identify
correct docking poses from AutoDock Vina and Glide screens. To
enable effective classification of docking poses, we present two
convolutional neural network approaches: a three-dimensional convolutional neural network (3D-CNN) and an attention-based
point cloud network (PCN) trained on the PDBbind ref ined set. We demonstrate the effectiveness of our proposed classifiers on
multiple evaluation data sets including the standard PDBbind CASF-2016 benchmark data set and various compound libraries with
structurally different protein targets including an ion channel data set extracted from Protein Data Bank (PDB) and an in-house
KCa3.1 inhibitor data set. Our experiments show that excluding false positive docking poses using the proposed classifiers improves
virtual high-throughput screening to identify novel molecules against each target protein compared to the initial screen based on the
docking scores.

1. INTRODUCTION
The discovery of novel drugs is a highly complex, expensive,
and time-consuming process. High-throughput screening
(HTS) has been used to rapidly identify lead compounds by
testing thousands to millions of compounds for biological
activity at the model organism, cellular pathway, or molecular
target protein level. However, due to the high-cost and time-
consuming nature of HTS and the exponential rise in the
number of viable novel drug targets, computational method-
ology, namely, virtual high-throughput screening (vHTS) is
being increasingly applied to accelerate the drug discovery
process. In particular, recent studies have shown that vHTS-
based methods are capable of identifying small-molecule
inhibitors against SARS-CoV-2.1−3

To date, molecular docking is one of the most commonly
used vHTS approaches for the calculation of protein−ligand
binding activities, enabling virtual screening of massive
compound databases. In general, there are three main
traditional scoring functions for molecular docking: force
field based, empirical, and knowledge based. The force field-
based scoring function consists of a sum of physical
interactions including van der Waals interactions, electrostatic
interactions, and bond stretching/bending/torsional forces.
However, this approach often suffers from speed and sampling
limitations, due to the intensive computation and sampling

insufficiency.4 The empirical scoring function utilizes a set of
weighted different energy terms such as hydrogen bonds, van
der Waals interactions, electrostatic energy, and hydro-
phobicity. The energy terms are manually selected and
weighted based on experimental affinity data.5 The knowl-
edge-based scoring function is based on statistical energy
potentials that are derived from experimental structure data of
protein−ligand complexes.6 Since the last two approaches rely
on known ligand−protein structures and binding affinities,
they are difficult to apply to targets and ligands that are
structurally distinct from existing data.7

Molecular docking software tools such as AutoDock Vina
(empirical and knowledge-based scoring functions)8 and Glide
(empirical scoring function)9 compute the preferred poses of a
ligand within the constraints of the protein’s binding pocket
selected by users or based on the crystal structure of the
receptor. The top-ranked pose of each ligand is then selected
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by the scoring function composed of multiple energetic factors,
as described above. However, we often observe discrepancies
between the top-ranked poses and conformations of crystal
structures, resulting in low hit rates. According to a study by
Irwin and Shoichet,10 the hit rate of top-rated compounds
from virtual screening of molecular docking is only about 12%.
It is not a trivial task to select the best poses since it cannot
always be assumed that the pose of the ligand model with the
lowest energy score represents the correct one (i.e., in
validation with a cocrystal structure of the same protein−
ligand). Table 1 shows docking poses of an exemplary
protein−ligand complex, the enzyme carbonic anhydrase
with a bound inhibitor (PDB ID: 3R17) from the ref ined
PDBbind 2019 set,11 and lists the Vina docking scores of the
various poses together with the root-mean-square deviation
(RMSD) compared to the crystal structure. RMSD is widely
used as a measure of how different a calculated docking pose of
a ligand is from its corresponding cocrystallized orientation in
the same protein. Note that generally poses with an RMSD of
less than 2 Å are considered correct, while poses with larger
than 4 Å RMSD are considered incorrect.12,13 As shown in
Table 1, there is little correlation between the Vina score and
RMSD values. For example, the RMSD of the top-ranked pose
is 3.53 Å, whereas the pose with the best RMSD value (1.72 Å)
is ranked in 12th place. Figure 1 visualizes the two poses,
together with the crystal structure. The pose ranked in 12th
(cyan) has the lowest RMSD with a more similar orientation to
the crystal structure (black) compared to the top-ranked pose
(magenta).
Recently, data-driven machine learning (ML) approaches

trained on three-dimensional (3D) structures of protein−
ligand complexes have been proposed for the task of binding
affinity prediction.1,14−19 Most approaches in this category use
PDBbind data sets for training and evaluation. These trained
ML models can be used for virtual screening by predicting the
binding affinity of each compound in a protein target (i.e., a
complex structure). Since crystal structures of the protein−
ligand complexes are not available in most screening
applications, structure modeling-based docking tools are used
to generate protein−ligand docking poses for their evaluation.
However, due to the above-discussed deviations between the
top-ranked poses and crystal structures, incorrect poses reduce
prediction accuracy. To improve the prediction accuracy of
protein−ligand interaction, robust pose classification filtering
out incorrect protein−ligand poses is crucial.
To address these problems, several ML approaches have

been recently applied to identify active compounds as well as
to predict the binding affinity of ligands to protein. Durrant
and McCammon developed one of the first neural network
receptor−ligand scoring functions called NNScore.20,21

McNutt et al. developed a ML-based molecular docking
program called GNINA using an ensemble of convolutional
neural networks (CNNs) as a scoring function.22 Aggarwal and
Koes utilized a ML-based scoring function to predict the
RMSD value of each pose to the true binding structure.23

Francoeur et al. applied a grid-based CNN to predict binding
affinity using a new data set called CrossDocked2022 with 22.5
million poses.19 Adeshina et al. used eight different machine
learning classification algorithms to filter out false positive
docking poses for AChE inhibitors: Gradient Boosting (GB),
Extreme Gradient Boosting (XGB), Random Forest (RF),
Extremely Randomized Trees (ET), Gaussian Naiv̈e Bayes
(GNB), k-Nearest Neighbor (kNN), Linear Discriminant

Table 1. List of Our Curated PDB Ion Channel Data Set

PDB ID Protein name

1J95 KCSA potassium channel with TBA (tetrabutylammonium) and
potassium

2LY0 Membrane ion channel M2 solution NMR structure of the
influenza A virus S31N mutant (19−49) in presence of drug
M2WJ332

2RLF Proton channel M2 from influenza A in complex with inhibitor
rimantadine

3JAF Structure of alpha-1 glycine receptor by single particle electron
cryomicroscopy, glycine/ivermectin-bound state

4TNW Avermectin-sensitive glutamate-gated chloride channel GluCl
alpha

4XDK Crystal structure of human two pore domain potassium ion
channel TREK2 (K2P10.1) in complex with norfluoxetine

4XDL Crystal structure of human two pore domain potassium ion
channel TREK2 (K2P10.1) in complex with a brominated
fluoxetine derivative

5EK0 Human Nav1.7-VSD4-NavAb in complex with GX-936
5IS0 Structure of TRPV1 in complex with capsazepine, determined in

lipid nanodisc
5KLG Structure of CavAb(W195Y) in complex with Br-dihydropyridine

derivative UK-59811
5KMD Structure of CavAb in complex with amlodipine
5KMF Structure of CavAb in complex with nimodipine
5KMH Structure of CavAb in complex with Br-verapamil
5OSC GLIC-GABAAR alpha1 chimera crystallized in complex with

pregnenolone sulfate
5VDH Crystal structure of human glycine receptor alpha-3 bound to AM-

3607, glycine, and ivermectin
5VDI Crystal structure of human glycine receptor alpha-3 mutant N38Q

bound to AM-3607, glycine, and ivermectin
6HUG CryoEM structure of human full-length alpha1-beta3-gamma2L

GABA(A)R in complex with picrotoxin and megabody Mb38
6JPA Rabbit Cav1.1-verapamil complex
6JPB Rabbit Cav1.1-Bay K8644 complex
6JUH Structure of CavAb in complex with efonidipine
6KEB Structure basis for Diltiazem block of a voltage-gated calcium

channel
6LQA Voltage-gated sodium channel Nav1.5 with quinidine
6MVX NavAb voltage-gated sodium channel, I217C, in complex with

Class 1C antiarrhythmic flecainide
6RV3 Crystal structure of the human two pore domain potassium ion

channel TASK-1 (K2P3.1) in a closed conformation with a
bound inhibitor BAY 1000493

6RV4 Crystal structure of the human two pore domain potassium ion
channel TASK-1 (K2P3.1) in a closed conformation with a
bound inhibitor BAY 2341237

6SXF Crystal structure of the voltage-gated sodium channel NavMs
(F208L) in complex with Tamoxifen

6UZ0 Cardiac sodium channel (Nav1.5) with flecainide
6WJ5 Structure of human TRPA1 in complex with inhibitor GDC-0334
6X40 Human GABAA receptor alpha1-beta2-gamma2 subtype in

complex with GABA plus picrotoxin
6YSN Human TRPC5 in complex with Pico145 (HC-608)
7BYM Cryo-EM structure of human KCNQ4 with retigabine
7BYN Cryo-EM structure of human KCNQ4 with linopirdine
7CR1 Human KCNQ2 in complex with ztz240
7D4P Structure of human TRPC5 in complex with clemizole
7D4Q Structure of human TRPC5 in complex with HC-070
7JUP Structure of human TRPA1 in complex with antagonist compound

21
7LQZ Structure of squirrel TRPV1 in complex with RTX
7MZC Cryo-EM structure of minimal TRPV1 with RTX bound in C1

state
7MZD Cryo-EM structure of minimal TRPV1 with RTX bound in C2

state
7RHJ Cryo-EM structure of human rod CNGA1/B1 channel in L-cis-

Diltiazem-blocked open state
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Analysis (LDA), and Quadratic Discriminant Analysis (QDA).
The authors found that most candidate inhibitors in a screen
against acetylcholinesterase showed detectable activity, and 10
of the 23 identified inhibitors had IC50 values less than 50
μM.24 Ashtaway and Mahapartra explored a range of novel
scores employing different ML approaches in conjunction with
physicochemical and geometrical features characterizing
protein−ligand complexes to predict the native or near-native
pose of a ligand docked to a receptor protein’s binding site.25

Boyles et al. proposed a method to predict the binding affinity
of docking poses using a hybrid ML-based scoring function
with structure- and ligand-based features. They showed that
their method is comparable to other scoring approaches
trained only on crystal structures. A random forest algorithm
was then used for their machine learning method.26 Bao et al.
predicted RMSD of a ligand docking pose with reference to its
native binding pose as a regression problem using a machine
learning model called DeepBSP and evaluated their model on
the PDBbind core set (CASF-2016).27 Recently, Pei et al.
proposed a Random Forest (RF)-based pose classification with
physics-based energy scores as input features and evaluated
their model on PDBbind CASF-2016 data set.28

Although there have been many attempts using ML
techniques to address binding affinity prediction and scoring
functions, classification of molecular docking poses using deep
neural networks, especially approaches using 3D atomic
representations, have not been extensively studied. We here
propose two machine learning approaches for the task of pose
classification, 3D convolutional neural network (3D-CNN)
and point cloud neural network (PCN), to improve the
accuracy of protein−ligand binding affinity predictions and
other vHTS tasks. 3D-CNN-based approaches have been
extensively used to predict the binding affinity of com-
plexes.1,14 Unlike the previous approaches, we propose to
employ it as a pose classifier to filter out false positive docking
poses to improve the accuracy of virtual screening. Moreover,
as an alternative to the 3D-CNN-based method, we present
another neural network approach (PCN) that directly captures
global information on 3D atom structures without voxelizing
them into a 3D voxel grid. The proposed PCN is faster and has
smaller memory footprint requirements compared to 3D-

CNN. Our experiments show that the two proposed ML
approaches effectively filter out incorrect poses, resulting in
better binding affinity and other bioactivity predictions, than
when using docking poses based solely on the scoring
functions. We used the PDBbind 2019 crystal structures and
their Vina docking poses for training and quantitative
evaluation. To evaluate our methods with structurally different
receptors and compounds (i.e., holdout set), we used ion
channel complexes extracted from the Protein Data Bank
(PDB) and data from our own work and literature for the
calcium-activated potassium channel KCa3.1.

2. DATA
For experiments and evaluations of the proposed pose
classification, we used several data sets of protein−ligand
complexes. First, we used the PDBbind database11 for training
and testing, as a standard data set. The PDBbind database is a
collection of experimentally determined structures of cocrystal-
lized protein−ligand complexes deposited in the PDB,29 which
has been widely used for protein−ligand binding affinity
prediction.14,15 The PDBbind database is composed of three
subsets: general, ref ined, and CASF-2016 (also known as core
set). The general set is the main body of the PDBbind database,
consisting of the protein−ligand complexes with experimen-
tally determined binding affinity data for the given complexes.
The ref ined set is compiled to down-select the protein−ligand
complexes with better resolution quality, less than 2.5 Å, out of
the general set. CASF-2016 is a relatively small compilation of
high-quality protein−ligand complexes for various docking
scoring and ML studies. CASF-2016 (core set) has been used
as the primary evaluation set in the comparative assessment of
scoring functions (CASF) benchmark. In this study, we used
the PDBbind 2019 edition: the ref ined set with 4,585 protein−
ligand complexes for training and CASF-2016 with 285
complexes for evaluation. Note that there is no overlap
between the ref ined and CASF-2016 sets, i.e., no duplicated
PDB IDs between the two sets. Nevertheless, CASF-2016 is
drawn from similar ligands and protein complexes where
structural similarity to pockets in the ref ined set is still high.
For further comprehensive evaluation of the proposed method,
we used two additional holdout data sets that do not contain
similar counterparts in the training data: (1) ion channel
complexes selected from the PDB and (2) the KCa3.1
inhibitor data set published by our own group30,31 and
scientists from Bayer32,33 and docked into the inner pore of the
channel.
Ion channels are multipass membrane proteins that regulate

the flux of anions and cations across cellular membranes in all
organisms ranging from bacteria to humans. However, many
ion channels are large multisubunit proteins that often “bury”
between 50% and 85% of their amino acids in the lipid
environment of the membrane making them challenging
targets in structural biology34−36 because of technical
difficulties in expressing, purifying, and crystallizing them. To
date, there are more than 50,000 PDB entries in the Protein
Data Bank (PDB) repository of protein structures, but less
than 1% of these entries represent membrane proteins with ion
channels constituting only a few dozen structural entries.
There accordingly have not been many ML-based vHTS
studies focusing on ion channels. Table 1 shows 40 ion channel
complex data which were manually selected from the PDB.
Note that five of the 40 complexes also appear in the PDBbind
general set. However, those five complexes are not included in

Figure 1. Example of 20 Vina docking scores with their RMSD values.
They were calculated between each pose and the crystal structure of
the 3R17 ligand (human carbonic anhydrase, hCA) from the
PDBbind 2019 ref ined set.
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our training data set (ref ined set). In addition, most of the
crystal structures in this ion channel data set have relatively low
resolution compared to the ref ined set and CASF-2016 in the
PDBbind data set.
We further applied our method to the potassium channel

KCa3.1. Currently, there is no cocrystal structure of the
KCa3.1 channel with a ligand, but there are three structures of
the channel: one structure in the closed state (PDB ID:
6CNM) and two open state structures (PDB IDs: 6CNN,
6CNO).37 Except for the KCa3.1 channel data set, we use
cocrystallized complex data with the RMSD calculations to
validate and evaluate our method. For the KCa3.1 inhibitor
data set, we calculated correlations between the experimental
pIC50 values and docking scoring functions from poses
obtained by docking various KCa3.1 inhibitors into a binding
site identified in the inner pore by mutagenesis.38,39 Figure 2
shows the structure of KCa3.1 (PDB ID: 6CNM) and the
general structures of triarylmethane and cyclohexadiene based
KCa3.1 inhibitors. The structures of KCa3.1 inhibitors are
provided in Figure S1 of the Supporting Information. Note
that the diversity of the KCa3.1 compounds is somewhat
limited since the experimental discovery work from our group
and industry has largely focused on the two pharmacophores
shown in Figure 2, whereas our curated PDB ion channel set
includes a diverse collection of ligands for evaluation.
Both the ion channel and KCa3.1 data sets are considered

holdout sets, also known as out-of-distribution (OOD) data
sets, since there are only three ion channel structures in the
PDBbind 2019 ref ined set used to train our models. The three
ion channel structures in the ref ined set are not complete ion
channels containing the transmembrane domain and the ion
conducting pore. They are intracellular “pieces” of the channels
that have been crystallized without the rest of the channel.
PDB ID 3U10 is a tetramer of C-terminal domains of HCN1,
and 4NVP is a similar tetramer of the C-terminal domains of
HCN4, while 4MUV is the monomeric cyclic nucleotide
binding domain of a bacterial potassium channel. Our ion
channel data set from the PDB is hand curated and only
contains ion channel structures that contain the ion-
conducting transmembrane domains. Thus, we can conclude
that there is no overlap between the training complexes and
the ion channel holdout sets. Moreover, compared to enzyme
proteins which make up the vast majority of the PDBbind
complexes, ion channel proteins generally contain unique
symmetric structures with a conduction pathway for ions, as

shown in Figure 2. Thus, the holdout sets present a distinct
structural motif compared to other structures included in the
training set.

2.1. Preprocessing. The provided crystal structure data in
the data sets described above were used as ground-truth
correct poses. To generate more correct poses (positive
examples) and a similar number of incorrect poses (negative
examples), we performed AutoDock Vina docking with its
scoring function. We then extracted 20 docking poses for each
protein−ligand complex. In order to dock each ligand against
the target protein using AutoDock Vina, all receptors and
ligands were prepared in the pdbqt format using MGLtools.40

In the preparation of receptor structures, charges were merged,
and nonpolar hydrogen, lone pairs, waters, and nonstandard 20
amino acids were removed from the protein, which is the
default setting of the MGLtools. For the ligand preparation,
the default setting of the MGLtools was used as well. Feinstein
and Brylinski41 demonstrated that docking results depend
heavily on the choice of docking region size, as the docking
poses are affected by the size of the search space. To increase
the diversity and the number of poses for training and
evaluation (i.e., data augmentation), docking for the ref ined set
was performed twice with different grid sizes. The initial
docking box was calculated based on the boundary coordinates
of each ligand in the crystal structure, and the box dimensions
in x, y, and z axes were increased by 8 and 4 Å, accordingly.41

The total number of poses for training is 82,591, where the
number of correct and incorrect poses are 23,834 and 58,757,
respectively. As described above, generally RMSDs of 2 and 4
Å were used as thresholds to determine correct and incorrect
poses. In our experiment, however, we considered poses with
an RMSD less than 2.5 Å as correct, while poses with greater
than 6 Å RMSD were considered incorrect for two reasons.
First, classifying docking poses using the thresholds of 2 and 4
Å results in a severe class imbalance problem (too fewer
positive examples), which causes overclassification of the
incorrect poses. To alleviate the problem, we used slightly
higher RMSDs for thresholding poses. Second, the main goal
of the proposed pose classification is to train the ML models to
filter out “definite” incorrect poses to improve molecular
docking processes for high-fidelity docking screening. We
observed that the threshold of 2.5 and 6.0 Å provides a
reasonable distinction between correct and incorrect poses.
Even with the revised RMSD threshold, the number of
incorrect poses is greater than that of correct poses in many

Figure 2. (Left) Closed state of the KCa3.1 channel (PDB ID: 6CNM) and binding site of inhibitors (red box). (Right) General structures of
KCa3.1 channel triarylmethane and cyclohexadiene based inhibitors. The four channel alpha subunits are rainbow colored; the channel associated
with calmodulin is shown in yellow.
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cases. Thus, the crystal structures were added to the correct
poses.
For featurization of complex data of each crystal and docking

poses, we used a widely used atomic representation where each
atom has its (x, y, z) coordinates and features. The atomic
representation is comprised of 19 features, described in Jones
et al.14 Optionally we incorporate four protein−ligand
interaction features in addition to the 3D atomic representa-
tion. The interaction features include number of hydrogen
bonds, number of hydrophobic contacts, number of pi
stackings, and number of salt bridges extracted by using the
interaction module in the Open Drug Discovery Toolkit
(ODDT).42 The ODDT library is a modular and compre-
hensive toolkit written in Python (https://github.com/oddt/
oddt). In ODDT, we used the oddt.interactions module to
collect the interaction features between each ligand and
protein receptor complex. We describe the use of these
interaction features in the following section. For the KCa3.1
inhibitors evaluation, we used Glide in addition to AutoDock
Vina. To run Glide, we converted all ligand structures in 2D
SDF into 3D conformation format as preprocessing. We then
performed LigPrep to prepare the ligands with Epik.43 The
protein structure was prepared using Schrödinger’s Protein
Preparation Wizard, and the binding site of the protein was
specified using Receptor Grid Generation. For the grid of the
receptor, the inner box (a search space that indicates
acceptable positions for the ligand center) was set to 10 Å ×
10 Å × 10 Å, while the outer box (a search space that must
contain all the ligand atoms) was set to 20 Å × 20 Å × 20 Å.
The docking was carried out in standard precision (SP)
mode.9,44

3. 3D-CNN
3D convolutional neural networks (3D-CNNs), widely used
for a vast number of computer vision applications with 3D
volumetric data, have been successfully applied to the
prediction of protein−ligand binding affinity.1,14,18,19,22,23,35,45

We herein propose to use 3D-CNNs as a binary pose classifier
to learn representation for 3D atomic structures of compound
poses. Our 3D-CNN is composed of three convolutional layers
and three fully connected layers, followed by a sigmoid

activation. Each convolutional layer comes with ReLU
activation for nonlinearity and batch normalization to
normalize feature outputs across each mini-batch, followed
by max pooling. The voxelization step for 3D-CNNs is similar
to the work in Jones et al.14 The ligand and its surrounding
pocket region within 8 Å are extracted from the protein−ligand
complex structure, and all the atoms inside the region are
assigned to voxels in a 48 × 48 × 48 voxel grid. To avoid too
sparse representation in the voxel grid, we applied Gaussian
smoothing so that the atom regions with their atomic features
are propagated into its neighboring voxels. For this, we used
the gaussian_filter function provided in Python’s SciPy library
with sigma = 1 and truncate = 2.
The input volume dimension for each compound pose’s

atomic representation is 48 × 48 × 48 × 19, where 48 is the
voxel grid size in each axis and 19 is the number of atomic
features. The dimension of 3D filters in the 3D convolutional
layers is 7 × 7 × 7 for the first layer and 5 × 5 × 5 for the
second and third layers. 3D convolutional layers capture spatial
features and underlying patterns of the protein−ligand docking
poses. The pooling layers select the most representative
elements of the convolved features and give translational
invariances. By following a series of 3D convolutional and max-
pooling layers, the fully connected layers integrate spatial
features of all positions in the docking poses generated by the
convolutional layers to make a final prediction.
The final layer’s output activations are then passed through

the sigmoid function to calculate the error of the prediction
(loss). For the classification, we used the standard binary cross
entropy (BCE) loss. Figure 3 (top) illustrates the overall layer
structure of the 3DNN. For the pose classification, we used
two slightly different versions of the 3D-CNN architecture.
The first version uses a 3D atomic representation in a voxel
grid, just like the previous 3D-CNN methods used for the
binding affinity prediction.14,17 The second version incorpo-
rates protein−ligand interaction features into the 3D-CNN
inference model by concatenating the interaction features and
the output activation of a fully connected layer, as shown in
Figure 3.

Figure 3. Overall network architecture of the proposed 3D-CNN and PCN. The input for the networks is 3D atomic structures with their features
(3D pose representation). The PCN uses the input data directly, whereas the 3D-CNN uses their voxelized data. The optional interaction features
are concatenated with one of the fully connected layer activations.
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4. POINT CLOUD NETWORK (PCN)

In addition to the 3D-CNN approach described above, we
introduce a new deep neural network approach for the task of
pose classification. Our proposed approach, called point cloud
network (PCN), directly uses 3D atom coordinates with their
associated features. It is inspired by the attention models for
word−sentence inference in natural language processing.46

The main motivation of the PCN approach is a more efficient
inference model with small memory footprint requirements
compared to the 3D-CNN which uses a 48 × 48 × 48 × 19
voxel grid per protein−ligand complex. Since the 3D atomic
structure is an unordered list of atom positions (x, y, z) and
their features, the data need to be interpreted without any
order dependency. Moreover, the network should learn feature
representations invariant to any geometric transformation. To
this end, we propose to use a neural network that directly
interprets the 3D atomic structure data as a point cloud by
globally aggregating information across all the atom positions
and features. The basic concept of the PCN is similar to that of
PointNet47 to classify and segment point cloud data. Unlike
PointNet, the PCN incorporates atom positions and their
features together, and the geometric transformation is
performed outside the network as augmentation.
The detailed architecture of the PCN is as follows. The PCN

utilizes 1D CNNs to interpret each atom position and its
feature, followed by global max pooling to aggressively
summarize the output feature map given each 1D filter by
extracting the best feature response of the filter. All pooled
features are then concatenated and flattened. Unlike the
word−sentence models to highlight relevant features among
words in a sequence, this PCN does not interpret the atom
data (position with features) as a sequence because there is no
order dependency in the atoms of ligands and proteins. Since
the network directly reads atom (x, y, z) coordinates without
any need for voxelization, it does not suffer from quantization
errors unlike 3D-CNN. Moreover, it uses significantly less
memory and GPU computation compared to a 3D-CNN.
Figure 3 (bottom) illustrates the overall architecture of the
proposed PCN. Like the 3D-CNN versions, we incorporate the
protein−ligand interaction features by concatenating them and
the fully connected layer’s activation.

5. EXPERIMENTAL SETUP

To train both the 3D-CNN and PCN models, we used the
ref ined data set of the PDBbind 2019 edition which is
comprised of 4,585 cocrystal structures and their docking
poses using AutoDock Vina. The cocrystal structures and
docking poses whose RMSD is less than 2.5 Å were labeled as
correct poses, whereas docking poses whose RMSD is greater
than 6.0 Å were labeled as incorrect poses, as described earlier.
In training the proposed networks, we optionally applied 3D

affine transformation to (x, y, z) coordinates of the input atom
data to augment training sample sizes and to increase
distributions of the spatial coordinates of the input atom
data. The affine transformed data samples add variance of the
3D representation, which also reduces the risk of overfitting
and improves overall accuracy. Note that we apply only
rotation and translation to the 3D atom coordinates of the
complex structures because other geometric transformations
such as skewness and scaling break its 3D molecular
conformation with important bonds and connectivity. In our
experiment, we randomly rotated and translated (x, y, z)

coordinates of atoms by up to 20° and 10 Å, respectively. We
applied the random rotation in all three axes, which we
observed is enough to provide significantly increased diversity
of the same 3D structure.
Moreover, we optionally used interaction features between

the ligand and protein which are concatenated with the output
activations of the second last layer. Thus, seven different
training strategies were used in our experiment: (1) 3D-CNN,
(2) 3D-CNN with protein−ligand interaction features (3D-
CNN_i), (3) 3D-CNN with affine transformation (3D-
CNN_a), (4) 3D-CNN with both interaction features and
affine transformation (3D-CNN_ia), (5) PCN, (6) PCN with
affine transformation (PCN_a), and (7) PCN with both
interaction features and affine transformation (PCN_ia).
All the proposed neural networks were implemented using

PyTorch48 and performed on an NVIDIA Tesla K80 GPU. All
neural network models were trained using the commonly used
BCE loss and optimized using Adam optimizer with learning
rates of 0.0002 for 3D-CNNs and 0.001 for PCNs. Minibatch
sizes for training both networks are 50, and the number of
epochs is around 50, which were chosen based on the previous
work.14

Although many shallow learner algorithms have been
developed to score ligand−protein binding affinity, fewer
shallow models are available for pose classification. Pei et al.’s
pose classification model28 was trained and tested exclusively
on the CASF-2016 data set precluding direct comparison with
our results. Instead, we include a baseline RF model (RF_i)
using the calculated interaction features also considered in the
Supporting Information to the deep learning models, in order
to motivate the potential benefits of our proposed deep
learning modeling with 3D atomic representations. The input
of this RF baseline model is the same as the protein−ligand
interaction features used in 3D-CNN and PCN. It was
implemented using the scikit-learn Python library with the
default parameters (number of trees = 100, minimum number
of samples for split = 2, criterion = Gini impurity).

6. RESULTS
We performed several evaluations to quantitatively measure
the effectiveness of the proposed pose classification ap-
proaches. Our evaluation report includes (1) model perform-
ance, (2) speed (evaluation runtime) between 3D-CNN and
PCN models, and (3) incorporation into Vina docking
evaluation and screening. To address these evaluations, we
used the CASF-2016 benchmark data set and two holdout sets,
i.e., PDB ion channel data set and KCa3.1 channel inhibitor
data set.

6.1. Pose Classification Model Performance. We first
determined the performance of the proposed pose classifiers
using accuracy, precision, recall, and F1 score. Accuracy is
obtained by dividing the total number of correctly classified
poses by the total number of predictions made for a data set

Accuracy
True positive True negative

True positive True negative False positive False negative

=
+

+ + +

Precision is calculated as the number of true positives divided
by the total number of true positives and false positives,
whereas recall is calculated as the number of true positives
divided by the total number of true positives and false
negatives
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Precision
True positive

True positive False positive

Recall
True positive

True positive False negative

=
+

=
+

The F1 score is calculated by multiplying the product of
precision and recall by 2 and dividing it by the sum of precision
and recall

F1 2
Precision Recall
Precision Recall

= × ×
+

We also analyzed our data with the area under the curve
(AUC) and receiver operating characteristic (ROC) curve
where 0.0 and 1.0 represent incorrect and correct poses,
respectively. Table 2 summarizes the performance of our seven
different models on the docking poses and crystal structures of
CASF-2016 where there are 1,633 incorrect poses (RMSD is
greater than 6) and 796 correct poses including crystal
structures (RMSD is less than 2.5 Å).
All 3DCNN and PCN models show an accuracy of over

80%. Among the four 3D-CNN models, 3D-CNN with affine
transformation and interaction features (3D-CNN_ia) shows
the best accuracy of 88.4%. Among the three PCN models, the
PCN with affine transformation and interaction features
(PCN_ia) model shows the best accuracy of 87.2%. The
accuracy difference between the best performing 3D-CNN
with affine transformation and interaction features (3D-
CNN_ia) and PCN with affine transformation and interaction
features (PCN_ia) is somewhat negligible (1.2%). The results
of this experiment show that affine and interaction features
play an important role in the pose classification. Except for the
PCN model, all methods in this setting achieve better than 0.9
area under curve (AUC) scores, as shown in Figure 4. The
baseline RF_i model yields poor performance (accuracy,
69.9%; AUC, 0.554) compared to our proposed models.
Evaluating prediction performance on structurally different

OOD data is crucial to demonstrate effectiveness of ML
models. The evaluation data set (CASF-2016) includes
representative protein families that are expected be similar to

complexes in the training set (ref ined set). Thus, the measured
accuracy reflects the case where the test set reflects complexes
that are similar to those used for training (i.e., “in-distribution”
prediction accuracy). Here, we evaluate the models on our
curated PDB ion channel data set with its docking poses. This
evaluation data set can be considered unseen data with
structurally different novel targets (ion channels) compared to
other protein targets in the training data set, as discussed
earlier. Ion channels are typically membrane proteins
consisting of three, four, or five subunits that are arranged
around a central ion-conducting pore with 4-fold symmetry or
pseudosymmetry, whose structures and conformations are
significantly different from other types of proteins. See Table 1
for 40 complexes of the PDB ion channel data set used for
evaluation. Using the ion channel complexes, 191 incorrect and
117 correct docking poses were used for evaluation. Overall,
two PCN models outperform 3D-CNN models, as shown in
Table 3 and Figure 5.

Table 2. Prediction Performance of Proposed Pose Classification on CASF-2016a

No. Poses Accuracy (%) Precision Recall F1 score

RF_i incorrect 1633 69.9 0.70 0.96 0.81
correct 796 0.68 0.16 0.26

3D-CNN incorrect 1633 83.4 0.92 0.82 0.87
correct 796 0.70 0.86 0.77

3D-CNN_i incorrect 1633 83.7 0.84 0.93 0.88
correct 796 0.82 0.65 0.72

3D-CNN_a incorrect 1633 87.4% 0.87 0.96 0.91
correct 796 0.89 0.71 0.79

3D-CNN_ia incorrect 1633 88.4 0.93 0.89 0.91
correct 796 0.80 0.87 0.83

PCN incorrect 1633 81.4 0.86 0.86 0.86
correct 796 0.71 0.72 0.72

PCN_a incorrect 1633 82.1 0.89 0.84 0.86
correct 796 0.70 0.79 0.74

PCN_ia incorrect 1633 87.2 0.90 0.92 0.91
correct 796 0.82 0.78 0.80

aFrom top to bottom, Random Forest with protein−ligand interaction features (RF_i), 3D-CNN, 3D-CNN with protein−ligand interaction
features (3D-CNN_i), 3D-CNN with affine transformation (3D-CNN_a), 3D-CNN with both interaction features and affine transformation (3D-
CNN_ia), PCN, PCN with affine transformation (PCN_a), and PCN with both interaction features and affine transformation (PCN_ia).

Figure 4. ROC curves of the pose classification models (3DCNN,
3DCNN_i, 3DCNN_a, 3DCNN_ia, PCN, PCN_a, PCN_ia, and
RF_i) on CASF-2016.
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Unlike the CASF-2016 evaluation results, PCN with affine
transformation (PCN_a) yields the best performance with an
accuracy of 83.1%. The second-best performing model is PCN
with affine transformation and interaction features (PCN_ia).
Among the 3D-CNN models, 3D-CNN with affine trans-
formation with interaction features performs best (accuracy of
75.6%) among the four different 3D-CNN models. The
accuracy difference between the best performing 3D-CNN and
PCN models is 7.5%. The AUC score evaluation in Figure 5
shows that the PCN_ia model achieves the highest scores
among the seven models (0.904). Although most of the models
have lower AUC scores than those in the PDBbind CASF-
2016 evaluation, five models achieve better than 0.8. Like the
previous evaluation, all our proposed models outperform the
baseline RF_i model (accuracy, 62%; AUC, 0.508).
6.2. Speed Test on Pose Classifiers. We report

computation speeds of the proposed pose classifier approaches.
In the evaluation of CASF-2016 which contains 2,429 docking
pose instances, the total evaluation runtime of 3D-CNN is 5
min 43 s, while that of PCN is 11 s, indicating that PCN is
approximately 30 times faster than 3D-CNN. The runtimes
were measured using an NVIDIA Tesla K80 GPU. The PCN

architectures are significantly faster than 3D-CNN architec-
tures, while achieving competitive performance in accuracy.
According to the Vina docking evaluation described in Section
6.3, 3D-CNN models make slightly improved predictions.

6.3. Vina Docking Pose Evaluation with Pose
Classification. Through evaluations on two data sets in
Section 6.1, we have shown that the proposed 3D-CNN and
PCN models can effectively classify correct or incorrect poses.
In most real screening applications, however, the docking
poses are used for evaluation, due to the lack of crystal
structures. We now demonstrate the applicability of the
proposed pose classification with molecular docking-based
screening tasks. To this end, we used two different OOD data
sets: PDB ion channel and in-house KCa3.1 data sets.
Structure-based molecular docking processes such as Auto-
Dock Vina, MOE-Dock,49 and Glide50 generate multiple poses
with scores using their empirical scoring functions. The top-
ranked poses based on their scores are then identified as
correct ligand binding poses. However, as briefly discussed in
the Introduction, the top-ranked poses are often misrepre-
sented as correct poses, which results in incorrect compound
screening. Nevertheless, structure-based molecular docking
methods have been widely used as fast, efficient tools for large-
scale vHTS, especially when crystal structures and other
experiment information are unavailable.8,51,52

In this evaluation, we show that the proposed pose
classification method can supplement the structure-based
docking process by vastly filtering out incorrect poses. We
aim to show how the pose classifiers can filter out obviously
incorrect poses (i.e., false positives of the molecular docking
process) and weak-binding compounds which are miscalcu-
lated by docking programs as strong binders. In this section,
we do not report RMSD values but correlation coefficients
between experimentally measured binding affinities and
negative Vina scores.

6.3.1. PDB Ion Channel Data Set: Correlation between
Vina Scores and Affinity Values. We first evaluated our
curated PDB 40 ion channel complex data with Vina docking
poses. We report (1) correlation between the actual binding
affinity values and Vina scores of the top-ranked docking poses
of each ligand, (2) correlation between the affinity values and
the average Vina scores of all docking poses (light-blue bars in
Figure 6), and (3) correlation between the affinity values and

Table 3. Prediction Performance of the Proposed Pose Classification on PDB Ion Channel Data Set

No. Poses Accuracy (%) Precision Recall F1 score

RF_i incorrect 191 62.0 0.62 1.00 0.77
correct 117 1.00 0.01 0.02

3D-CNN incorrect 191 74.4 0.77 0.84 0.80
correct 117 0.69 0.59 0.64

3D-CNN_i incorrect 191 70.5 0.69 0.94 0.80
correct 117 0.77 0.32 0.45

3D-CNN_a incorrect 191 62.7 0.63 0.99 0.77
correct 117 0.67 0.03 0.07

3D-CNN_ia incorrect 191 75.6 0.78 0.84 0.81
correct 117 0.71 0.62 0.66

PCN incorrect 191 76.6 0.82 0.80 0.81
correct 117 0.68 0.72 0.70

PCN_a incorrect 191 83.1 0.94 0.78 0.85
correct 117 0.72 0.91 0.80

PCN_ia incorrect 191 81.2 0.89 0.80 0.84
correct 117 0.72 0.84 0.77

Figure 5. ROC curves of the pose classification models (3DCNN,
3DCNN_i, 3DCNN_a, 3DCNN_ia, PCN, PCN_a, PCN_ia, and
RF_i) on PDB ion channel data set.
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the average Vina scores of remaining docking poses filtered by
four 3D-CNN models (orange bars in Figure 6) or three PCN
models (green bars in Figure 6).
As shown in Figure 6, the Pearson coefficients between the

affinity values and negative Vina scores without using any pose
classifier are 0.5 and 0.44 for top-ranked scores and average
scores, respectively. However, filtering out incorrect docking
poses and compounds using one of the proposed 3D-CNN
models (3D-CNN_ia) resulted in a significant increase in the
Pearson correlation (0.83). With the massive number of
compounds filtered out by the pose classifiers, this Pearson
coefficient is higher than an averaged Pearson coefficient
(0.48) of randomly selected sets of compounds of identical
sample size (nine compounds in Figure 6C) in multiple trials.
Using two other 3D-CNN models marginally improved the

Pearson coefficients (0.55 and 0.52 for 3D-CNN and 3D-
CNN_i, respectively). However, filtering out using 3D-
CNN_a resulted in a slight decrease in the Pearson coefficient
(0.42). Using the PCN models marginally improved the
Pearson coefficients (0.50, 0.65, and 0.54 for PCN, PCN_a,
and PCN_ia, respectively). We also observed that large
portions of the entire protein ligand complexes were filtered

out since all the docking poses in those compounds were
classified as incorrect by the pose classifiers, which increases
the correlation between the binding affinity values and Vina
scores. See Figure S2 in the Supporting Information for the
analysis of the other pose classification models.

6.3.2. KCa3.1 Channel Inhibitor Data Set: Correlations
between Binding Affinity and Docking Scores. We next
evaluated our models on a set of inhibitors for the calcium-
activated potassium channel KCa3.1. This data set contains 95
KCa3.1 inhibitors developed by either our own group,
scientists at NeuroSearch, or Urbahns and coworkers at
Bayer.30−33 Figure 7 shows correlations between the IC50
values determined either by a whole-cell patch clamp or an
ion flux assay (both techniques measuring inhibition of ion flux
through the pore of the channel) and Vina or Glide scores with
and without using the proposed pose classifiers. The Pearson
correlations of Vina and Glide docking without using our ML
models are 0.23, 0.22, 0.13, and 0.28 for the top-ranked Vina
scores, averaged Vina scores, top-ranked Glide scores, and
averaged Glide scores, respectively (light-blue bars in Figure
7). When the 3D-CNN models were applied to screen
incorrect poses and ligands, the Pearson coefficients signifi-

Figure 6. Pearson correlations between docking scores and binding affinities using seven pose classification models for the PDB ion channel data
set. (a) Vina scores of top-ranked poses, (b) average Vina scores of all docking poses, and (c) average Vina scores across correct poses filtered by
the proposed pose classifier (3D-CNN_ia).
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cantly increased from 0.23 to 0.61 with a p-value of 0.044 and
from 0.13 to 0.63 with a p-value of 0.0003 for Vina and Glide
docking, respectively (orange bars in Figure 7). The Pearson
coefficients when using the PCN models also show improved
Pearson coefficients (green bars in Figure 7). The complete
listing of the correlation plots is provided in Figures S3 and S4
in the Supporting Information. Note that it is nontrivial to
perform compound docking for multiple receptors due to
nonautomatable preparation of each receptor structure with its
grid. Thus, we did not perform a similar evaluation using Glide
for the PDB ion channel data set.

7. DISCUSSION
Our proposed approaches based on convolutional neural
networks have two distinct advantages over regular fully
connected neural network architectures or other ML
approaches. First, we use 3D spatial information to capture
structural relationships between ligands and proteins to classify
poses, and the convolution operation would be a better choice
to interpret such 3D data. Second, our approaches use
protein−ligand complex structures instead of ligand-only
data, and they can be applied to other protein receptors
directly, whereas ligand-only-based models (e.g., RF models

Figure 7. Pearson correlations between the docking scores and binding affinities using seven pose classification models for the KCa3.1 channel
inhibitor data set (left, Vina; right, Glide). (a) Vina scores of top-ranked poses, (b) average Vina scores of all docking poses, (c) average Vina scores
across correct poses filtered by the proposed pose classifier (3D-CNN_i), (d) Glide scores of top-ranked poses, (e) average Glide scores of all
docking poses, and (f) average Glide scores across correct poses filtered by the proposed pose classifier (3D-CNN_a).
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using SMILES string data) need to be retrained for each
receptor.
We used the ref ined set of the PDBbind 2019 edition to train

the pose classifier models. For evaluation, we used the CASF-
2016 data set which is widely used in the literature to evaluate
ML models. However, the CASF-2016 set is not the best
representative evaluation set, with respect to structural
similarity of ligands and protein classes compared to those in
the training data set since similar protein types appear in both
sets. For that reason, other ML works such as Jones et al.14

defined another holdout set for further evaluation. To assess the
model performance of the proposed pose classifiers across
different protein structures, we evaluated our models on PDB
ion channel and in-house KCa3.1 data sets as holdout sets
(OOD data sets). Both data sets contain unique protein
structures (Figure 2), which can be largely categorized as ion
channel proteins and which are characterized by being
multisubunit membrane proteins with typically a 4-fold or 5-
fold symmetry and a conduction pathway for ions through the
protein. Since only three ion channel receptors are present in
the 2019 ref ined data set (training set), these two data sets are
sufficient to be holdout sets to verify the accuracy.
The model performance evaluation (Section 6.1) shows that

the proposed methods can effectively classify docking poses
into correct or incorrect poses. The first observation is that the
methods are more effective on the CASF-2016 benchmark data
set (core set) where most AUCs are higher than 0.9. The
prediction performance on the PDB ion channel data set is less
effective since only PCN_a and PCN_ia yield close to 0.9
AUCs. The majority of the proteins in the training set
(PDBbind ref ined set) are enzymes, and even CASF-2016
mostly consists of enzymes. It was anticipated to show
favorable accuracy on the CASF-2016 evaluation. However,
the protein types in the PDB ion channel data set are
significantly different protein structures, and the performance
decreases accordingly. Nevertheless, the models perform
satisfactorily on this holdout set largely consisting of a different
protein class (ion channels) than the training set (enzymes)
demonstrating the usefulness of the classifiers. We also

observed that applying affine transformation to the 3D atomic
coordinates together with using the interaction features
generally exhibits better overall performance on both 3D-
CNN and PCN models (3D-CNN_a, 3D-CNN_ia, PCN_a,
PCN_ia). The affine transformation provides a more diverse
spatial conformation of the protein−ligand structures to learn
geometrically invariant features. The PCN model without
using affine transformation and interaction features renders the
worst performance among the seven models. This is somewhat
anticipated since it is difficult to capture invariant information
without applying affine transformation when aggregating the
unordered list of atom position data in the PCN architecture.
Although the interaction features generally enrich the pose
classification models, the models using those features some-
times perform slightly poorly compared to the ones without
using them, because the calculation of the interaction features
depends on the type of the complex structure such as ligand,
receptor, and binding site. In addition, the baseline RF model
using the interaction features does not perform well, resulting
in low AUC values on both data sets. One can incorporate
more sophisticated descriptors such as Pei et al.28 into our
classifiers to boost performance. Yet, our deep learning
methods with automated feature learning from 3D spatial
information are still effective.
The speed evaluation shows that the PCN models are

significantly faster with competitive performance in accuracy
compared to the 3D-CNN models. However, in the docking
score evaluation in Section 6.3, the 3D-CNN models generally
outperform the PCN models. Nonetheless, PCN would be a
better option to facilitate rapid drug screening unless there is a
specific need to use 3D-CNN architectures for a particular data
set.
Through the docking evaluations in Section 6.3, 3D-CNN

models yield a more reliable and stable prediction performance
across multiple data sets. However, 3D-CNN models require
larger memory footprints and more computation in the
convolutional operations, due to the additional step to
voxelizing the atomic representation. On the other hand,
PCN models use much less memory and computation

Figure 8. Example of correct and incorrect docking poses in the PDB ion channel data set with pose classification results (4TNW, top; 4XDK,
bottom). Each docking pose includes RMSD, Vina score, and model confidence of one of our pose classifiers (3D-CNN_ia), respectively. The
model confidence can be [0, 1], where a number close to 0 indicates incorrect.
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resources, processing 3D atomic coordinates directly. One of
the disadvantages of the PCN models is the lack of more
sophisticated spatial representations such as atom sizes using
van der Waals radius or Gaussian blur-based atom propagation,
which might cause slightly lower accuracy compared to the 3D-
CNN models.
The evaluations in Section 6.3 show that the proposed

methods can be effectively incorporated into docking-based
screening processes. Compared to the Vina and Glide docking
correlations without using the pose classification, the averaged
docking scores across correctly classified poses only exhibit
much higher Pearson correlations in both the PDB ion channel
and our in-house KCa3.1 data sets. We observe that there are
many compounds where all docking poses are filtered out by
the classifiers so that the compounds are excluded in the
correlation evaluation. As discussed earlier, previous studies
show that the Vina scores are not strongly correlated with the
experimentally measured binding affinities (i.e., moderate
degree of correlation).51,52 Nonetheless, these evaluations
show that the pose classification can effectively assist the Vina
and Glide docking pipelines in screening promising com-
pounds by filtering out incorrect poses.
We observe inconsistency in the model performance

between input from Vina and Glide docking poses. It is
nontrivial to analyze the model behavior since the performance
and accuracy depend on various factors such as training and

evaluation data, network initialization, and other hyper-
parameter settings. One possible explanation is due to
differences in the docking procedures of the two docking
tools and the models being trained exclusively on Vina poses.
Glide docking requires an additional protein preparation step,
which is different from the preprocessing in the Vina docking
process. Compared to the protein receptors processed by Vina
docking, the protein coordinates slightly changed with different
atomic configurations (e.g., additional hydrogens), which can
result in differences in the interaction feature calculation of
several compounds.
Figure 8 shows the effectiveness of the proposed pose

classifiers with two examples from the PDB ion channel data
set. In both cases, the Vina scores of the incorrect poses are
lower (better) than those of the correct poses, whereas the
confidence scores of the pose classifier provide correct
information about the reliability of the poses. It shows that
the proposed model accurately classified incorrect poses to
improve docking scoring accuracy, which can ultimately
improve screening by assisting in compound selection.
Evaluations in Figure 7 show correlation between the

binding affinity and docking scores (Vina and Glide) after the
proposed classifiers were applied and filtered out incorrect
poses. However, there is a possibility that the correlation may
increase as more compounds are filtered out. Alternatively, the
confidence scores of the pose classifiers can be used to select

Figure 9. Pearson correlations between binding affinity and docking scores of the top 10, 20, 30, and 40 ranked compounds based on the
confidence scores of our pose classifier models on the KCa3.1 channel inhibitor data set. 3D-CNN_i with Vina docking poses (left) and 3D-
CNN_a with Glide docking poses (right).

Figure 10. pIC50 of the top 10 ranked compounds in the KCa3.1 channel inhibitor data set without (left) and with the pose classifier (3D-
CNN_a,right). The orange colors indicate strong binders (pIC50 ≥ 7). The yellow colors indicate compounds with 6 ≤ pIC50 < 7.
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the best pose for each compound, as shown in Figure 9. First,
the best pose for each compound is selected using the
confidence scores. Then, the top 10, 20, 30, and 40
compounds are selected based on the confidence score of
the best poses, and the Pearson correlation is calculated
between the corresponding docking score of the best
confidence pose and binding affinity. The Pearson coefficient
is compared with the Pearson between the lowest (best)
docking score and binding affinity of the same compound. This
result shows that best poses identified by our pose classifiers
and their docking scores increase the correlation to the binding
affinity values. More evaluation results with all pose classifier
models are included in the Supporting Information (Figures S5
and S6).
To understand the effectiveness of the pose classifiers

especially in identifying compounds with good pIC50 values,
we collected the top 10 compounds ranked by Glide’s scoring
function, as shown in Figure 10. Among the original top 10
compounds, there is only one strong binder (Figure 10, left).
However, using the best performing pose classifier (3D-
CNN_a), the docking poses of 68 compounds out of 95
compounds were filtered out, resulting in five strong binders
among top 10 compounds (Figure 10, right). For the
evaluation of the best performing pose classifiers (3D-
CNN_a, 3D-CNN_ia, PCN_a, PCN_ia), see Figure S7 in
the Supporting Information.
While this somewhat “drastic” filtering might result in the

loss of some true positives, it lowers the false positive rate
substantially and thus increases the hit rate, especially in large
libraries where the main challenge for experimental follow-up is
the large number of false positive predictions.

8. CONCLUSION

In this work, we showed that the pose classification approach
using two convolutional neural networks improves molecular
docking-based screening tools such as AutoDock Vina and
Glide. We applied our pose classifiers to an experimental data
set for KCa3.1, an example for a potassium channel, a target
class which has not been well studied in the ML-based drug
discovery community. We demonstrated that incorporating the
proposed pose classification into the docking screening
considerably improves the identification of compounds with
activity against the KCa3.1 channel target.
We introduced a fast neural network approach, PCN, which

learns feature representations from 3D atomic positions with
their associated features without voxelizing them. This network
has an advantage over 3D-CNN as it uses significantly less
memory and GPU computations. We also highlighted that the
use of affine transformation and ligand interaction features in
the 3D-CNN and PCN has an advantage, exhibiting better
performance in the accuracy prediction and ROC-AUCs
presented here.
Importantly, our work showed that the pose classification

improves overall screening in the docking process by filtering
out many false positive poses and weak-binding compounds,
resulting in enrichment of true positives in the top scoring
compounds, although at the cost of filtering out some high
affinity compounds. These evaluations allow us to conclude
that our new approach ensures the improved results in a virtual
screening process for docking.
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